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Lysosomotropic challenge of mast cells
causes intra-granular reactive oxygen
species production
Aida Paivandy1, Jens Eriksson2, Fabio Rabelo Melo1, Mikael E. Sellin2 and Gunnar Pejler1,3

Abstract
Mast cells contribute to the pathology of allergic and other disorders. Strategies to interfere with harmful mast cell-
related activities are therefore warranted. Previously we established a principle for inducing selective apoptosis of mast
cells, by the use of lysosomotropic agents that cause secretory granule permeabilization, leading to production of
reactive oxygen species (ROS). However, the mechanism of ROS production has not been known. Here we addressed
this issue. Live microscopy analysis showed that the secretory granules comprise major subcellular compartments for
ROS production in response to mefloquine. As further signs for the primary involvement of secretory granules, both
ROS production and cell death was blunted in mast cells lacking serglycin, a secretory granule-restricted proteoglycan.
Inhibition of granule acidification caused an essentially complete blockade of granule permeabilization, ROS
production and cell death in response to mefloquine. ROS production was also attenuated in the presence of an iron
chelator, and after inhibition of either granzyme B or the ERK1/2 MAP kinase signaling pathway. Together, our findings
reveal that the mast cell secretory granules constitute major sites for ROS production in mast cells subjected to
lysosomotropic challenge. Moreover, this study reveals a central role for granule acidification in ROS generation and
the pro-apoptotic response triggered downstream of secretory granule permeabilization.

Introduction
Mast cells are long-lived tissue resident immune cells

that originate from hematopoietic precursors in the bone
marrow. They circulate in the blood as immature pro-
genitors and, upon transmigration into peripheral tissues,
they mature under the influence of local growth factors1.
Fully mature mast cells are filled with lysosome-like
organelles known as secretory granules that are rich in
preformed bioactive compounds, including biogenic
amines, serglycin proteoglycans, cytokines and various
lysosomal and mast cell-specific proteases2. Owing to
their abundant presence in strategic locations at

host–environment interfaces, mast cells can serve as
immune sentinel cells to respond to invaders3. However,
mast cells are also infamous for their detrimental roles in
orchestrating the inflammatory responses in numerous
pathological conditions including allergic disorders (e.g.,
atopic dermatitis and allergic rhinitis)4, chronic inflam-
matory diseases (e.g., asthma and arthritis)5–7 and differ-
ent types of cancers8–10.
Given the multifaceted and central role of mast cells in

the pathogenesis of various inflammatory diseases and
malignancies, the targeting of mast cells has emerged as
an attractive and broadly applicable therapeutic strat-
egy11,12. In this respect, we have previously introduced a
novel approach to induce mast cell apoptosis through the
use of lysosomotropic agents, which have been shown to
cause secretory granule permeabilization13–15. Moreover,
we have demonstrated that cell death in response to
lysosomotropic agents, including mefloquine (an anti-
malaria drug), shows selectivity for mast cells and is
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associated with reactive oxygen species (ROS) genera-
tion13,16. However, the mechanism behind ROS genera-
tion in mast cells in response to granule permeabilization
has not been revealed.
In the present study we aimed to determine the

mechanism underlying ROS production in response to
granule permeabilization of mast cells. By live imaging
analysis we show that ROS production in response to
lysosomotropic agents predominantly occurs within the
secretory granule compartment of mast cells. In further
support for intra-granular production of ROS, both ROS
production and cell death was blunted in mast cells
lacking serglycin, a secretory granule-restricted pro-
teoglycan. Furthermore, our findings indicate that granule
acidification has a central role in the responses to lyso-
somotropic challenge. Finally, we show that iron is a
source of ROS in mast cells and that granzyme B has a
role in the pathway driving ROS production.

Results
ROS production in response to lysosomotropic challenge
occurs within mast cell secretory granules
We demonstrated previously that the lysosomotropic

agent, mefloquine, has a strong and selective pro-
apoptotic effect on murine and human mast cells, and
that cell death in response to mefloquine is associated
with the production of ROS13. However, the mechanism
of ROS production in response to lysosomotropic chal-
lenge has not been known. In our previous studies we
found that the ROS production was non-sensitive to
alpha-tocopherol13, a compound that blocks mitochon-
drial ROS production. This led us to hypothesize here that
mitochondria are not the major subcellular compartments
responsible for ROS production. Since mast cell secretory
granules are known to be targets for lysosomotropic
agents13,15,17 we instead hypothesized that the ROS pro-
duction in response to lysosomotropic challenge could
occur within the secretory granules. To evaluate this
hypothesis, we used live confocal imaging.
As shown in Fig. 1a, prior to mefloquine treatment,

mast cell granules were clearly visible (labeled with
LysoTracker) and intact, and only low levels of intracel-
lular ROS (monitored with CellROX) were detected.
Upon addition of mefloquine, a rapid elevation of ROS
production was seen. By contrast, the LysoTracker signal
showed a marked reduction at the same time (Fig. 1a, b;
Suppl. Video 1), indicating damage to the mast cell
granules. To determine if the ROS generated in
mefloquine-treated mast cells arose from mast cell gran-
ules, we monitored the colocalization of LysoTracker and
CellROX. At the time of mefloquine addition (t 0), a low
extent of LysoTracker/CellROX colocalization was seen
(Fig. 1c, d). However, as time passed (t 24, 64 and
112min), a significantly higher extent of LysoTracker/

CellROX colocalization was observed (Fig. 1c, d and
Suppl. Video 1). These findings suggest that the mast cell
granules constitute major subcellular sites for ROS pro-
duction in response to mefloquine.
Glutathione (GSH) is an important ROS scavenger

during oxidative stress. Given that GSH depletion occurs
as an early hallmark event of cell death in response to
various apoptotic stimuli18,19, the GSH/GSSG (GSSG
represents oxidized glutathione) ratio was assessed fol-
lowing mefloquine treatment of mast cells. As shown in
Fig. 1e, incubation of mast cells with mefloquine caused a
decrease in the GSH/GSSG ratio, verifying that lysoso-
motropic challenge of mast cells causes oxidative stress.
As another approach to assess the importance of the

secretory granules in ROS production upon lysosomo-
tropic challenge, we compared the ROS production in
wild-type (WT) and serglycin-deficient (serglycin−/−)
mast cells. Serglycin is a proteoglycan exclusively located
in the secretory granules of mast cells20, and effects of
serglycin deficiency on ROS levels would thus be a sign of
secretory granule involvement. Indeed, the ROS response
was markedly blunted in mast cells lacking serglycin
expression (Fig. 1f). Moreover, pre-incubation of mast
cells with NAC blocked mefloquine-induced ROS pro-
duction in WT mast cells (Fig. 1f), whereas only a subtle
effect was observed in serglycin−/− mast cells. Hence,
these data support that the secretory granules have a
central role in the ROS production in response to lyso-
somotropic agents.
In addition to ROS, reactive nitrogen species such as

nitric oxide (NO) can be generated in response to cellular
stress21. Here we sought to determine whether meflo-
quine stimulates production of NO in addition to ROS.
However, although H2O2 (positive control) stimulated
production of NO in mast cells, mefloquine had a negli-
gible effect (Fig. S1).

The absence of serglycin causes a delay in mast cell death
induced by lysosomotropic challenge
Given that serglycin−/− mast cells were found to pro-

duce less ROS in response to mefloquine, we sought to
determine whether the absence of serglycin affects the
course of mefloquine-induced cell death. To this end,
mefloquine-induced cell death was first assessed in WT
and serglycin−/− mast cells using live confocal imaging
and the cell death markers Annexin V and DRAQ7. Upon
incubation with mefloquine, Annexin V and
DRAQ7 staining was seen both in WT and serglycin−/−

mast cells (Fig. 2a, b; Suppl. Video 2). However, Annexin
V/DRAQ7 positivity appeared with a delay in serglycin−/−

mast cells compared to their WT counterparts (Fig. 2a, b).
As another approach, WT and serglycin−/− mast cells
were incubated with mefloquine and cell death was
assessed by flow cytometry. Already after 2 h incubation
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with mefloquine, the proportion of viable cells (Annexin
V−/DRAQ7−) decreased to ∼65% in cultures of WT mast
cells (Fig. 2c; upper panel) whereas the proportion of
viable cells in cultures of serglycin−/− mast cells was

considerably higher (∼87%, p < 0.0001; Fig. 2c; lower
panel). Similar differences in the ratios of viable/dead cells
were also seen after prolonged culture periods (Fig. 2c).
These findings thus support that serglycin−/− mast cells
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are less sensitive to lysosomotropic challenge than
WT cells. It was also notable that, whereas WT mast cells
predominantly underwent apoptotic cell death (Annexin
V+/DRAQ7−), serglycin−/− cells predominantly under-
went necrosis (Annexin V+/DRAQ7+) (Fig. 2c). These
latter findings are in line with previous observations13.
The delayed cell death observed in serglycin−/− mast

cells prompted us to investigate whether signaling path-
ways related to cell stress were differentially activated in
WT vs. serglycin−/− mast cells. For this purpose, we
focused on Akt signaling, which is implicated in cell stress
mechanisms22. In untreated mast cells, Akt phosphor-
ylation was not detected (Fig. 2d, e). However, prominent
Akt phosphorylation was seen in mefloquine-treated WT
mast cells, starting ~10min after mefloquine adminis-
tration and lasting up to ~60min (Fig. 2d, e). In contrast,
only weak Akt phosphorylation was seen in serglycin−/−

mast cells (Fig. 2d, e). These findings suggest that ser-
glycin regulates the intracellular signaling events occur-
ring in response to secretory granule permeabilization.

Loss of granule acidity prevents mast cell granule damage
and cell death in response to lysosomotropic challenge
The secretory granules of mast cells contain large

amounts of stored proteases, including tryptase, chymase
and CPA32. Another hallmark feature of mast cell gran-
ules is that they, analogous to lysosomes, are acidic2.
Based on our finding that ROS production in response to
lysosomotropic challenge takes place in the granules, we
next assessed the role of ROS in inducing granule mem-
brane damage and whether the acidity of the granules has
an impact on this process. To interfere with granule
acidification we used bafilomycin-A1, a V-ATPase inhi-
bitor that previously was shown to block granule acid-
ification in mast cells23. To monitor granule acidification
we used two different probes- LysoSensor and Acridine

orange. As seen in Fig. 3a, b, bafilomycin-A1 profoundly
impaired granule acidification in mast cells. Moreover,
treatment of mast cells with mefloquine caused a dra-
matic drop in granule acidification (Fig. 3a, b), which was
expected considering that granule permeabilization will
disrupt the barrier between the acidic granules and the
neutral pH milieu of the cytosol13. Importantly, pre-
incubation of mast cells with the potent ROS-inhibitor
NAC did not prevent the drop in granule acidity in
response to mefloquine (Fig. 3a, b), suggesting that the
mefloquine-induced de-acidification of the secretory
granules is independent of ROS.
To verify that the reduction of LysoSensor and acridine

orange signals upon mefloquine treatment is associated
with permeabilization of granules, the presence of tryptase
was evaluated in cytosolic extracts. Indeed, incubation of
mast cells with mefloquine caused a substantial increase
in the level of cytosolic tryptase (mMCP6)(Fig. 3c, d).
Preincubation of mast cells with NAC had a partial
inhibiting effect on the release of granular mMCP6 to the
cytosolic compartment (Fig. 3c, d). More strikingly, inhi-
bition of V-ATPase by bafilomycin-A1 caused a profound
blockade of the translocation of mMCP6 into the cytosol
(Fig. 3c, d). To further explore the role of granule acidity
in ROS production and cell death, mast cells were incu-
bated ± mefloquine in the absence or presence of
bafilomycin-A1. As expected, treatment of mast cells
with mefloquine caused an increase in the generation of
ROS and induction of apoptotic cell death (Fig. 3e, f).
Intriguingly, pretreatment of mast cells with bafilomycin-
A1 totally abolished the mefloquine-induced ROS pro-
duction and also prevented cell death (Fig. 3e, f). Col-
lectively, these data show that granule acidification is
essential for mediating granule permeabilization, ROS
production and cell death in response to lysosomotropic
challenge.

(see figure on previous page)
Fig. 1 Intracellular ROS induced by mefloquine are localized inside the mast cell granules. a Representative live confocal images illustrating
the granule damage and production of ROS in mefloquine-treated mast cells. BAM-anchored bone marrow-derived mast cells (BMMCs) were pre-
incubated with LysoTracker Red DND-99 (to label granules) and CellROX Deep Red (green; to monitor ROS production) for 30 min at 37 °C. Cells were
then washed and live confocal imaging was performed immediately. After an initial image recording for 72 min (t=−72), mefloquine (20 μM) was
added to the cells (t 0) and image recording continued for 112 min (t= 112). Scale bar= 5 µm. b Kinetics of LysoTracker and CellROX signal
intensities in mefloquine-treated BMMCs, representing the intensity from 800–1000 cells in total. c Representative live confocal images illustrating
intracellular localization of ROS (CellROX signal in green) within mast cell secretory granules (LysoTracker signal in red) upon mefloquine treatment.
Intensities at each time point have been normalized to accentuate the localization of signal. Scale bar= 5 µm. d Quantification of the colocalization
of CellROX with LysoTracker. Colocalization analysis was carried out on single confocal slices from four independent full fields of view at the indicated
time points, representing 800–1000 cells in total. Bars indicate mean Mander’s M1 coefficient ± SEM (n= 4), one-way ANOVA with Dunnett’s multiple
comparisons test. e GSH/GSSG ratio in response to mefloquine treatment. BMMCs were incubated ±mefloquine (20 µM) for 30 min. Cell lysates were
prepared and incubated with Luciferin Generation Reagent (30 min) followed by incubation with Luciferin Detection Reagent (15 min). Subsequently,
luminescence was measured using a TECAN microplate reader and the GSH/GSSG ratio was determined. Mean ± SEM (n= 3), unpaired, two-tailed
Student’s t-test. f ROS levels in wild type (WT) and serglycin-deficient (SG−/−) mast cells. BMMCs were preincubated ± 8mM N-acetylcysteine (NAC)
for 2 h followed by incubation ± 20 μM mefloquine (MEF). After 30 min, cells were washed and incubated (30 min) with CM-H2DCFDA. Cells were
then washed and the fluorescence intensity was immediately assessed by flow cytometry. The bars represent means ± SEM of the geometric mean
fluorescence intensity (gMFI) for CM-H2DCFDA (n= 4)
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Fig. 2 Delayed mefloquine-induced cell death in mast cells lacking serglycin. a Representative live confocal images illustrating the expression of
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Dotted lines show each technical replicate (WT: n= 11, SG−/−: n= 10). c Comparison of cell death in WT and SG−/− mefloquine-treated mast cells.
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expression. Data are shown as means ± SEM (n= 2)
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Mefloquine-induced ROS production is dependent on iron
but independent of NADPH oxidase
Next, we sought to identify the origin(s) of ROS gen-

erated in response to granule permeabilization. One
candidate intracellular source of ROS is lysosomal iron24,
from which ROS can be generated through the Fenton

reaction. Interestingly, iron-derived ROS production is a
contributing factor in mefloquine-induced death of Plas-
modium25, and we therefore considered the possibility
that iron could be a source of ROS generated in
mefloquine-treated mast cells. To address this possibility
we evaluated the impact of the iron chelator deferoxamine
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mefloquine (20 μM). Cells treated with either PBS, NAC or BAF alone were included as controls. At the indicated time points, cytosolic extracts were
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included as controls. After 2 h, cells were washed and stained with Annexin V and DRAQ7 and cell death was assessed by flow cytometry. Data are
expressed as means ± SEM (n= 3)
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mesylate (DFO) on mefloquine-induced ROS production.
Indeed, pretreatment of mast cells with DFO blocked ROS
generation (Fig. 4a). Based on this notion and on the fact
that serglycin−/− mast cells produced less ROS than WT
mast cells in response to mefloquine (see Fig. 1f), we next
assessed whether serglycin might be involved in the sto-
rage of redox active metal ions. To test this possibility, the
contents of several metals were measured in WT and
serglycin−/− mast cells. There was no difference in the
cellular concentrations of Cu, Mg and Zn between WT
and serglycin−/− mast cells (Fig. 4b). However, a lower
concentration of Fe was observed in serglycin-/- vs. WT
mast cells (Fig. 4b). In further support for a role of iron in
the cellular responses to lysosomotropic challenge we
found by proteomic analysis that ferritin, an iron-binding
protein, was markedly upregulated after mefloquine
treatment in WT mast cells (Fig. 4c and Suppl. Table 1).
This finding is in agreement with previous findings
showing that ferritin expression is increased following

oxidative stress26. In contrast, no significant increase of
ferritin was seen in mefloquine-treated serglycin−/− cells
(Fig. 4c). Collectively, these data indicate that granular
iron, stored in a serglycin-dependent fashion, is involved
in ROS production in response to mefloquine.
In addition to redox active metal ions, the NADPH

oxidase system is a major pathway for ROS production in
many cell types27. To determine whether NADPH oxidase
contributes to ROS production in the present context we
used apocynin, a NADPH oxidase inhibitor. However, no
significant effect of NADPH oxidase inhibition on ROS
production in mefloquine-challenged mast cells was seen
(Fig. 4d).

A role for MAP kinase signaling in ROS production
downstream of secretory granule permeabilization
In an attempt to further explore the downstream sig-

naling events involved in mefloquine-induced oxidative
stress, ROS production in mast cells treated with a panel
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of inhibitors of candidate pathways was evaluated (Fig. 5).
No significant reduction of ROS production was seen
after incubation with inhibitors of either tryptase (Nafa-
mostat), NFκB, Akt (MK2206), AP-1 (SR11302) or P38
MAP kinase (SB203580)(Fig. 5a–e). However, a significant
inhibitory effect was seen using an inhibitor of the ERK1/2
MAPK kinase pathway (U0126; inhibitor of MEK1/2)(Fig.
5f). Hence, these data indicate that the ERK1/2 MAP
kinase signaling pathway contributes to ROS production.
Neither of the used inhibitors, administered in the
absence of mefloquine, had any significant impact on ROS
production (Suppl. Fig. 2).

Granzyme B has a key role in ROS production in response
to lysosomotropic challenge
To gain more detailed insight into the molecular events

occurring after lysosomotropic challenge of mast cells, we
employed proteomic analysis of WT vs. serglycin−/− mast

cells, before and after treatment with mefloquine. As seen
in Suppl. Table 1, a large number of proteins were
downregulated at least 2-fold in WT mast cells following
mefloquine treatment, whereas no such effects were seen
in serglycin−/− cells. One of the proteins that were dif-
ferentially affected in WT vs. serglycin−/− cells was
granzyme B, being significantly downregulated in
WT cells subjected to mefloquine, but not affected in
serglycin−/− cells (Fig. 6a). We also noted that the levels
of granzyme B in naïve cells were significantly higher in
WT vs. serglycin−/− mast cells (Fig. 6a). Since granzyme B
has a known pro-apoptotic function28 we considered the
possibility that granzyme B could have an impact on ROS
production in response to lysosomotropic challenge. To
assess this possibility, we measured ROS production in
mast cells treated with a specific granzyme B inhibitor.
The results revealed a completely abrogated ROS pro-
duction under these conditions (Fig. 6b). Taken together,
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these data indicate that granzyme B has a key role in the
ROS production following lysosomotropic challenge of
mast cells.

Discussion
Mast cells are notorious for their detrimental impact in

allergic settings, but also in a variety of additional dis-
orders29,30. Strategies to limit harmful mast cell actions
are therefore needed. To meet this demand we have
recently established a principle for inducing selective
apoptosis in mast cells through the use of lysosomotropic
agents13–16,31. Lysosomotropic agents are known to enter
lysosomes and then cause membrane permeabilization
leading to efflux of lysosomal compounds into the cytosol
followed by triggering of cell death32. Since mast cell
granules have similar properties as lysosomes, i.e., being
acidic and containing various lysosomal hydrolases2, we
reasoned that mast cell granules might be sensitive to this
class of compounds. Indeed, we have shown that lysoso-
motropic agents potently induce mast cell secretory
granule permeabilization leading to apoptotic cell
death13–16,31. Intriguingly, mast cells are more sensitive to

this type of cell death than are a panel of other cells
types13–16,31, and lysosomotropic agents have therefore
emerged as selective inducers of mast cell apoptosis with
therapeutic implications.
In previous studies we have shown that apoptotic cell

death in response to lysosomotropic challenge is asso-
ciated with robust production of ROS13,16. However, the
mechanism of ROS production in this setting had not
been revealed. Here we show that the ROS production in
response to lysosomotropic challenge predominantly
takes place within the secretory granules. As a major
evidence for this notion, live imaging analysis revealed
that mefloquine-induced ROS production shows a strong
co-localization with secretory granule markers. In addi-
tion, ROS production and cell death in response to
mefloquine was markedly attenuated in mast cells lacking
serglycin, a secretory granule-restricted proteoglycan20.
Finally, ROS production in response to mefloquine could
be completely abolished by interference with granule
acidification.
Another major question was to identify the actual

source(s) of ROS produced after challenge with lysoso-
motropic agent. As one of the candidates we considered
the NADPH oxidase system, which is known as a major
pathway for ROS production, in particular in phagocytic
cells. Redox active metals, e.g., iron, are other candidate
sources for ROS production. Such metals can give rise to
ROS by undergoing the Fenton reactions in which elec-
trons are non-enzymatically donated to oxygen. Of these
candidates, the NADPH oxidase system appeared to be of
minor importance. By contrast, our findings revealed a
significant reduction of ROS production in the presence
of DFO, an iron chelator, suggesting that iron is a sig-
nificant source for ROS production in response to granule
permeabilization. Importantly, DFO does not diffuse over
the cell membrane into the cytosol but is rather taken up
by fluid phase endocytosis and then enters lysosomal
compartments33. Hence, DFO taken up by mast cells will
most likely enter the secretory granules, and the blunted
ROS response in the presence of DFO will thus represent
effects on granular iron depots (rather than on
cytosolic iron).
The exact mechanism(s) behind the effect of serglycin-

deficiency on ROS production is intriguing. Interestingly,
our findings suggest that the absence of serglycin causes a
reduction in the amount of iron stored in mast cells.
Serglycin is highly negatively charged due to a high den-
sity of sulfate and carboxyl groups on the glycosami-
noglycan chains attached to the serglycin protein core34.
It thus appears plausible that serglycin can engage in
electrostatic interactions with cationic iron. The reduc-
tion in ROS production in serglycin−/− mast cells could
consequently reflect an indirect effect of serglycin on iron
storage. Serglycin is also known to promote the storage of
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a variety of other compounds through electrostatic
interactions, including various proteases such as tryptase,
chymase, CPA3 and also granzyme B. Granzyme B is a
major pro-apoptotic protease present in cytolytic granules
of cytotoxic T lymphocytes28, but is also expressed at high
levels in mast cells35. Interestingly, we found that gran-
zyme B was stored at lower levels in serglycin−/− vs. WT
mast cells and was significantly depleted following
mefloquine addition to WT but not serglycin−/− mast
cells. Moreover, ROS production in response to lysoso-
motropic challenge was markedly reduced after inhibition
of granzyme B activity. Collectively, these findings suggest
that granzyme B has a role in ROS reduction following
lysosomotropic challenge and that the reduced ROS
production in serglycin−/− cells can be partially explained
by reduced granzyme B storage.
A striking finding in this study was that interference

with granule acidification, by inhibition V-ATPase, caused
an essentially complete inhibition of ROS production in
response to lysosomotropic challenge. Moreover, V-
ATPase inhibition effectively inhibited granule permea-
bilization and also prevented cell death. Hence, granule
acidification has a major impact on all of the downstream
events occurring after lysosomotropic challenge of mast
cells. We cannot with certainty explain the detailed chain
of events behind these findings. However, a plausible
scenario is that low pH in the mast cell secretory granules
promotes membranolytic effects of mefloquine. For
example, we may envisage that acidic pH promotes
molecular rearrangements in mefloquine in granules,
giving rise to membrane-perturbing properties. This
would be in analogy with the presumed action of other
lysosomotropic agents, which after protonation in acidic
compartments gain surfactant-like properties36.
In summary, this study outlines the mechanism of ROS

production in mast cells subjected to lysosomotropic
challenge, and identifies a role for granule acidification in
the pro-apoptotic events occurring in mast cells following
secretory granule permeabilization.

Materials and Methods
Cell culture
Bone marrow-derived mast cells (BMMCs) were gen-

erated as previously described37. Briefly, bone marrow
cells were isolated from wild type (WT) and/or serglycin-
deficient (serglycin−/−) mice on C57BL/6 genetic back-
ground and grown at 37 °C with 5% CO2 in Dulbecco’s
modified Eagle’s medium (Sigma-Aldrich) containing 30%
WEHI-3B-conditioned medium, 10% heat-inactivated
fetal bovine serum (Gibco, Carlsbad, CA), 100U/ml
penicillin, 100 μg/ml streptomycin, 2 mM L-glutamine (all
from Sigma-Aldrich) and 10 ng/ml IL-3 (PeproTech,
Rocky Hill, NJ). The medium was changed twice every
week and cells were cultured at a concentration 0.5 × 106

cells/ml for at least 4 weeks to obtain mature and pure
BMMCs. The animal experiments were approved by the
local ethical committee (Uppsala djurförsöksetiska
nämnd; Dnr 5.8.18-05357/2018).

Flow cytometry assessment of cell death
Cells were washed and resuspended in Annexin V

binding buffer (BD Biosciences, Franklin Lakes, NJ) and
stained with Annexin V (BD Biosciences) and DRAQ7™
(Biostatus Ltd., Shepshed, UK). Subsequently, stained cells
were analyzed with an LSRFortessa or Accuri flow cyt-
ometer (BD Biosciences) for assessment of cell death.
Data analysis was performed using the FlowJo software
(TreeStar Inc., Ashland, OR).

Measurement of reactive oxygen species (ROS) and nitric
oxide (NO)
For ROS measurement, mast cells (0.5 × 106 BMMCs/

well) were preincubated in the absence or presence of
various inhibitors or iron chelator. Subsequently, cells
were incubated with either mefloquine or PBS, or left
untreated for 30min. Cells were then washed and incu-
bated with 5 μM CM-H2DCFDA for 30min at 37 °C in
dark. After a brief wash to remove excess extracellular
probe, the cellular ROS levels were assessed by flow
cytometry. For NO measurement, mast cells were incu-
bated with mefloquine, PBS or hydrogen peroxide (as
positive control) for indicated time points. After a brief
wash, cells were incubated with 5 μM DAF-FM Diacetate
for 20min at 37 °C. Cells were washed and incubated in
fresh media for 30min at 37 °C to allow complete de-
esterification of the intracellular diacetates before mea-
suring fluorescence intensity by flow cytometry.

Measurement of GSH/GSSG ratio
The ratio of reduced to oxidized glutathione (GSH/

GSSG ratio) was assessed using a GSH/GSSG-Glo™ Assay
(Promega, Madison, WI) according to the manufacturer’s
instructions. Briefly, mast cells (0.5 × 106 BMMCs/well)
were incubated with PBS or mefloquine for 30min fol-
lowed by incubation with Total Glutathione Lysis
Reagent. After 5 min of shaking, cell lysates were incu-
bated with Luciferin Generation Reagent (for 30 min) and
thereafter with Luciferin Detection Reagent (for 15 min).
Subsequently, luminescence signals were measured using
a TECAN microplate reader and GSH/GSSG ratio was
determined.

Measurement of granule pH
Untreated or NAC-pretreated mast cells (0.5 × 106

BMMCs/well) were incubated with either PBS (for
30min), bafilomycin-A1 (for 3 h), or mefloquine (for
30min). Subsequently, LysoSensor Blue DND-167 (1 μM)
was added to the cells and incubated for 1 h at 37 °C. Cells
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were washed and resuspended in PBS and fluorescence
was measured by flow cytometry to assess granule pH.
Alternatively, granule pH was measured using acridine
orange. For this, cells were treated as described above and
subsequently incubated with 5 μL acridine orange for
15min at 37 °C. Cells were extensively washed and
resuspended in 500 μL of PBS. 100 μL aliquots of the cell
suspension were transferred to a 96-well plate and
fluorescence was measured with excitation at 485 nm and
emission at 650 nm, using a TECAN microplate reader.

Western blot analysis
Mast cells (2 × 106 BMMCs) were harvested after the

indicated treatments and were lysed with a lysis buffer (1%
Triton X-100, 0.1% SDS, and 1mM EDTA in PBS (pH
7.4)) in the presence of Pierce phosphatase inhibitor
(Thermo Fisher Scientific, Waltham, MA) and protease
inhibitor cocktail mixture (Roche Diagnostics, Mannheim,
Germany) for 30 min on ice. The cell debris was removed
by centrifugation (14,000 rpm, 20min, 4 °C) and the
supernatant was collected for Western blot analysis of Akt
and phosphorylated Akt (p-Akt) using anti-Akt and anti-
p-Akt antibodies (Phospho-Akt (Ser473) antibody;
Cat#9271; Cell Signaling Technology, Danvers, MA).
Alternatively, cytosolic extracts were prepared for Wes-
tern blot analysis of mMCP-6. For this, harvested mast
cells were resuspended in ice-cold digitonin extraction
buffer (10 μg/ml digitonin, 250mM sucrose, 20 mM
HEPES, pH 7.5, 10 mM KCl, 1.5 mM MgCl2, 1 mM
EDTA, 1 mM EGTA) for 10min on ice. The cell debris
was removed by centrifugation (13,000 rpm, 2 min, 4 °C)
and the supernatant was collected for Western blot ana-
lysis of mMCP-6 using anti-mMCP-6 antisera (raised in
rabbits) and fluorescently labeled secondary antibodies.
The membranes were scanned using an Odyssey CLX
imaging system (LI-COR Biosciences, Lincoln, NE) and
protein signals quantified using Image Studio Software
(LI-COR) according to the manufacturer’s instructions.

Confocal microscopy
To monitor and localize ROS production by live con-

focal imaging, mast cells (1.5 × 106 cells) were immobi-
lized overnight in MatTek glass bottom microwell dishes
(MatTek Co., Ashland, MA) using a biocompatible anchor
for membrane (BAM; SUNBRIGHT® OE-040CS, NOF
Corporation, Tokyo, Japan). To label granules and detect
ROS, cells were incubated with a cocktail of probes
(50 nM LysoTrackerTM Red DND-99 and 5 μM Cell-
ROXTM Deep Red) for 30min. Cells were subsequently
washed and kept in PBS. Images were immediately
recorded at the indicated time intervals at 37 °C and 5%
CO2 at baseline (initial 72 min), and after addition of
mefloquine (for another 112min) using a Nikon Ti2-E
microscope, equipped with an X-LIGHT V2 L-FOV

spinning disk with a pinhole size of 60 µm (Crest
Optics). A 100X/1.45 NA oil objective (Nikon) and a
Prime 95B 25mm camera (Photometrics) were used to
capture the images. To monitor cell death by live confocal
imaging, BAM-anchored WT and serglycin−/− mast cells
(1.5 × 106 cells) were incubated with a cocktail of Annexin
V and DRAQ7 in a glass bottom 6-well plate (MatTek
Co.). Thereafter, cells were treated with either PBS or
mefloquine and images were immediately recorded at
indicated time intervals, at 37 °C and 5% CO2, through a
40X/0.6 NA air objective on a Nikon Ti2-E microscope.

Image analysis
Colocalization analysis
The ImageJ plugin Coloc 2 (v. 3.0.0) was used to cal-

culate the Manders coefficients, M1 and M2, between the
LysoTracker and CellROX channel images. Images were
automatically thresholded using the Costes method.

Annexin V and DRAQ7 intensity kinetics
The time lapse movies were processed with a custom

analysis script in ImageJ that did the following:
1. A cell mask was created by applying a 4-pixel

variance filter to the DIC channel, followed by
default Huang thresholding and a binary Close-
operation.

2. Average masked intensities were recorded in both
fluorescence channels for each time point.

The csv files generated by the analysis macro were
further processed in R (v. 3.5.1), where the intensities in
each channel were normalized to the range 0–1, and plots
were generated using ggplot2 (v. 3.1.0). Analysis macro
code is available from the authors on request.

Metal measurements
Metal content was measured using inductively coupled

plasma–mass spectrometry (NexION 300D, PerkinElmer)
as previously described38. Briefly, mast cells (1 × 106 cells)
were washed with PBS and cell pellets were digested in
HNO3 (Sigma-Aldrich) overnight. Subsequently, the
mixtures were boiled at 85 °C for 30 min, cooled down at
room temperature for 1 h, and after addition of H2O,
metal content was analyzed by mass spectrometry.

Proteomics analysis
Sample preparation
WT and serglycin−/− mast cells (6 × 106 BMMCs) were

harvested 1 h after treatment with PBS or mefloquine and
were lysed in a 1% β-octyl glucopyranoside and 6M urea-
containing buffer according to a standard operating pro-
cedure. The total protein content in the samples was
measured using the DC Protein Assay Kit (BioRad
Laboratories, Hercules, CA) with bovine serum albumin
(BSA) as standard. Aliquots corresponding to 25 μg
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protein were taken out for digestion. The proteins were
reduced, alkylated, in-solution digested by trypsin and
desalted by a spin filter aided standard operating proce-
dure as previously described39. The collected peptide fil-
trates were vacuum centrifuged to dryness using a
Speedvac system ISS110 (Thermo Scientific, Waltham,
MA). The samples were dissolved in 40 μL 0.1% formic
acid (FA) and further diluted four times prior to LC-MS/
MS analysis.

LC-MS/MS
The resulting peptides were separated in reversed-phase

on a C18-column, applying a 150min long gradient, and
electrosprayed on-line to a QEx-Orbitrap mass spectro-
meter (Thermo Finnigan). Tandem mass spectrometry
was performed applying HCD.

Qualitative analysis
Database searches were performed using MaxQuant

(version 1.5.1.2). The search was set towards proteins
from the Mus musculus proteome extracted from UniProt
(release November 2017). The search parameters were set
to Taxonomy: Mus musculus, Enzyme: Trypsin. Fixed
modification was Carbamidomethyl (C), and variable
modifications were Oxidation (M), Deamidation (NQ).
The search criteria for protein identification were set to at
least two matching peptides.

Quantitative analysis
Acquired RAW-data files were quantitatively analyzed

by MaxQuant (version 1.5.1.2). Protein identification was
performed by a search against the same database as for
the qualitative analysis. The results of all samples were
combined to total label-free protein quantification (LFQ)
intensities for each sample. Proteins with p value lower
than 0.05, showing fold change of at least 2 (cut off ratio
for up-regulated of 2 and down-regulated of 0.5) are
shown in Suppl. Table 1.

Statistical analysis
Statistical differences between groups were determined

using one-way ANOVA with post hoc Tukey’s multiple
comparison test unless otherwise stated. p-values of less
than 0.05 were considered significant (*p < 0.05; **p < 0.01;
***p < 0.001; ***p < 0.0001). The graphs were prepared and
statistics calculated using GraphPad Prism 7.0 (GraphPad
software Inc., San Diego, CA).
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