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Abstract

Despite large-scale cancer genomics studies, key somatic mutations driving cancer, and their 

functional roles, remain elusive. Here we propose that analysis of comorbidities of Mendelian 

diseases with cancers provides a novel, systematic way to discover new cancer genes. If germline 

genetic variation in Mendelian loci predisposes bearers to common cancers, the same loci may 

harbor cancer-associated somatic variation. Compilations of clinical records spanning over 100 

million patients provide an unprecedented opportunity to assess clinical associations between 

Mendelian diseases and cancers. We systematically compare these comorbidities against recurrent 

somatic mutations from more than five thousand patients across many cancers. Using multiple 

measures of genetic similarity, we show that a Mendelian disease and comorbid cancer indeed 

have genetic alterations of significant functional similarity. This result provides a basis to identify 

candidate drivers in cancers including melanoma and glioblastoma. Some Mendelian diseases 

demonstrate “pan-cancer” comorbidity and shared genetics across cancers.
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Introduction

Recent years have brought an explosion in the number of genomically profiled tumors, and 

the promise of finding most genetic loci containing cancer-predisposing variation seems 

within reach. While algorithms to sort through the complex landscape of tumor lesions1,2 

have revealed recurrently altered “driver loci” – those somatic or germline genetic defects 

that are most likely to trigger the disease – the directory of relevant genes and the catalogue 

of their roles in tumor progression remain incomplete. The search for cancer genes has 

expanded to additional informative patterns, such as mutual exclusivity of mutation across 

patients and functional relationships between cancer-altered genes3–5.

One historical source of information on key cancer alterations may be found in Mendelian 

disorders, rare conditions that have long provided insight into a wide array of human disease 

processes. Some of the first genes linked to cancer were characterized by their highly 

penetrant familial association with certain tumors. Studies of familial retinoblastoma led to 

the identification of RB1 as a tumor suppressor6, while cases of Li-Fraumeni syndrome 

showed that germline mutation of TP53 pleiotropically predisposes patients to many 

cancers7. Other Mendelian disorders, such as Rubinstein-Taybi syndrome, involve a primary 

phenotype apparently unrelated to cancer, yet the bearers are known to have an increased 

tumor risk8. Recent studies demonstrating that Rubinstein-Taybi’s primary causative gene, 

CREBBP, is also recurrently somatically inactivated in a number of cancers9–11 have 

provided a likely explanation for this comorbidity. These examples suggest that Mendelian 

germline mutations could predispose Mendelian disease patients to common cancer by 

disrupting cellular functions that in the majority of cancer patients are altered by somatic 

rather than germline genetic events.

Recently, Electronic Health Record (EHR) data sets of unprecedented size have provided 

statistical power to measure comorbidity of pairs of diseases12–14. With the recent increase 

in the amount of data recorded in EHRs it is newly possible to detect clinical associations 

even in diverse rare diseases, such as some Mendelian diseases. These results have 

suggested that comorbidity is indicative of shared germline genetic architecture. Here, we 

propose that Mendelian disease comorbidity with cancer could be associated with a 

relationship between Mendelian disease loci and driver loci somatically altered in cancer. It 

is possible that genetic variants that cause Mendelian disease with high cancer comorbidity 

also provide a selective advantage to aberrant cells of a developing tumor, leading to this 

predisposition to a certain type of cancer. If this is correct, exactly the same Mendelian loci 

and molecular pathways incorporating their products would be involved in a somatic context 

in tumors of patients lacking the germline mutation. Thus, comorbidity calculated from 

EHRs spanning large numbers of patients could provide a novel line of evidence for 

functional involvement of some genes as cancer drivers.

By integrating clinical data from more than 100 million patients with somatic genomic 

information from thousands of tumors from The Cancer Genome Atlas (TCGA)15, we 

explore genetic relationships between Mendelian diseases and common cancers. First, we 

examine the hypothesis that comorbidity between Mendelian disease and cancer may be due 

to similarities between the genes involved in each. We find that comorbid diseases have 
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statistically significant genetic similarity. Having established this association, we test for 

genetic similarity of comorbid pairs of Mendelian disease and cancer, identifying disease 

pairs with shared cellular processes. For each TCGA cancer type, we identify genes from 

comorbid and genetically similar Mendelian diseases as candidate cancer drivers.

Results

Integration of disease comorbidities and genes

In the work of Blair, et al.14 the authors estimated comorbidity among a set of diseases well 

characterized by patient billing codes, comprising 95 Mendelian diseases and 65 complex 

diseases, including 13 common cancers. Comorbidity was calculated using seven EHR 

datasets, including the MarketScan insurance claims database covering nearly 100 million 

patients. For each complex disease, they compared its incidence in Mendelian disease 

patients against its marginal incidence. Patient zip code information was connected with US 

census data to obtain demographic, socioeconomic, and environmental factors. They then 

corrected for these confounders, as well as for errors in billing codes, using a regression 

approach. Combining these analyses, they estimated relative risk for a complex disease in 

Mendelian disease patients. We use these estimates throughout this work. For each 

Mendelian disease billing code set, the authors curated a list of corresponding diseases, each 

linked to genetic loci16. Utilizing their work and other curation, we find a median of four 

genes related to each Mendelian disease type (the full distribution is shown in 

Supplementary Fig. 1a, and the genes associated with each disease is available in 

Supplementary Data 1).

Of the 13 cancer diagnosis code sets included in the Blair analysis, 10 correspond to one or 

more tumor types profiled in TCGA (Supplementary Data 2). These 10 diagnosis codes 

correspond to 15 TCGA tumor types, including melanoma, glioblastoma, and other common 

cancers, with genomic data across a total of 5,667 patients. For each tumor type we gather 

sets of genes identified as significantly mutated by MutSig1 or located in peaks of copy 

number amplification or deletion by GISTIC22 (Fig. 1a). A median 155 genes are 

recurrently genetically altered per tumor type (Supplementary Fig. 1b).

Investigating genetic similarity between comorbid diseases

To assess whether comorbid Mendelian diseases and common cancers share similar genes 

and cellular processes, we compare the sets of genes associated with a Mendelian disease to 

the recurrently genetically altered genes in TCGA. We consider multiple measures of 

genetic similarity, reflecting different potential relationships, including (1) shared genes, (2) 

shared pathways, and (3) gene and protein interactions. We show that comorbid disease 

pairs have significantly more genetic similarity than expected at random.

First, we examine whether the genes responsible for a Mendelian disorder are more likely to 

be altered in comorbid cancers. For each of the 427 pairs of comorbid Mendelian disease 

and TCGA cancer, we assess how many genes are shared. Across all comorbid pairs, 41 

genes are shared between the Mendelian causal gene set and the recurrently somatically 
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altered cancer gene set (Fig. 2a), while 29 would be expected (p = 0.021, as described in 

Methods and shown in Supplementary Fig. 2a).

Second, we test the hypothesis that comorbid diseases share common cellular processes. For 

this purpose, we count the shared pathways between comorbid diseases, using 1343 pathway 

gene sets compiled in the Consensus Pathway Database17. A pathway is considered shared if 

it is enriched for the cancer gene set and contains a Mendelian disease gene. Aggregating 

across all comorbid pairs, we find 136 shared pathways, while 65 would be expected (p < 

10−5, as described in Methods, and shown in Supplementary Fig. 2b).

Third, we test the hypothesis that the number of direct interactions between Mendelian 

disease genes and genes somatically mutated in comorbid cancer is elevated, using 

established gene interaction networks. We compare the observed number of interactions in a 

network against a null model comprised of a set of randomly shuffled networks, controlling 

for the number of network edges each gene has. We test this measure in two interaction 

networks. The first network, BioGRID18, is a large curated network of protein and genetic 

interactions. We observe 797 direct edges in this network, more than 98.3% of random 

networks (Supplementary Fig. 2c). The second network, HumanNet19, contains uncurated 

connections generated from integrated data sources. We find 296 connections, which is 

more than in 99.8% of the random networks (Supplementary Fig. 2d).

Note that in order to assess the significance of novel Mendelian disease associations with 

cancer, this analysis excludes well-known Mendelian cancer syndromes (Li-Fraumeni 

syndrome, specified hamartoses, multiple endocrine neoplasia, neurofibromatosis, and 

tuberous sclerosis). These cancer syndromes, as would be expected, are each comorbid with 

multiple cancers, and they show many shared genes and pathways with the cancers 

(Supplementary Data 3).

Thus, using a number of lines of evidence, we have shown that the genes involved in 

Mendelian diseases have statistically significant genetic similarity with the genes altered in 

co-occurring cancers. Therefore, comorbidity may be due to these shared genetic processes. 

Interestingly most of these connections have not been not previously reported.

Prediction of diseases with shared cellular processes

In order to use comorbidity as a way of identifying candidate drivers for each cancer, we 

apply a version of the previously described metrics to each pair of comorbid diseases. Just as 

we tested for a significant number of genes shared across all comorbid disease, we perform a 

similar test for each pair of Mendelian disease and cancer. This gene enrichment metric 

assesses overrepresentation of the set of Mendelian disease genes within the somatically 

altered cancer gene set. For the pairwise shared pathway metric, we assess whether the 

pathway enrichment scores are significantly correlated for the pair of diseases (Fig. 2b). The 

network metric tests whether a Mendelian disease gene set has more direct interactions with 

a set of comorbid cancer genes than the random expectation, testing interactions from 

BioGRID and HumanNet separately. Additionally, in order to test for functional similarity 

in an unbiased fashion, we compare coexpression of Mendelian and cancer genes. We 

employ a large and diverse panel of human primary cells, tissues, and cell lines from the 
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FANTOM5 project20. For each pair of diseases we test whether any cancer-altered genes 

show significantly elevated coexpression with the set of Mendelian disease genes (Fig. 2c).

After correcting for the number of comorbid pairs (see Methods), we find that coexpression 

has the most instances of similarity, most likely due to the fact that more genes can be 

compared and many types of functional relationships can be captured with coexpression. In 

contrast, the gene enrichment and network metrics have very few instances of significant 

similarity, a point that is discussed below. These metrics define a list of candidate driver 

genes. The complete list of genes and genetic similarity scores associated with each linked 

disease pair is available in Supplementary Data 4. To provide examples and to demonstrate 

their relevance we highlight some candidates implicated for cutaneous melanoma and brain 

neoplasms.

Cutaneous melanoma is often located on sun-exposed sites, undergoing a high rate of 

genetic damage. Our findings highlight both recurrently altered genes in melanoma and 

comorbid Mendelian genes as potential cancer drivers. A central transcription factor 

involved in melanocyte cell fate, MITF, is related to multiple Mendelian diseases comorbid 

with melanoma. This gene has a complex role in this cancer: while it is recurrently amplified 

in 26% of TCGA melanomas, possibly promoting melanocyte proliferation, it is also 

frequently deleted (11% of cases). Suppression of the gene is also advantageous for the 

growing cancer, as it reduces terminal differentiation and senescence in melanocytes21,22. 

The melanocyte’s primary receptor MC1R, upstream of MITF, its other upstream activators, 

PAX3 and SOX10, as well as MITF’s key target, TYR, are all associated with Mendelian 

disorders comorbid with melanoma (Fig. 3a).

Of these, MC1R and TYR are associated with oculocutaneous albinism (included in 

International Classification of Disease, revision 10 (ICD10) billing code E70.2/3, melanoma 

relative risk 95% confidence interval (CI) = (2.16 – 5.19)). MC1R is among the recurrently 

deleted genes in melanoma. Germline variants of MC1R, causing red hair, have been 

implicated as a risk factor for melanoma via both pigmentary and non-pigmentary 

pathways23,24, and polymorphic variants of TYR, which leads to green eyes, also confer 

significant, though lesser, risk25. Other albinism-related genes have significantly elevated 

coexpression with MITF (corrected rank-sum p = .020) as well as MITF's target gene26 

KCNAB2 (corrected rank-sum p = 0.0093). KCNAB2 is recurrently deleted in the melanoma 

cases. While the candidate melanoma genes associated with albinism are not recurrently 

genetically mutated in melanoma, we examine their patterns of expression for evidence of a 

functional contribution to the disease. Clustering melanoma tumors by their expression of 

these genes, we find stable clusters (Supplementary Fig. 3a). We assess clinical outcome in 

these groupings, and we find that the cluster assignments are highly predictive of patient 

survival (p = 0.0022, Supplementary Fig. 3b). This suggests that indeed this pathway is 

highly relevant for melanoma progression.

Also regulating MITF activity are its coactivators EP300 and CREBBP27, genes associated 

with the melanoma-comorbid Rubinstein-Taybi syndrome (code group Q87.2, relative risk 

95% CI = (1.19 – 1.99)). EP300 is recurrently amplified (36% of the TCGA melanomas), 

but also frequently deleted (7% of cases). Rubinstein-Taybi shares many pathway with 
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melanoma (Fig. 2b), including "melanocyte development and pigmentation" and 

"Regulation of nuclear beta catenin signaling and target gene transcription", both of which 

involve MITF. The amplifications of EP300 are significantly more likely to co-occur in the 

same patients with MITF amplifications (one-tailed Fisher’s exact test, p = 0.0041), 

suggesting cooperation between the alterations, and a particular role for these genes in 

melanoma: the histone acetyltransferase activity of EP300 might enhance the function of an 

oncogenically amplified MITF. CREBBP and EP300 defects have also been linked to 

aberrant TP53 and BCL6 regulation in some lymphomas28.

Comorbidity of melanoma with ectodermal dysplasias (ICD10 code Q81, melanoma relative 

risk 95% CI = (6.01–17.84)) may highlight the importance of tissue invasion in melanoma 

progression. The ectodermal dysplasia disease epidermolysis bullosa can arise from genetic 

alteration to proteins involved in structural support, tissue integrity, and adhesion in the 

dermis and epidermis. Although the chronic inflammation and tissue damage associated 

with epidermolysis bullosa may play a role in its known risk for skin cancers, subtypes of 

the condition have been shown to lead to skin squamous cell carcinoma that is more 

aggressive than in other conditions involving chronic skin scarring29. The ectodermal 

dysplasia genes show high coexpression with melanoma-altered genes related to cell contact 

in the epithelium, especially PTK6 (Fig. 2c). This gene is focally amplified in 44% of 

melanomas and has an identified role in epithelial invasion and mesenchymal transition in 

prostate and breast cancers30,31, but PTK6 has been rarely studied in melanoma. The TCGA 

melanoma cohort is primarily composed of metastasis samples, but the expression data also 

includes 103 primary tumors, mostly stage IIC, along with 368 metastases. As changes in 

cell contact and mesenchymal transition may be related to metastasis state, we compare 

expression in primary versus metastasis. We find that PTK6 is significantly differentially 

expressed (adjusted p-value = 3.29×10−28). Additionally, of 11 ectodermal dysplasia 

candidate melanoma genes, nine are significantly downregulated in metastases as compared 

to primary (gene set differential expression camera p-value = 0.00032, GSEA p-value = 0, 

Supplementary Fig. 4).

The other cancers included in our study also have informative genetic and clinical links with 

Mendelian disease. Diamond-Blackfan anemia, a blood disorder, is comorbid with the brain 

neoplasms (ICD10 D61.01, relative risk 95% CI = (9.22 – 28.67)). Indeed, Diamond-

Blackfan patients have risk for seven of the cancer ICD-9 code groups, along with other 

blood and solid cancers32. Among Diamond-Blackfan’s causal genes is RPL5, a gene that is 

significantly deleted in 8% of TCGA glioblastoma and that suppresses MDM233 (Fig. 3b). 

MDM2 is recurrently amplified in 15% of TCGA glioblastoma cases. It is an established 

oncogene that negatively regulates TP5334. Like RPL5, other Diamond-Blackfan genes 

RPL11 and RPS7 repress MDM2 in response to ribosomal stress34. The deletion of RPL5 is 

mutually exclusive with amplification of MDM2 (p=0.033, Fig. 3c), supporting the role of 

RPL5 deletion as an alternative mode of TP53 abrogation. While RPL11 is less frequently 

deleted, it also has a mutually exclusive pattern with MDM2 amplification (p=0.042). The 

role of these ribosomal proteins in glioblastoma appears to be unstudied, making this a 

strong candidate for further study.
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While Diamond-Blackfan anemia is comorbid with many cancers, the cranial development 

disorder holoprosencephaly is comorbid only with the brain neoplasms (ICD10 Q04.2, 

relative risk 95% CI = (9.30 – 15.95)). Defects in genes that regulate cranial-specific 

components of the sonic hedgehog pathway are responsible for the improper embryonic 

patterning in holoprosencephalies35. This pathway regulates expression of the GLI 

transcription factors, which have been linked to maintenance of stemness in gliomas36. 

Subtypes of glioblastoma have been defined on the basis of gene expression patterns, and 

among these the Classical subtype has a signature including Sonic hedgehog signaling37. 

Holoprosencephaly genes have weak pathway enrichment similarity with low-grade glioma 

genes, as well as coexpression with multiple of the low-grade glioma genes, particularly the 

recurrently copy number altered gene VENTX (corrected rank-sum p = 0.0092). In the 

TCGA lower grade glioma cohort, VENTX lesion occurs more in higher grade tumors, and 

these lesions are anticorrelated with IDH1 mutation. Mutation of IDH1 is associated with 

good prognosis and particularly co-occurs in subtypes of low grade glioma with either TP53 

alteration or 1p19q codeletion38. Comparing the IDH1 mutated against the VENTX mutated 

samples, we find strong differential expression of the holoprosencephaly genes TGIF1, 

SIX3, ZIC2, GLI2. As a set, the holoprosencephaly candidate brain neoplasm genes are 

significantly upregulated in the VENTX mutated tumors (camera p-value = 0.048, GSEA p-

value = 0.031, Supplementary Fig. 5). Both VENTX mutation and activated hedgehog 

signaling are thus associated with higher grade gliomas. Changes in regulation of the sonic 

hedgehog pathway may be an important step in the progression of lower grade glioma, as in 

Classical glioblastoma.

Pan-cancer Mendelian associations

Above, we describe a number of processes aberrantly regulated in Mendelian disease and in 

common cancer. The Blair analysis14 suggested that the unique set of Mendelian diseases 

comorbid with a complex disease represented a sort of barcode, indicative of the unique set 

of cellular processes underlying each disease. This hypothesis is indeed reflected in the sets 

of disorders, and underlying genetic lesions, found in this study.

On the other hand, some Mendelian diseases predispose carriers to many cancer types, while 

others have no relationship with cancer. In fact, the number of comorbid cancers per 

Mendelian disease follows a highly non-random distribution (Fig. 4a). One interpretation of 

this pattern is that the genes altered in some Mendelian diseases, such as Li-Fraumeni 

syndrome, Rubinstein-Taybi syndrome, and Diamond-Blackfan anemia, are related to pan-

cancer processes common to cancer development in many contexts. This interpretation is 

supported foremost by our finding of statistically significant genetic similarity in comorbid 

disease pairs. Additionally, we examine four new cancers with available TCGA data but no 

comorbidity information (ovarian, thyroid, head and neck, and acute myeloid leukemia). If 

the pan-cancer Mendelian diseases impact core cancer processes, we would expect these to 

be relevant to these new cancers. We test whether pathways associated with Mendelian 

diseases with many (more than five) cancer comorbidities are enriched in the four new 

cancers. We find that the Mendelian diseases with multiple comorbidities share 27 pathways 

with the four cancers with no comorbidity information, more than the random expectation (p 

= 0.005, excluding Mendelian cancer syndromes). In another test of this hypothesis, we 
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assess whether Mendelian diseases with more cancer comorbidities are associated with 

genes that have cancer-related characteristics. We create a set of the 48 genes recurrently 

altered in more than four of the 19 TCGA tumor types. We call these the multi-cancer 

mutation genes. Examining FANTOM5 coexpression of the Mendelian disease genes and 

the multi-cancer mutation genes, we find a significant correlation with number of cancer 

comorbidities in the gene's associated Mendelian disease. That is, the more cancers that are 

comorbid with a Mendelian disease, the higher the coexpression of a Mendelian disease 

gene and multi-cancer mutation genes (Spearman correlation p-value = 0.027). These 

findings suggest that some Mendelian diseases predispose patients to many cancers by 

genetic alterations affecting pan-cancer processes.

The Mendelian diseases with the most links to cancer indeed impact pathways shared across 

many cancers, including telomere maintenance, DNA damage response, and mTOR 

signaling (Fig. 4b, and Supplementary Data 3 and 4). Pan-cancer associations with 

immunodeficiency syndromes could be due to the compromised immune system, rather than 

the ability of the tumor to evade immune suppression. However, we find many instances of 

genetic similarity with cancer, suggesting that the same functions are frequently somatically 

altered in tumors. For example, the gene B2M is recurrently mutated or deleted in the TCGA 

melanoma, lung squamous cell carcinoma, and colon adenocarcinoma. Loss of this gene 

leads to abolition of the MHC class I complex in tumor cells and has been shown to 

influence immune escape in some lymphomas39. B2M has significant coexpression with the 

immunodeficiency genes, and CIITA and RFX5, immunodeficiency genes that mainly 

regulate MHC class II expression, have a secondary role in regulating MHC class I 

expression40. Novel pan-cancer associations include the set of lipoprotein deficiencies, 

defects in widely expressed proteins that lead to imbalance of blood cholesterols. The genes 

associated with lipoprotein deficiencies also influence inflammation and are enriched in the 

highly cancer-relevant TGF-β pathway. Cancers, with their elevated rates of proliferation, 

are thought to have high cholesterol metabolism, and the role of blood cholesterol in tumor 

progression is a current area of research41. The lipoprotein deficiency genes are significantly 

coexpressed with a number of metabolism related genes that are recurrently mutated in 

multiple cancers (Supplementary Data 4). These include IDH1, a gene that has been shown 

to be regulated with cholesterol levels42 and to be relevant in gliomas and other cancers43. If 

pan-cancer Mendelian associations exist, this further supports the hypothesis that 

comorbidity between Mendelian disease and cancer is due to shared processes disrupted by 

germline or somatic alterations, respectively.

Discussion

We have shown that Mendelian diseases that are comorbid with a cancer are likely to 

involve mutation of genes similar to those that are somatically altered in that cancer. 

Importantly, this suggests that comorbidity between Mendelian disease and cancer may be 

due to germline mutations that provide a fertile ground for growth of certain aberrant cells. 

This novel finding provides new insight into the somatic genetic alterations present in a 

cancer, presenting them in the context of well-characterized diseases with simpler genetics. 

While algorithms for classifying genes as preferentially somatically mutated in a cancer are 

an active area of research, comorbidity can provide an orthogonal line of evidence for 
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involvement of cellular processes in oncogenesis and pinpoint driver genes among the 

recurrently mutated genes. Candidate drivers among the Mendelian disease genes include 

many genes that are less recurrently somatically mutated, but impact the same pathways. 

Many of our candidate drivers have a bulk of evidence supporting their role: beyond our 

findings related to comorbidity and genetic similarity, the candidate genes include some 

recurrently mutated in cancer, and some with identified roles as drivers in other tumors. 

Additionally, we have used patterns of co-occurrence of candidate mutations across tumor 

cohorts to demonstrate a likely role for these genes in the tumors. For less frequently 

mutated candidate drivers, we have related gene expression with clinical indicators.

Our results are informative of the many processes that are involved in cancer development. 

Inactivation of ribosomal protein RPL5, associated with Diamond-Blackfan anemia, has the 

potential to cause aberrant TP53 degradation in multiple cancers. As cancer is known to 

involve defects in differentiation44, much like a number of Mendelian diseases, a role for the 

Mendelian disease genes in cancer dedifferentiation and aberrant proliferation is plausible. 

Other “hallmarks of cancer”, such as invasion or regulation of apoptosis are also represented 

in the Mendelian diseases. As cancers have many altered processes in common, it is logical 

that we also find some “pan-cancer” Mendelian diseases with multiple genetic and clinical 

associations.

In contrast, some germline variants predispose patients to a more narrow range of cancers, 

which can reveal more specific oncogenic processes. A few Mendelian disorders are 

comorbid only with brain neoplasms and melanoma. As melanocytes are descended from the 

neural crest, Mendelian genetic lesions affecting neural development are likely to affect 

processes in melanocytes, including proliferation and terminal post-mitotic differentiation. 

One interesting example is microphthalmos, meaning small eye, a disease phenotype that, in 

the mouse, gave rise to the name of the melanoma oncogene MITF (microphthalmos 

transcription factor). In humans, the most common causal genes are closely tied in 

expression and in function to MITF45 (Fig. 3a). Some of the microphthalmos genes have 

been implicated in neural derived tumors46–48, and these may be exciting novel candidates 

in melanoma. There is a link between some sensineural disorders and pigment anomalies: 

the phenotype of microphthalmos can also occur to varying degrees in patients with 

Rubinstein-Taybi syndrome and in patients with Waardenburg syndrome, a pigment and 

deafness disorder. The idea that disorders comorbid with the same cancer may share 

pathways with each other is highly intriguing. Waardenburg syndrome (included in ICD10 

code group Q79.8), like microphthalmos, shows comorbidity only with melanoma and brain 

neoplasms. Waardenburg has correlated pathway enrichment to melanoma (p = 5.8×10−4): 

both diseases are impact melanocyte development and β-catenin signaling pathways. 

However, the billing code used is not specific enough to have significant enrichment.

In fact, many of the Mendelian diseases with an apparent risk for cancer do not display 

genetic similarity by our pairwise metrics. We chose a limited number of genetic similarity 

metrics in order to consider different lines of interpretable evidence for functional similarity, 

but other comparisons of genetic similarity could capture more connections. For example, 

the blood disorder thalassemia can lead to overloaded blood iron levels49 which may explain 

these patients’ risk for a variety of cancers50; however, this effect is not detected by our 
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current approach. Additionally, a number of factors introduce noise into our source data. 

These issues include ambiguity of the diagnosis codes; heterogeneity of the Mendelian 

diseases; insufficient sampling of the mutation spectrum of both Mendelian disease and of 

cancer.

Our finding of statistically significant association of genetic similarity with comorbidity, 

despite these factors, is a main discovery of our work. This implies that future large scale 

studies mining rich data sources such as the eMERGE network51 will find more genetic and 

clinical associations. Other future work building on our results includes, foremost, the 

experimental assessment of the candidate driver genes. Drugs that target these cellular 

processes, perhaps as studied in Mendelian disease patients, may be applicable for the 

treatment of the tumors52.

Methods

Data sets

We used the supplementary material available in Blair, et al.,14 to classify pairs of 

Mendelian disease and complex disease as having a comorbidity relationship. In that study, 

the authors curated Mendelian diseases, and their corresponding genes from the Online 

Mendelian Inheritance in Man (OMIM)16, and mapped them to ICD code sets, which they 

assessed for comorbidity. We updated the mapping of diagnosis codes to genes using OMIM 

as well as OrphaNet data53. The Mendelian diseases each have from one to 50 implicated 

genes (Supplementary Fig. 1a), except for the five chromosomally associated disorders, 

which we remove from further analysis.

Of the complex diseases in the Blair analysis, 13 are cancers. We mapped ten of these ICD 

code sets to 15 cancers included in TCGA (Supplementary Data 2). Then, for all tumor types 

with both copy number alteration data and whole-exome sequencing data available, we 

download the calls of recurrently altered genes as assessed by the Broad Institute and made 

available in the Firehose (http://www.broadinstitute.org/cancer/cga/Firehose) download data 

set of 9/23/2013. MutSigCV assigns a statistic for evidence of selection for mutation of a 

gene across a set of tumors. For each tumor type, we select those genes with a q-value 

statistic less than .25. GISTIC2 identifies genes in significantly recurrent and focal regions 

of copy number amplification or deletion, and we include only the genes in copy number 

peaks that contain fewer than 50 genes. Each tumor type has from zero to hundreds of 

associated genes either mutated or copy number altered (Supplementary Fig. 1b).

The other data used include the Entrez gene info data (ftp://ftp.ncbi.nlm.nih.gov/gene/

DATA/GENE_INFO/Mammalia/Homo_sapiens.gene_info.gz), which was used to find 

common identifiers between all data sets, the BioGRID data (BIOGRID-ORGANISM-

Homo_sapiens-3.2.119.mitab.txt), HumanNet data (HumanNet.v1.join.txt), the pathway 

gene set list from the Consensus Pathway Database, and the FANTOM5 human gene 

expression data, which are described in the following section.
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Genetic similarity of comorbid diseases

We test similarity of pairs of gene sets using a number of sources of evidence. Our similarity 

metrics are first evaluated on the aggregate of comorbid diseases in order to test the 

hypothesis that comorbidity is significantly related to shared genetic factors. Then, we use 

analagous tests for the pairs of diseases, in order to identify Mendelian disease and cancer 

with evidence of related gene sets. Below, we describe both uses of each metric..

The gene enrichment metric scores the overlap of the Mendelian disease gene set of size m, 

within a cancer gene set of size c. The score assesses whether the number of genes in the 

overlap between the two sets is more than expected. For the per-pair score, we use a 

binomial model with success probability based on the fraction of all assayed genes that are 

in the Mendelian gene set , number of trials corresponding to the cancer 

recurrently mutated gene set size c, and number of successes corresponding to the size of the 

overlap between the sets. For the aggregate score, we test whether the number of genes 

shared across 427 pairs of Mendelian diseases and comorbid cancers is more than would be 

expected at random. Overall, 41 genes are shared in common between comorbid diseases. 

We assess whether 41 is a significantly elevated number by performing a simulated 

convolution of the 427 binomial tests: for each pair, the binomial model, as before, has a 

success probability based on the fraction of total genes that are Mendelian disease genes, 

and a number of trials based on the number of recurrent cancer genes. Each model is 

simulated 100,000 times and the numbers for each pair are added to generate an expected 

distribution. We find that 41 occurs in 2.1% of random trials (Supplementary Fig. 2a)

The pathway metric utilizes the NCI Pathway Interaction Database and the PharmGKB 

subsets of the Consensus Pathway Database in order to obtain a diverse and non-redundant 

set of pathways. The set contains 1343 pathways and a total of 4954 genes. We create a gene 

list containing the union of all genetically altered cancer genes across all of the cancers 

studied, and we remove all pathways with enrichment in this list in order to filter very 

general cancer cellular processes. We score strength of the overlap of a cancer gene set 

within each gene set associated with each remaining pathway using the same binomial gene 

enrichment score, then corrected by the number of pathways with the Benjamini-Hochberg 

method54. Many pathways have no overlap with a cancer’s gene list, so the enrichment score 

for these is 1. For the Mendelian diseases, we consider a pathway to be affected if it contains 

any Mendelian disease gene. To assess the similarity for a pair of diseases, we use the 

Spearman correlation coefficient of the pathway scores for each disease across all pathways, 

with the Spearman significance statistic providing our per-pair score. For the aggregate 

score across comorbid pairs, we use a cutoff on cancer enrichment (q-value < .1), and we 

count the number of pathways that are both enriched in the cancers, and involved in the 

Mendelian disease. We find 136 pathways shared in comorbid pairs. We assess whether this 

number of overlapping pathways is more than expected using the convolution of 

hypergeometrics, similar to the gene enrichment convolution (results shown in 

Supplementary Fig. 2b). In order to ensure that the significance is not only due to two 

Mendelian disorders with the most pathways impacted, we also run this test when 
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Rubinstein-Taybi syndrome and Pervasive Specified Congenital Anomalies are removed: in 

this case only 81 pathways are shared but the overlap is still highly significant.

The network metric measures the number of direct interactions of each Mendelian disease 

gene set with the cancer gene set. This number is compared to the number found in a set of 

shuffled networks, created using a degree-preserving randomization algorithm55. A pair of 

diseases is considered similar if fewer than 5% of random networks have the same or higher 

number of interactions. For the aggregate score, we count over the Mendelian diseases, the 

number of edges between a Mendelian disease's genes and the set of comorbid cancer genes. 

This count is compared against the count from the shuffled networks. We use two networks 

to independently score our disease pairs. In the BioGRID binary interaction data set, a 

curated set of genetic interations and protein interactions, there are 140,402 edges on 14,112 

nodes, covering 86% of Mendelian disease genes and all but four of our Mendelian disease 

sets. In all, there are 797 direct edges between comorbid genes in this network, a number 

found in less than 2% of random networks. Another network, HumanNet, is constructed by 

integrating a number of data sources, and it assigns a confidence score to each learned 

interaction. We take the top 10% most confident edges, resulting in a network with 7,931 

nodes and 47,934 edges. In HumanNet, there are 296 direct edges between comorbid disease 

genes, which is a number found in only 0.2% of random networks.

To these pairwise and aggregate measures of similarity, we wished to add an entirely 

unbiased source of information on functional similarity and cell-specific expression. We 

developed a coexpression metric utilizing the data from FANTOM5. The FANTOM5 data 

covers a diverse range of 889 cellular states, assessing promoter activity in each gene in 

each cell or tissue type. We download the human CAGE peak data quantified by transcripts 

per million (http://fantom.gsc.riken.jp/5/datafiles/latest/extra/CAGE_peaks/

hg19.cage_peak_tpm_ann.osc.txt.gz). Adding all peaks that are assigned to the same gene, 

we create an estimate of aggregate expression of each gene in each sample. As we wish to 

measure whether genes involved in a pair of diseases are expressed in the same conditions, 

we calculate coexpression of pairs of genes using the Pearson correlation coefficient. To 

calculate our coexpression similarity for a pair of Mendelian disease and cancer, we 

consider that significantly elevated coxpression between any cancer gene and a set of 

Mendelian disease genes represents interesting similarity. Thus, for each cancer gene we 

compare whether the set of Mendelian disease genes has high coexpression with that cancer 

gene, as compared against the distribution of coexpression of all other genes with the cancer 

gene. We test this for each cancer gene using the Wilcoxon rank-sum test. The p-values are 

then corrected for the number of cancer genes tested using the Benjamini-Hochberg method.

For each metric, we correct the pairwise similarity scores by the number of comorbid pairs 

examined, to create our list of interesting disease pairs. The scores are shown in 

Supplementary Data 3 and 4. We find that comorbid Mendelian disease and cancer are more 

likely to have genetic similarity by the pairwise metrics. To assess the influence of the 

number of annotated Mendelian genes on detection of genetic similarity and comorbidity, 

we performed L1 regularized logistic regression using models with and without the number 

of Mendelian genes as an explicit covariate. Logistic regressions were performed in python 

using the scikit-learn package. The results are shown in Supplementary Fig. 6.
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Cancer gene expression analysis

For melanoma and lower grade gliomas, Level 3 RNASeq data were downloaded from the 

TCGA portal, and the RSEM56 expected counts were rounded to create the input to the 

analysis. For the albinism analysis we aggregate all melanoma patient data into a count 

matrix which we then transform using the variance stabilizing transformation from 

DESeq257, which is recommended for clustering data. Then, we apply consensus clustering 

using the ConsensusClusterPlus58 package, and an optimum clustering is found (based on 

change in classification consistency) of k=4. Three main large clusters are consistent 

through k=3 to k=6. We use the R package Survival59 to assess survival difference between 

the groups and to plot, based on the available TCGA clinical data.

For the ectodermal dysplasia analysis we use TCGA barcodes (01 for primary tumor, and 06 

or 07 for metastasis), to identify the metastasis and primary samples. We use edgeR to 

calculate library size factors and estimate dispersion, followed by assessment of differential 

expression. For the gene set analysis, we use voom60 to transform the data, allowing use of 

the camera gene set score61. Additionally, we use the limma62 differential expression t-

statistic to form a pre-ranked input to GSEA63 for gene set differential expression analysis

In the lower grade glioma analysis, we use the copy number and exome sequencing data that 

match the expression data to identify cases with VENTX deletion and cases with IDH1 

mutation. We aggregate the expression data for all patients with available matched mutation 

and copy number data, and we use the limma voom function to transform the expression 

data. We create a gene set containing the candidate holoprosencephaly genes, and then, as 

above, we use voom, camera, and GSEA to analyse the gene set differential expression.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Outline of the approach. a. Integration of the data and overview of genetic similarity metrics. 

b. Examples of comparison of pairs of diseases. All comorbid pairs of Mendelian disease 

and cancer with TCGA data are compared. Genetic similarity of comorbid diseases is 

assessed using multiple metrics. A simple combination of presence of any one of the genetic 

similarity metrics is used to predict novel cancer driver loci in the comorbid disease pairs.
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Figure 2. 
Illustration of genetic similarity comparisons in comorbid diseases. a. The number of genes 

shared in comorbid diseases is counted across all pairs. By comparing it to a null distribution 

based on number of Mendelian and cancer genes, we can assess if more genes are shared 

than expected. Cancer abbreviations are in Supplementary Table 2. b. For a disease pair, the 

pathway metric compares the pathways impacted by the Mendelian disease to the pathways 

enriched for the cancer gene sets. Here, pathway enrichments for melanoma genes (blue) are 

compared to pathways involved in Rubinstein-Taybi syndrome. Each vertical red line 
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represents one pathway impacted by a Rubinstein-Taybi gene. The pathways are sorted by 

their enrichment in melanoma. The Spearman correlation between the corrected p-values of 

melanoma and the impacted pathways of Rubinstein-Taybi for the pathways is −.25, p = 

6.3×10−21. c. Coexpression of all genes (n=17705) with PTK6, a recurrently amplified gene 

in melanoma, versus the coexpression of the genes associated with the comorbid disease set 

ectodermal dysplasias including epidermolysis bullosa (n=15). Outliers are removed, box 

and whiskers show median and 25th to 75th percentiles. The two-tailed rank-sum p-value, 

controlled for number of cancer genes, is 2.0×10−6.

Melamed et al. Page 19

Nat Commun. Author manuscript; available in PMC 2015 October 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Examples of comorbid Mendelian diseases in melanoma and glioblastoma. a. Depiction of 

comorbid diseases with skin melanoma, in terms of the roles of the Mendelian disease genes 

in the melanocyte development program as well as other cancer related processes. Genes 

that are recurrently somatically mutated in melanoma are highlighted. Solid edges represent 

interactions from the literature, while the dashed edges represent significant coexpression. b. 

Interaction of Diamond-Blackfan anemia genes with glioblastoma altered genes. c. 

Summary of copy number changes to MDM2 and the Diamond-Blackfan associated 

ribosomal proteins known to suppress the action of MDM2. Among the ribosomal genes, 

RPL5 is recurrently and focally deleted such as to be in the GISTIC2 results, and it shows 

mutual exclusivity with MDM2 amplification (one-tailed Fisher’s exact test, p = 0.033). 

RPL11 deletion also has mutual exclusivity with MDM2 amplification (p = 0.042). RPS7 

and RPL11 deletions, together with RPL5 deletions, form a weaker mutually exclusive trend 

with MDM2 (p = 0.060).
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Figure 4. 
Some Mendelian diseases appear to have pan-cancer comorbidity and genetic similarity. a. 

The distribution of the number of comorbid cancer diagnosis codes per Mendelian disease is 

shown. The actual distribution (red bars) includes a large number of Mendelian diseases 

with no cancer relationship, and a long tail with Mendelian diseases that are comorbid with 

many cancers. The blue bars represent the expected distribution: about one-third of the pairs 

of disease have a comorbidity relationship, thus the expected mode of the distribution would 

have four comorbid cancers per Mendelian disease. The expected distribution is modeled 

Melamed et al. Page 21

Nat Commun. Author manuscript; available in PMC 2015 October 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



using a binomial. b. Mendelian diseases that have comorbidity with and genetic similarity to 

more than 3 cancers are compared to all 19 available TCGA cancers, 15 of which have 

comorbidity information. These mostly have widespread comorbidity and show genetic 

similarity (after multiple testing correction) across many cancers. Similarity was calculated 

here without removing the known germline-associated cancer genes in order to view all 

associations.
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