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Abstract: Environmental research has widely utilized the ambient concentrations of hazardous
air pollutants (HAPs) modeled by the National-Scale Air Toxics Assessment (NATA) program;
however, limited studies have evaluated the model’s performance. This study aims to evaluate
the model-to-monitor agreement of the 2011 NATA data with the monitoring data reported to
the U.S. Environmental Protection Agency’s (EPA) Air Quality System (AQS). Concentrations of
27 representative HAPs measured at 274 sites in the U.S. in 2011 were merged with NATA data
by census tract. The comparison consisted of two steps for each HAP: first, the model-monitor
difference at each site was compared with the limit of quantitation (LOQ); second, the modeled
annual average was compared to the 95% confidence interval of the monitored annual average.
Nationally, NATA could predict national medians of most HAPs well; however, it was unable to
capture high concentrations. At individual sites, a large portion of model-monitor differences was
below the LOQs, indicating they were unquantifiable. Model-to-monitor agreement displayed
inconsistent patterns in terms of chemical groups or EPA regions and was strongly impacted by the
comparison methods. The substantial non-agreements of NATA predictions with monitoring data
require caution in environmental epidemiology and justice studies that are based on NATA data.

Keywords: hazardous air pollutant; model-to-monitor comparison; NATA; modeling;
model performance

1. Introduction

Valid and representative data of hazardous air pollutants (HAPs) are required to evaluate emission
compliance, air quality attainment, and population health risks. Chronic and acute exposure to HAPs
may cause damage to multiple human organs [1], including respiratory [2], nervous [3,4], circulatory [5],
reproductive [6], immune [7], digestive [8], and urinary systems [9]. The U.S. Environmental Protection
Agency (EPA) aimed to reduce HAP emissions by 75% of the 1993 level to meet the requirements of
the Government Performance and Results Act. EPA has been working with state, local and tribal air
pollution control agencies to measure ambient HAP concentrations. The current monitoring efforts
are inadequate for increasingly refined health and climate studies. Health data are collected at the
individual level or small geographic scale; however, sparsely distributed air monitoring stations
often lack spatial representativeness [10]. For example, national analyses of air pollutants only
identified 169 different stations for polycyclic aromatic hydrocarbons (PAHs) [11] and 379 stations
for fine particulate matter (PM2.5) [12]. The sub-kilometer scale variation of air pollutants requires
dense sampling networks with more than 1–2 nodes per km2 [13], which far exceed the current
capacity. Modeling programs are then developed to estimate exposures at high temporal and spatial
resolutions [14].

EPA initiated the National-scale Air Toxics Assessment (NATA) in 1996 to serve as a geographical
extension of the existing air monitoring network. NATA is designed to inform decision-making,
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e.g., to prioritize pollutants and sources, identify locations for investigation, and design monitoring
programs [15]. NATA models HAP concentrations at geographic resolutions down to the census
tract level. These high spatial-resolution data have many environmental applications. Environmental
epidemiology studies have used NATA data to explore associations between HAP exposure and
health endpoints such as respiratory disease [16,17], autism spectrum disorder in children [18], and
school performance [19,20]. The cancer risk estimates in NATA often serve as bases for addressing
environmental justice issues [21–28]. NATA methodology and data are also used to model population
exposure [29], predict future exposures [30], estimate excess risks [31], and establish emission-to-intake
relationship [32].

Evaluating NATA model performance is imperative given the numerous applications of NATA
data. NATA modeling uses conservative assumptions that potentially lead to overestimation [15];
however, some comparison studies gave the opposite results [33–35]. A few independent evaluation
studies used local-scale monitoring in California [35], Pittsburgh, Pennsylvania [33], Detroit,
Michigan [36], Texas [34], and South Baltimore, Maryland [37]. These model-to-monitor comparisons
are often limited in terms of the number of chemicals and geographic areas. EPA has conducted limited
evaluations and encouraged more studies [36,38].

The 2011 NATA yielded a rich database that contains concentrations, exposures, and cancer and
non-cancer risks for 180 HAPs, as well as their contributing sources. There has been no independent
evaluation of 2011 NATA, although EPA has made limited model-to-monitor comparisons for selected
compounds [39]. Methodologically, EPA used multiple comparison measures, e.g., linear regressions,
a factor of 2, and absolute biases [40]; however, they often give inconsistent results. Measurement
uncertainty was not considered in previous comparisons, which might lead to massive biases as many
modeled concentrations are far below the detection limits. These limitations call for a systematic
approach for model-to-monitor comparisons.

This study aims to evaluate the model performance of 2011 NATA by comparing modeling and
monitoring concentrations. We compile the real measurements collected at 274 sites throughout the
U.S. in 2011 and merge modeling and monitoring datasets. We then assess agreement using statistical
and empirical methods, considering the measurement uncertainty.

2. Materials and Methods

2.1. Data Sources and Compilation

The monitoring HAP data were extracted from the U.S. EPA’s Air Quality System (AQS). AQS
is a web-based air pollution database accessible to the public. It contains ambient air pollution data
and sampling condition information collected from tribal, local and state agencies through consistent
and strict quality assurance (QA) processes. The HAPs were monitored following EPA’s Air Toxics
Monitoring Methods [41]. In brief, volatile organic compounds (VOCs) were measured by the TO-15
method, aldehydes by TO-11A, PAHs by TO-13A and heavy metals (including antimony, arsenic,
beryllium, cadmium, chromium, cobalt, lead, manganese, nickel and selenium) by the IO-3.5 method.
Most HAP samples were analyzed at central laboratories and their typical limits of quantitation (LOQs)
are available [42,43]. We downloaded daily (24-hour) HAP concentrations measured in 2011 [44].
Conventional units, such as part per billion (ppb), part per million (ppm), ppb carbon (ppbC), or ppm
carbon (ppmC), were converted to the standard unit µg/m3 to match that used in NATA. Locations of
the monitoring sites in AQS were geocoded and assigned the census tract number in ArcGIS (v10.3.1,
ESRI Inc., Redlands, CA, USA).

The modeling HAP concentrations at the census tract level were downloaded from the 2011
NATA database. The 2011 NATA contained 78,000 census tracts in the continental U.S. AQS and NATA
data were then merged by census tract. The merged dataset contained up to 274 monitoring stations
from AQS (Figure 1) but only 274 matched census tracts from NATA. This subset of NATA data was
representative of the entire 2011 NATA dataset, as their key descriptive statistics were very similar
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(Table 1). Thus, NATA in the following text means the matched sub-dataset. In any census tract, NATA
gives a single annual average concentration of a HAP, and AQS gives 5–162 measurements of the same
HAP taken in the year 2011.Toxics 2019, 7, x FOR PEER REVIEW 2 of 14 
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indicated that statistical analysis was the best way for model performance evaluations [40,47]. 

Figure 1. Air toxics monitoring sites archived in the U.S. Environmental Protection Agency (EPA)’s Air
Quality System (AQS).

2.2. Hazardous Air Pollutants (HAPs) of Interest

We selected 27 HAPs to evaluate the model-to-monitor agreement. The selection was based
on four criteria: (1) they had high rankings in both cancer and respiratory risks in NATA; (2) they
were measured and detected at ≥25 monitoring sites in AQS; (3) they were prioritized in previous
NATA reports; and (4) they represented different chemical groups. We then divided the 27 HAPs into
four groups mainly based on their chemical structures: (1) Aromatic compounds: benzene, isopropyl
benzene, ethyl benzene, styrene, toluene, 1,4-dichlorobenzene and naphthalene; (2) halogenated
compounds: 1,1,2-trichloroethane, bromoethane, carbon tetrachloride, chloroform, methyl chloride,
ethylene dichloride, trichloroethylene, tetrachloroethylene and vinyl chloride; (3) carbonyl compounds:
methyl isobutyl ketone, acetaldehyde, and formaldehyde; and (4) other compounds: chromium,
lead, carbon disulfide, 2,2,4-trimethylpentane, n-hexane, 1,3-butadiene, methyl tert-butyl ether and
acrylonitrile. Not all the sites measured all the compounds and thus the site numbers varied from 27
to 274 depending on the compound.

2.3. Model-to-Monitor Comparison Methods

The 2011 NATA modeling results contain very low concentrations for certain compounds,
e.g., the annual average concentrations of 1,1,2-trichloroethane and chromium were 0.00041 and
0.00003 µg/m3, respectively. In practice, the measurement method has a limit of quantification (LOQ)
for a specific chemical. The LOQ is defined as the lowest concentration that can be accurately measured
during regular laboratory analyzing conditions [42]. Following the concept of LOQ, the absolute value
of difference (∆M) between modeled concentration (CNATA) and monitored concentration (CAQS), i.e.,
∆M = |CNATA − CAQS|, is unquantifiable if ∆M is less than LOQ. CNATA and CAQS can be considered
to be in agreement given an unquantifiable ∆M [45].

To evaluate the national-level agreement, we compared national medians rather than means,
considering the substantial spatial heterogeneity among monitoring sites. For each HAP, we first
determined whether the ∆M was quantifiable, and then compared two medians using the Wilcoxon
signed-rank test. A p-value of ≥0.05 was considered the agreement.
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Table 1. Descriptive statistics of annual average concentrations (µg/m3) in NATA-AQS and NATA-All datasets.

Hazardous Air Pollutants
(HAPs)

NATA-AQS NATA-All

N Mean SD Min Med Max N Mean SD Min Med Max

Aromatic compounds

Benzene 274 0.79 0.47 0.09 0.69 3.02 74,034 0.70 0.43 0 0.63 7.50
Toluene 257 2.62 3.01 0.09 2.08 30.37 74,034 2.61 3.46 0 1.84 39.67
Styrene 236 0.05 0.16 1.1 × 10−3 0.02 1.57 75,023 0.02 0.06 0 0.02 6.72

Ethylbenzene 252 0.28 0.21 0.02 0.25 1.66 75,025 0.23 0.19 0 0.20 3.09
Cumene 113 0.01 0.03 3.8 × 10−4 1.3 × 10−3 0.2 75,013 1.9 × 10−3 0.01 0 8.5 × 10−4 1.98

Naphthalene 52 0.05 0.04 4.2 × 10−3 0.04 0.22 74,034 0.04 0.03 0 0.03 0.94
1,4-Dichlorobenzene 153 0.01 0.04 2.6 × 10−5 6.4 × 10−4 0.27 74,034 0.02 0.05 0 5.1 × 10−4 1.13

Halogenated compounds

Methyl chloride 203 1.10 0.07 1.09 1.09 2.06 74,591 1.07 0.13 0 1.09 2.06
Vinyl chloride 240 4.6 × 10−3 0.02 1.5 × 10−5 3.2 × 10−4 0.15 74,034 6.2 × 10−4 3.7 × 10−3 0 2.2 × 10−4 0.73

Bromomethane 200 0.04 0.09 0.03 0.03 1.34 74,438 0.04 0.05 0 0.03 2.00
Ethylene dichloride 230 3.4 × 10−3 0.01 3.2 × 10−5 5.3 × 10−4 0.08 74,034 7.5 × 10−4 3.7 × 10−3 0 3.8 × 10−4 0.31

Chloroform 252 0.01 0.03 1.7 × 10−7 1.2 × 10−3 0.23 74,034 3.8 × 10−3 0.01 0 8.6 × 10−4 1.57
Trichloroethylene 247 0.02 0.04 4.0 × 10−4 0.01 0.44 74,034 0.02 0.05 0 0.01 5.49

1,1,2-Trichloroethane 185 4.1 × 10−4 1.2 × 10−4 3.9 × 10−4 3.9 × 10−4 0 74,871 3.9 × 10−4 1.7 × 10−4 0 3.9 × 10−4 0.01
Carbon tetrachloride 247 0.55 7.1 × 10−4 0.55 0.55 0.55 74,917 0.54 0.08 0 0.55 0.64
Tetrachloroethylene 252 0.09 0.17 1.5 × 10−3 0.03 1.12 74,034 0.11 0.24 0 0.03 5.07

Carbonyl compounds

Formaldehyde 128 1.66 0.52 0.55 1.61 2.94 74,034 1.59 0.55 0 1.57 5.56
Acetaldehyde 133 1.95 0.55 0.91 1.85 3.28 74,034 1.94 0.66 0 1.88 4.15

Methyl isobutyl ketone 93 0.1 0.15 4.8 × 10−3 0.07 1.27 74,968 0.07 0.08 0 0.05 2.12

Other compounds

Chromium VI (TSP) 27 3.4 × 10−5 3.6 × 10−5 2.3 × 10−6 2.1 × 10−5 1.4 × 10−4 74,034 3.9 × 10−5 8.0 × 10−5 0 2.1 × 10−5 4.4 × 10−3

Acrylonitrile 81 2.6 × 10−3 0.01 4.9 × 10−6 3.5 × 10−4 0.09 74,034 7.9 × 10−4 0.01 0 3.0 × 10−4 1.24
1,3-Butadiene 258 0.08 0.06 3.9 × 10−3 0.06 0.44 74,034 0.06 0.05 0 0.05 0.79

Carbon disulfide 93 0.05 0.34 0.01 0.01 3.27 74,906 0.01 0.05 0 0.01 4.91
n-Hexane 159 0.91 0.6 0.12 0.83 2.87 75,020 0.76 0.66 0 0.60 16.05

Methyl tert-butyl ether 127 1.1 × 10−3 0.01 3.6 × 10−9 2.0 × 10−5 0.12 73,815 1.5 × 10−3 0.01 0 7.4 × 10−6 0.31
2,2,4-Trimethylpentane 105 0.36 0.19 0.1 0.34 0.92 75,009 0.37 0.23 0 0.33 3.59

Lead (TSP) 51 1.5 × 10−3 1.5 × 10−3 9.5 × 10−5 1.0 × 10−3 0.01 74,034 1.0 × 10−3 1.5 × 10−3 0 6.8 × 10−4 0.10

Notes: HAPs—hazardous air pollutants; NATA-All–all census tracts NATA covered in the U.S.; NATA-AQS–census tracts both NATA and AQS covered in the U.S.; N–the number of
census tracts; SD—Standard deviation; Min, Med, and Max—Minimum, Median, and Maximum.
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At individual sites, we compared annual modeled and monitored averages using statistical
methods if ∆M was quantifiable. We calculated the 95% confidence interval (CI) of the annual mean
concentration of a compound, and then determine if the single NATA annual average value fell within
this 95% CI. We log-transformed AQS data as they followed a skewed lognormal distribution, and then
calculated the 95% CI using the Cox’s method [46]. This is a strict statistical comparison method and
applies the widely accepted criterion of 95% CI or equivalently the p-value of 0.05. EPA indicated that
statistical analysis was the best way for model performance evaluations [40,47].

At each site, if NATA agreed with the AQS, the site was defined as an agreement site for that
chemical; otherwise, it was defined as underestimation or overestimation site. These steps were
repeated for all the available sites and the 27 HAPs of interest. The percentages of underestimation,
agreement, and overestimation sites were calculated for all the sites in the U.S. as well as by EPA
region. While there is not a bright line to define the degree of agreement, we define a compound as
an under-predicted, agreement, or over-predicted compound if it is under-predicted, in agreement,
or over-predicted at ≥50% of sites, respectively. This definition enables us to get an overall impression
of the model-to-monitor agreement of each HAP at the national or regional level.

EPA has long been using a factor of 2 as the criterion for model-to-monitor comparisons [35,48,49],
i.e., a CNATA/CAQS ratio of 0.5–2 could be considered the agreement. Rather than using the simple
ratio, we adopted an equivalent metric fractional bias (FB):

FB =

[
CNATA − CAQS

(CNATA + CAQS)/2

]
(1)

FB is a relative bias that combines bias and ratio. It is symmetrical, bounded and
dimensionless [47]. An FB between −0.67 and +0.67 indicates acceptable agreement, and values
of −2 and +2 indicate extreme underestimation and overestimation, respectively [47,50]. An FB was
calculated when ∆M = |CNATA − CAQS| was quantifiable.

All the analyses were performed in SAS (v9.4, SAS Institute Inc., Cary, NC, USA), Microsoft Excel
2010 (Redmond, WA, USA) and Arc GIS (v10.3.1, ESRI Inc., Redlands, CA, USA).

3. Results

3.1. Comparison of National Statistics

The AQS monitoring data showed that ambient HAP concentrations were low in the U.S.
(Table 2). The median concentrations ranged from near 0 µg/m3 (1,1,2-trichloroethane) to 1.44 µg/m3

(acetaldehyde). Eighteen compounds had median concentrations below 0.1 µg/m3, 5 compounds
between 0.1 and 1 µg/m3, and 4 above 1 µg/m3. Only three compounds had maxima exceeding
10 µg/m3: ethylbenzene (12.6 µg/m3), trichloroethylene (16.9 µg/m3), and carbon sulfide (29.4 µg/m3).

The differences between AQS and NATA medians were small, although they were statistically
significant for most compounds. Sixteen HAPs had their ∆Ms less than the corresponding LOQs,
indicating the differences were too small to be measurable. Naphthalene was the only compound that
showed good agreement between AQS and NATA medians when ∆M > LOQ. Out of the remaining
10 compounds, 9 had their national medians underestimated by NATA, and acetaldehyde had its
national median overestimated by NATA. Overall, NATA predicted national medians correctly
for 17 compounds, underestimated medians for 10 compounds, and overestimated medians for
1 compound.

NATA was unable to capture extreme concentrations. The maximum concentrations in AQS
were much higher than those modeled by NATA for all HAPs except for toluene, bromomethane,
and methyl isobutyl ketone. This could be explained by the inability of dispersion models to simulate
extreme concentrations [38,51].
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Table 2. National statistics of HAP concentrations measured by AQS and modeled by NATA.

HAPs N
LOQ
µg/m3

∆M <
LOQ?
Y/N

∆M <
LOQ %
of Sites

AQS NATA Wilcoxon
Rank Test

p-value
Mean
µg/m3 SD µg/m3 Med

µg/m3 Max µg/m3 <LOQ
%

Mean
µg/m3 SD µg/m3 Med

µg/m3 Max µg/m3 <LOQ
%

Aromatic compounds

Benzene 274 0.06 Y 12.0 0.95 0.78 0.73 5.57 0.7 0.79 0.47 0.69 3.02 0.0 0.01
Toluene 257 0.10 N 8.2 1.75 1.27 1.41 6.98 0.4 2.62 3.01 2.08 30.37 0.4 <0.001
Styrene 236 0.04 N 45.3 0.14 0.19 0.07 1.45 35.6 0.05 0.16 0.02 1.57 81.4 <0.001

Ethylbenzene 252 0.05 Y 18.3 0.32 0.80 0.21 12.57 9.1 0.28 0.21 0.25 1.66 10.7 0.60 *
Cumene 113 0.50 Y 94.7 0.11 0.40 0.03 3.79 93.8 0.01 0.03 1.3 × 10−3 0.20 100 <0.001

Naphthalene 52 7.8 × 10−4 N 3.9 0.07 0.11 0.04 0.56 0.0 0.05 0.04 0.04 0.22 0.0 0.89 *
1,4-Dichlorobenzene 153 0.07 Y 62.8 0.18 0.68 0.05 7.40 63.4 0.01 0.04 6.4 × 10−4 0.27 94.1 <0.001

Halogenated compounds

Methyl chloride 203 0.04 N 12.3 1.23 0.25 1.23 2.5 0.5 1.10 0.07 1.09 2.06 0.0 <0.001
Vinyl chloride 240 0.01 Y 91.7 0.01 0.04 0.00 0.51 89.6 4.6 × 10−3 0.02 3.2 × 10−4 0.15 95.0 0.01

Bromomethane 200 0.02 Y 59.5 0.02 0.04 0.01 0.46 69.5 0.04 0.09 0.03 1.34 0.0 <0.001
Ethylene dichloride 230 0.02 Y 54.8 0.07 0.34 0.02 4.73 53.0 3.4 × 10−3 0.01 5.3 × 10−4 0.08 95.7 <0.001

Chloroform 252 0.04 N 26.2 0.13 0.39 0.09 6.05 25.0 0.01 0.03 1.2 × 10−3 0.23 93.7 <0.001
Trichloroethylene 247 0.03 Y 72.1 0.11 1.07 0.01 16.85 62.8 0.02 0.04 0.01 0.44 76.9 <0.001

1,1,2-Trichloroethane 185 0.05 Y 93.5 0.01 0.02 0.00 0.15 93.5 4.1 × 10−4 1.2 × 10−4 3.9 × 10−4 1.8 × 10−3 100 0.03
Carbon tetrachloride 247 0.04 N 25.1 0.54 0.19 0.59 1.68 3.6 0.55 7.1 × 10−4 0.55 0.55 0.0 <0.001
Tetrachloroethylene 252 0.06 N 39.7 0.13 0.14 0.09 1.10 29.0 0.09 0.17 0.03 1.12 67.1 <0.001

Carbonyl compounds

Formaldehyde 128 0.03 N 4.7 1.29 0.71 1.16 6.77 0.0 1.66 0.52 1.61 2.94 0.0 <0.001
Acetaldehyde 133 0.03 N 5.3 1.56 0.63 1.44 3.73 0.0 1.95 0.55 1.85 3.28 0.0 <0.001

Methyl isobutyl ketone 93 0.08 Y 65.6 0.12 0.10 0.10 0.60 38.7 0.10 0.15 0.07 1.27 53.8 0.00

Other compounds

ChromiumVI (TSP) 27 2.7 × 10−3 Y 100.0 1.3 × 10−5 1.3 × 10−5 1.2 × 10−5 4.7 × 10−5 100 3.4 × 10−5 3.6 × 10−5 2.1 × 10−5 1.4 × 10−4 100 0.00
Acrylonitrile 81 0.10 Y 79.0 0.11 0.24 0.01 1.06 79.0 2.6 × 10−3 0.01 3.5 × 10−4 0.09 100 <0.001
1,3-Butadiene 258 0.02 Y 29.5 0.08 0.14 0.05 1.74 34.1 0.08 0.06 0.06 0.44 12.0 <0.001

Carbon disulfide 93 0.02 N 20.4 0.92 3.44 0.07 29.44 19.4 0.05 0.34 0.01 3.27 95.7 <0.001
n-Hexane 159 0.31 Y 43.4 0.81 0.75 0.57 4.39 19.5 0.91 0.60 0.83 2.87 16.4 <0.001

Methyl tert-butyl ether 127 0.16 Y 98.4 0.01 0.07 0.00 0.72 98.4 1.1 × 10−3 0.01 2.0 × 10−5 0.12 100 0.08 *
2,2,4-Trimethylpentane 105 0.28 Y 79.1 0.50 0.53 0.34 3.1 39.0 0.36 0.19 0.34 0.92 38.1 0.16 *

Lead (TSP) 51 2.6 × 10−4 N 7.8 0.01 0.01 3.4 × 10−3 0.07 7.8 1.5 × 10−3 1.5 × 10−3 1.0 × 10−3 0.01 5.9 <0.001

Notes: HAPs—hazardous air pollutants; LOQ—limit of quantitation; SD—standard deviation; Med—median; Max—maximum. * p-value of >0.05 indicating no significant difference.
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3.2. National Model-to-Monitor Agreement

At individual monitoring sites, the ∆M between NATA and AQS annual averages was first
examined for each compound (Table 3). The ∆M of chromium was noticeably below the LOQ at
all the sites. Similarly, ∆M was below the LOQ at over 90% of sites for cumene, vinyl chloride,
1,1,2-trichloroethane and methyl tert-butyl ether, and at 50–90% of sites for another seven compounds.
A total of 12 compounds showed agreement at ≥50% of sites by comparing ∆M to LOQ.

Table 3. Percentages of agreement, underestimation, and overestimation sites determined by
NATA-AQS comparisons.

HAPs N ∆M < LOQ Within 95% CL Total
Agreement

Less than
95% LCL
(Under)

Greater
than 95%

UCL (Over)

Aromatic compounds

Benzene 274 12.0 9.9 21.9 43.8 34.3
Toluene 257 8.2 20.6 28.8 18.7 52.5 *
Styrene 236 45.3 5.9 51.3 * 45.3 3.4

Ethylbenzene 252 18.3 9.5 27.8 36.5 35.7
Cumene 113 94.7 0.0 94.7 * 5.3 0.0

Naphthalene 52 3.8 26.9 30.8 30.8 38.5
1,4-Dichlorobenzene 153 62.7 3.3 66.0 * 30.7 3.3

Halogenated compounds

Methyl chloride 203 12.3 10.3 22.7 63.1 * 14.3
Vinyl chloride 240 91.7 2.9 94.6 * 5.0 0.4

Bromomethane 200 59.5 3.5 63.0 * 2.5 34.5
Ethylene dichloride 230 54.8 3.5 58.3 * 41.3 0.4

Chloroform 252 26.2 5.2 31.3 68.7 * 0.0
Trichloroethylene 247 72.1 4.9 76.9 * 15.0 8.1

1,1,2-Trichloroethane 185 93.5 1.6 95.1 * 4.9 0.0
Carbon tetrachloride 247 25.1 2.8 27.9 49.8 * 22.3
Tetrachloroethylene 252 39.7 13.9 53.6 * 29.8 16.7

Carbonyl compounds

Formaldehyde 128 4.7 21.1 25.8 7.0 67.2 *
Acetaldehyde 133 5.3 21.8 27.1 10.5 62.4 *

Methyl isobutyl ketone 93 65.6 3.2 68.8 23.7 7.5

Other compounds

Chromium VI (TSP) 27 100.0 0.0 100.0 * 0.0 0.0
Acrylonitrile 81 79.0 1.2 80.2 * 19.8 0.0
1,3-Butadiene 258 29.5 10.5 39.9 18.2 41.9

Carbon disulfide 93 20.4 17.2 37.6 60.2 * 2.2
n-Hexane 159 43.4 5.0 48.4 13.2 38.4

Methyl tert-butyl ether 127 98.4 0.0 98.4 * 1.6 0.0
2,2,4-Trimethylpentane 105 79.0 0.0 79.0 * 17.1 3.8

Lead (TSP) 51 7.8 5.9 13.7 74.5 * 11.8

Notes: LOQ—limit of quantitation; CI—confidence interval; LCL—lower confidence limit; UCL—upper confidence
limit; Under—underestimation; Over—overestimation. * Percentages of agreement, underestimation, and
overestimation sites are ≥50%.

When ∆M was quantifiable, toluene, formaldehyde, acetaldehyde, naphthalene showed
agreement at 20–27% of sites, methyl chloride, 1,3-butadiene, tetrachloroethylene, and carbon disulfide
showed agreement at 10–20% of sites, and the remaining 20 chemicals all showed agreement at <10% of
sites. Therefore, NATA agreed with AQS at a small portion (<30%) of sites nationally at the quantifiable
concentration ranges (Table 3).

Taken together, 14 compounds had NATA-AQS agreement at >50% of sites, as highlighted in
Table 3. Methyl chloride, chloroform, carbon tetrachloride, carbon disulfide and lead were nationally
under-predicted, and toluene, formaldehyde and acetaldehyde were nationally over-predicted.
Benzene, ethylbenzene, naphthalene, 1,3-butadiene and n-hexane did not show strong patterns.
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Better agreement results were observed if adopting EPA’s factor of 2 criterion (Table 4). A total of
21 compounds showed agreement at ≥50% of sites. A significant increase in the numbers of agreement
sites occurred for benzene, methyl chloride, carbon tetrachloride, formaldehyde and acetaldehyde.
Styrene, tetrachloroethylene and 1,3-butadiene showed agreement at 44–48% of sites. Chloroform,
carbon disulfide and lead were underestimated at 72–75% of sites. NATA overestimated concentrations
at a small portion of sites for all the compounds. These indicated that the “factor of 2” criterion was
more lenient than the statistical comparisons.

Table 4. Percentages of agreement, underestimation, and overestimation sites determined by
NATA-AQS comparisons using the fractional bias method.

HAPs N

Fractional Bias Total
Agreement∆M < LOQ (−2, −0.67) (−0.67, 0.67) (0.67, 2)

%

Aromatic compounds

Benzene 274 12.0 20.1 55.8 12.0 67.9 *
Toluene 257 8.2 11.7 48.2 31.9 56.4 *
Styrene 236 45.3 49.2 2.5 3.0 47.9

Ethylbenzene 252 18.3 19.4 40.1 22.2 58.3 *
Cumene 113 94.7 5.3 0 0 94.7 *

Naphthalene 52 3.8 21.2 55.8 19.2 59.6 *
1,4-Dichlorobenzene 153 62.7 34.0 1.3 2.0 64.1 *

Halogenated compounds

Methyl chloride 203 12.3 0.5 85.7 1.5 98.0 *
Vinyl chloride 240 91.7 6.3 2.1 0 93.8 *

Bromomethane 200 59.5 4.0 2.0 34.5 61.5 *
Ethylene dichloride 230 54.8 44.8 0.4 0 55.2 *

Chloroform 252 26.2 71.8 2.0 0 28.2
Trichloroethylene 247 72.1 18.6 2.0 7.3 74.1 *

1,1,2-Trichloroethane 185 93.5 6.5 0 0 93.5 *
Carbon tetrachloride 247 25.1 0.4 63.6 10.9 88.7 *
Tetrachloroethylene 252 39.7 42.5 4.8 13.1 44.4

Carbonyl compounds

Formaldehyde 128 4.7 1.6 78.1 15.6 82.8 *
Acetaldehyde 133 5.3 0 81.2 13.5 86.5 *

Methyl isobutyl ketone 93 65.6 23.7 4.3 6.5 69.9 *

Other compounds

Chromium VI (TSP) 27 100.0 0 0 0 100 *
Acrylonitrile 81 79.0 21.0 0 0 79.0 *
1,3-Butadiene 258 29.5 18.6 16.7 35.3 46.1

Carbon disulfide 93 20.4 75.3 2.2 2.2 22.6
n-Hexane 159 43.4 8.8 20.8 27.0 64.2 *

Methyl tert-butyl ether 127 98.4 1.6 0 0 98.4 *
2,2,4-Trimethylpentane 105 79.0 13.3 5.7 1.9 84.8 *

Lead (TSP) 51 7.8 68.6 13.7 9.8 21.6

Notes: * The percentage of the total agreement is ≥50%.

3.3. Regional Model-to-Monitor Agreement

The agreement between NATA estimates and AQS measurements could be further examined by
EPA regions, as shown in Figure 2. Checking by compound in Figure 2, lead (TSP), formaldehyde,
naphthalene, ethylbenzene, toluene, carbon disulfide, 1,3-butadiene, acetaldehyde, benzene, n-hexane,
chloroform, methyl chloride and carbon tetrachloride had a poor agreement in most regions. In contrast,
eight compounds showed good agreement in all regions, including acrylonitrile, methyl isobutyl
ketone, cumene, methyl tert-butyl ether, chromium VI (TSP), 1,1,2-trichloroethane, trichloroethylene,
vinyl chloride. Checking by region in Figure 1, certain compounds or chemical groups displayed
regional characteristics. Aromatic compounds showed poor agreement in Region 1, e.g., benzene did
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not show model-to-monitor agreement at any sites in Region 1. Halogenated compounds showed poor
agreement in Region 2, e.g., methyl chloride did not show model-to-monitor agreement at any sites in
Region 2. Carbonyls compounds showed poor agreement in Region 6, as none of the three carbonyls
showed agreement at more than 50% of sites. Overall, the agreement displayed a strong by-compound
pattern but not a regional pattern.Toxics 2019, 7, x FOR PEER REVIEW 2 of 14 
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4. Discussion

4.1. Similar Findings from National and Local Studies

Our results confirmed previous national and local evaluations of NATA modeling. Previous
NATA evaluations found good agreement for only a few compounds and underestimation for most
compounds [15,35]. In the 2005 NATA model assessment, only 8 out of 68 compounds showed
agreement at the national level, and other compounds were all underestimated [48]. At state and
local levels, Lupo and Symanski [34] found 1996 NATA underestimated 8 out 15 HAPs and 1999
NATA underestimated 18 out of 27 HAPs in Texas. Wang et al. [50] found general agreement for
benzene and toluene concentrations modeled by 1999 NATA in Camden, New Jersey. Logue et al. [33]
reported that the 2002 NATA underestimated 32 out of 49 HAPs measured at 7 sites in and around
Pittsburgh, Pennsylvania. The Detroit Exposure and Aerosol Research Study (DEARS) reported
that benzene concentrations in 2002 NATA generally agreed with field measurements from 2004 to
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2007 [36]. Garcia et al. [35] found that 12 HAPs were underestimated by 1996 NATA, 8 out of 9 were
underestimated by 1999 NATA, 10 out of 12 were underestimated by 2002 NATA, and 6 out of 10
were underestimated by 2005 NATA. It was notable that previous studies found good agreement for
benzene; however, our results showed moderate agreement, possibly due to different comparison
methods. These findings indicate that model-to-monitor agreement was inconsistent by region and
chemical, and under-prediction was more frequent [35,36,50].

The general underestimation by NATA was attributable to factors including (1) missing
emissions sources; (2) underestimated emission rates; (3) sites intended to find peak concentrations;
and (4) measurement accuracy [52]. As seen in Table 2, NATA model in general was unable to capture
extreme concentrations. Average concentrations measured from monitors within a census tract might
be affected by extrema due to nearby short-term strong emissions, which could not be captured by the
census-tract averages in NATA. Similarly, the National Emission Inventory, on which NATA estimates
were based, might have missed local emission sources [51]. Lack of stable estimates of meteorological
conditions and photochemical reactions is another factor leading to disagreement. For example,
unstable estimates on wind conditions and secondary formation of chemicals were major weakness of
the NATA model [38]. The uncertainty in monitored measurement due to insufficient and unbalanced
geographic coverage of monitoring sites also contributed to the discrepancies between monitored and
modeled estimates [35,51]. These factors warrant future improvements in both monitoring adequacy
(technology, frequency and coverage) and modeling parameterization.

4.2. Impacts of Comparison Methods and Metrics

Model-to-monitor comparison results were significantly impacted by comparison methods.
We introduced LOQs to overcome the measurement uncertainty issue, which was ignored in previous
studies. It turned out model-to-monitor differences were unquantifiable at a large portion of sites
for many compounds. A small and practically unquantifiable difference should mean an agreement;
however, statistical analyses of these uncertain, small numbers often lead to significant differences.
For example, we found 100% agreement for chromium due to its extremely low concentrations (median
= 0.00001 µg/m3) estimated by NATA, while the 2005 NATA evaluation reported a 0% agreement
when just using ratios [48]. This and other examples suggest ignorance of measurement uncertainty
and, in particular, the LOQs, would lead to distinctly different results.

Previous studies have applied a number of model-to-monitor comparison metrics and methods,
including biases and root mean square error [50,51,53,54], Kendall rank correlation [38], ratios [33–35],
regressions [50], and even complex metrics [55]. There has been no commonly accepted criterion
for the metric; for example, EPA uses a relative bias of within ±30% and median ratio of 0.5–2 for
agreement. The goodness-of-fit of a regression line, indicated by R2, is often arbitrary. The median ratio
of modeled-to-monitored concentrations is the most commonly used metric; however, it may become
extremely small or large when concentrations are too small to be practically quantifiable. The strengths
of our approach were the consideration of measurement uncertainty and statistical comparisons with
the commonly used 95% confidence interval criterion.

4.3. Study Limitations

We have also acknowledged limitations in data sources and the comparison methodology. We used
all the available annual averages without considering the number of measurements or seasonality,
in order to increase the sample sizes. A representative annual average should be calculated from
data measured in at least two seasons [52]. AQS did not report the LOQ for each measurement,
and thus we adopted LOQs from EPA’s major contract laboratory [43]. The use of a single LOD
for all the measurements of a compound might have caused misclassification of ∆Ms, considering
varying LOQs over time or by laboratories. This limitation also calls for inclusion of LOQs in future
air quality data reporting. The analysis unit was census tract, a small geographic unit often used in
environmental disparity and epidemiology research. NATA already admitted that NATA estimates
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were unreliable at the census tract level and discouraged uses of census tract data [52]. The lack of local
information refrained us from explaining regional differences in model performance. For example,
the poor agreement of halogenated compounds in Region 2 might be due to data quality in emissions
and meteorological conditions as well as photochemical reactions. The underlying factors contributing
to these regional differences need further inquiry and investigation.

4.4. Implications for Environmental Health Disparity Research

The environment plays a critical role in determining people’s health [56]. Environmental health
disparity is the difference in health risks that people have when they experience both uneven exposure
to various environmental risk factors and social inequality [57]. It is often examined at census tract
level because census tract is considered a geographic area roughly representative for a neighborhood
where the sociodemographic characteristics are homogeneous among a stable size (1500 housing
units and 4000 people on average) of the population [58]. With easily available census-tract level
sociodemographic data from census and exposure data from NATA, many studies have examined
environmental disparities in HAP exposures and risks, and always found a significant association
between HAP exposure and sociodemographic status [21,24,59]. Our evaluation indicates two major
uncertainties in NATA data. First, a large portion of NATA estimates are so low that they fall below the
LOQs. Accordingly, large uncertainties exist in estimating cancer risks from exposure to carcinogenic
HAPs when applying the linear non-threshold dose-response relationship. Second, NATA modeling
was unable to predict extremely high concentrations due to lack of information on local, intermittent
and sporadic emissions. These two uncertainties may result in false strong disparity patterns observed
in many studies based on NATA data. The overall model performance warrants future disparity
studies be conducted with actual HAP monitoring data, in particular, when examining disparities at
the local level.

5. Conclusions

This study provides an independent model-to-monitor assessment for census-tract level HAP
concentrations modeled in the latest NATA. Significant portions of modeled concentrations (5–100%)
fell below the limits of quantitation (LOQs), and less than 30% of quantifiable concentrations showed
statistical agreement. Out of the 27 compounds examined, 14 compounds showed agreement at
over 50% of sites. Underestimation of NATA estimates was predominant in non-agreement cases.
The agreement was inconsistent in terms of chemical group or region and was impacted by the
comparison methods. These findings generally concurred with those from previous national, state,
and local NATA evaluation studies. The substantial non-agreements of NATA predictions with
monitoring data signal cautions for environmental epidemiology and justice studies that utilize NATA
modeling data.
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