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Abstract: Atherosclerosis is still one of the main causes of death around the globe. This condition
leads to various life-threatening cardiovascular complications. However, no effective preventive mea-
sures are known apart from lifestyle corrections, and no cure has been developed. Despite numerous
studies in the field of atherogenesis, there are still huge gaps in already poor understanding of mech-
anisms that underlie the disease. Inflammation and lipid metabolism violations are undoubtedly
the key players, but many other factors, such as oxidative stress, endothelial dysfunction, contribute
to the pathogenesis of atherosclerosis. This overview is focusing on the role of macrophages in
atherogenesis, which are at the same time a part of the inflammatory response, and also tightly
linked to the foam cell formation, thus taking part in both crucial for atherogenesis processes. Being
essentially involved in atherosclerosis development, macrophages and foam cells have attracted
attention as a promising target for therapeutic approaches.

Keywords: atherosclerosis; inflammation; macrophage; foam cell

1. Atherosclerosis

Atherosclerosis implies the concentration of fatty and/or fibrous material within the
intima. The definition of “atherosclerosis” originated from the Greek language and means
“gruel” or “porridge” which literally illustrates the lipid material appearance that exists
in the nucleus of a typical atherosclerotic plaque (or atheroma) [1]. After a while, the
atherosclerotic plaque can become more fibrous and store calcium minerals [2]. Progressive
atheroma is able to penetrate the lumen of the artery, which consequently disrupts the
bloodstream and leads to tissue ischemia. At the same time, those atheromas that do
not create a flow-limiting obstruction can destroy and cause a blood clot formation that
may clog the lumen, which, as a result, can lead to more acute ischemia [3]. It is known
that atherosclerotic cardiovascular diseases (CVD) are the main cause of vascular diseases
spread globally. Affecting the heart’s own blood circulation can cause acute coronary
syndromes: for example, a myocardial infarction or stable angina pectoris [4].

Ischemic strokes and transient cerebral ischemic attacks can occur as a consequence of
atherosclerosis [5]. As a result, aneurysms may form, which can also form in the abdominal
aorta. If the peripheral artery is affected, episodic lameness, ulceration, and gangrene may
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appear, which potentially threaten the viability of the limbs. As before, atherosclerosis
remains the leading cause of death worldwide [6].

Despite the improvement of preventive measures, numerous patients still die from
acute complications of atherosclerosis outside the hospital. However, when a patient with
an acute atherosclerosis manifestation seeks help promptly, modern treatment strategies in
most cases save lives [7]. Such progress in cardiovascular medicine is an important and
remarkable example of how the clinical application of scientific discoveries can benefit
patients. Regardless of the successes, there is still a lot of work to be done to apply more
effectively and fairly what we already know in practice [8]. It is necessary to set a higher
bar for ourselves to reduce the burden of residual risk, which, alas, is still quite high. Quite
a large number of people experience acute coronary syndromes, however, this does not
exclude such a consequence as a violation of cardiac function, which is the basis for heart
failure [9].

2. Inflammatory Role of Monocytes

The first front line of body defense from pathogenic microorganisms or tissue harm
is monocytes. Circulating monocytes comprise three subsets: classical CD14++CD16−
monocytes, nonclassical CD14 + CD16++ and intermediate CD14 + CD16+ [10]. Monocytes
differentiate into macrophages immediately after they are at the site of danger due to
chemotaxis. Together with certain macrophage-residents of tissues that maintain their
pool without the active participation of blood monocytes, macrophages derived from
monocytes are involved in the inflammatory process. As a response to specifically occur-
ring molecular patterns linked with pathogens and damage (PAMPs (pathogen-associated
molecular patterns) and DAMPs (damage-associated molecular pattern), and host inher-
ited signaling molecules, macrophages adopt a variety of functional phenotypes [11].
There are two opposite phenotypic states which are represented by the classical model of
macrophage polarization: (1) the “classic” proinflammatory macrophage M1, generated
by bacterial lipopolysaccharide (LPS) and/or gamma interferon (IFN-G), (2) and the “al-
ternative” anti-inflammatory macrophage M2, which may be stimulated by interleukin
4 (IL4) [12]. Nevertheless, recent development in functional characterization shows that
macrophage phenotypes are not restricted to the extremes of M1 and M2, but more likely
are a spectrum of phenotypes linked with differential cytokine development and func-
tional parameters. This functional plasticity of macrophages is regulated by transcriptional
reprogramming, which is reached by changing the availability of chromatin and the epi-
genetic landscape [13]. In the case of a disease, chronic inflammation is able to result in
reverse remodeling of macrophage reactions and provoke a change in their phenotypes,
which can lead to proinflammatory macrophages’ growth in diabetes or anti-inflammatory
macrophages’ growth in cancer [14]. The basis of the pathogenesis of the disease in
atherosclerosis is the dysregulation of macrophages. The generation of atypical states of
macrophage activation, which include the characteristics of pro- and anti-inflammatory
phenotypes, is due to the action of modified lipids, cholesterol crystals, and mediators on
monocytes [15].

These changes are linked to transcriptional and epigenetic reprogramming and are
modulated by transcription factors and epigenetic. The awareness of the basic regulatory
mechanisms can make a contribution to the invention of the new treatment, e.g., by
blocking an unnecessary pathway or reprogramming macrophages to a more suitable
phenotype [12].

3. Inflammatory Role of M1 and M2 Macrophages

The polarization system of T-cells is found on the transcriptome, phenotype, and
functions and is well-proven [16]. Along with this system, the affected macrophages are
strongly impacted by microenvironment signals and are polarized into multiple classes
with various phenotypes and functions. Because of the macrophages’ unsteadiness during
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the isolation process and the dissimilarities in animal and human phenotype models,
accurate studies have become limited [17].

In a simpler dichotomy, immune-activated proinflammatory macrophages (M1) and
immunomodulating alternatively triggered macrophages (M2) are the most traditional
classification that illustrates 2 types of T helper cells—Th1 and Th2 [13]. This classifica-
tion shows extreme phenotypes of complex activation states. As a rule, M1 macrophages
are polarized by Th1 cytokines (for example, interferon (IFN-γ) and TNF) and molec-
ular complexes linked with pathogens (PAMPs) consisting of lipopolysaccharides and
lipoproteins [18]. Through the regulatory interferon factor 5 (IRF5), the granulocyte-
macrophage colony-stimulating factor (GM-CSF) participates in the inflammatory process.
M1 macrophages develop increased levels of proinflammatory cytokines (which are IL-6,
IL-12, IL-23, TNF-α, and IL-1β) and chemokines associated with Th1 recruitment (CXCL-9,
CXCL-10, and CXCL-11). In addition, levels of produced IL-10 are decreased. Regardless
chronic activation, M1 macrophages are also able to trigger the NADPH oxidase system
and, as result, produce reactive oxygen species (ROS) and nitric oxide (NO), leading to
chronic tissue detriment and wound curing worsening [19].

At this stage, M2 macrophages play an important role in balancing the proinflam-
matory response, the function of modulating inflammation, eliminating apoptotic cells,
boosting the process of formation of new blood vessels (angiogenesis) and scar formation
(fibrosis), and stimulating tissue recovery. Meanwhile, M2 macrophages are usually trig-
gered in response to Th2-related cytokines, including IL-4, IL-33, and IL-13 [20]. Activated
M2 macrophages have immunomodulatory properties and have decreased levels of IL-12
along with increased levels of anti-inflammatory cytokines (IL-10 and TGF-β), as well as
chemokines (CCL17, CCL22, and CCL24). Thus, taking into account the distinction be-
tween activation signals and gene expression profiles, M2 macrophages can be alternatively
separated into four subgroups [21,22]:

(1) M2a—M2a macrophages are induced by IL4 and IL 13 and generate increased levels
of CD206 and IL-1 receptor antagonist [23];

(2) M2b—M2b macrophages are extraordinary and trigger immune complexes, IL1β and
PAMPs, and produce both the proinflammatory cytokines (IL-1, IL-6, and TNF-α) and
the anti-inflammatory cytokine IL-10 [24];

(3) M2c—the most prominent anti-inflammatory subtype triggered by IL10, TGFß, and
glucocorticoids and produce IL10, TGFß and pentraxin 3 (PTX3) [25];

(4) M2d—are triggered by diphtheria toxin receptor (DTR) signals and have angiogenic
properties that play a role in both plaque growing and tumor development [26].

The key signal for M2 polarization is the activation of the γ receptor, which is trig-
gered by the peroxisome proliferator (PPAR-γ), and the signal converter and a trigger of
transcription pathways 6 (STAT6) [22,27]. Both M1 macrophages and M2 macrophages are
staying in different areas of the plaque. Staining with M1 macrophage markers is mainly
limited to the shoulder of plaques subject to break, one of the most unbalanced areas inside
the plaque [13]. Meanwhile, M2 macrophages markers are usually present in the adventitia
of vessels or the stable plaques areas. It is worth noting that M1 macrophages are also
more common in lesions in patients with heart attack and coronary heart disease than M2
macrophages [18,22].

4. Inflammatory Role of Macrophages of Other Phenotypes

Along with a comprehension of the phenotypes and functions of affected macrophages,
it was proved that the M1-M2 dichotomy ultimately does not demonstrate complex subsets
of macrophages in atherosclerosis, which are highlighted in Figure 1. Stimuli change
spatiotemporally and bring macrophages to a wide range of activation states, rather than
to a stable analogous polarization, which may obstruct phenotype stability maintenance
of isolated macrophages. A new method of macrophage classification is by stimuli: M
(IFN-γ), M (IL-4), and M (IL-10) [13,28].
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sis. The stimuli triggering the respective transformation from the monocyte are noted near the arrow.

Not so long ago, Piccolo et al. triggered macrophages by double stimulation of IFN-γ
and IL-4, which are suppressors of macrophages of the M1 and M2 phenotype, and estab-
lished that co-stimulation with two contrary stimuli led macrophages to an intermediate
state, which we are able to entitle M (IFN-γ-IL-4), and showed both transcriptomes of
specific genes of the M1 and M2 type [29].

Apart from M1–M2, oxidized phospholipids are able to trigger the Mox phenotype in
macrophages by activating the Nrf2 transcription factor in mouse models. In progressive
plaque, Mox macrophages are nearly 30% of the aggregate number of macrophages [30].
These cells express proinflammatory markers, such as IL1β and cyclooxygenase 2, and
show deficient phagocytic and chemotactic abilities. The destruction of microvessels in the
lesion site lets out red blood cells, which are able to be phagocytized by macrophages, and
then trigger them into the M(Hb) and Mhem phenotypes [31].

Macrophages of M(Hb) subtype can form hemoglobin-haptoglobin complexes in vitro
and represent the CD206 + CD163 + phenotype. Macrophages M(Hb) are characterized
by high activity of liver receptor X a (LXRa), which results in an elevation in cholesterol
outflow and a decrease in lipid accumulation, as well as elevation in ferroportin expression,
which, in turn, led to an intracellular iron storage decrease and greater secretion of anti-
inflammatory factors (such as IL-10) [32]. The Mhem phenotype is polarized by heme and
is characterized by cyclic AMP high expression—dependent transcription factor—(ATF-) 1
and heme oxygenase 1 (HO1) and inhibited oxidative stress or lipid storage, analogous in
properties to M(Hb) macrophages [33].

M(Hb) cells and Heme cells are referred to phenotypes linked with hemorrhage. They
are usually persistent to transformation into foam cells, inhibiting oxidative stress and
potentially performing atheroprotective functions [34]. Chemokine 4 of the CXC motif
(CXCL4) chemokine triggers macrophages of the M4 phenotype in human atherosclerotic
plaques. In turn, M4 macrophage phenotype is CD163. It is differed by the expression of
both MP-7 and the calcium-binding protein S100A8 and, in addition, the manifestation of
proinflammatory and proatherogenic properties [35,36]. Remarkably, the M1, M2 pheno-
types and bleeding-related phenotypes can shift with each other while the M4 macrophage
phenotype appears to be permanent.

5. Macrophages in Atherosclerosis

During atherosclerosis development, five to eight macrophages in the mouse aorta,
obtained mainly from circulating monocytes and local proliferation, grow up to 20-fold.
There is proof that vascular smooth muscle cells are able to differentiate into a macrophage-
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like state [37]. In humans, the set of monocytes in the intimal space arise at a very early age.
The initial stages are manifested in infants under the age of one year, and atherosclerotic
plaques are common in teenagers and young adults [38]. Thus, atherosclerotic cardiovascu-
lar disease (ASCVD) is a chronic inflammatory process that develops during the life and,
unfortunately, for many ends with a serious unfavorable and sometimes fatal outcome [39].

One of the important features of ASCVD is the ingress of lipoproteins in the body
and their storage by arterial macrophages, which results in foam cells formation. Due to
the accumulation of foam cells lipids also accumulate in the plaque, which contributes to
the steady growth of plaque. Macrophages promote the upkeep of a local inflammatory
response by releasing proinflammatory cytokines, chemokines and developing reactive
oxygen and nitrogen forms [40]. Macrophages also interact with vascular smooth muscle
cells, enhancing the inflammatory cycle by developing additional proinflammatory cy-
tokines and extracellular matrix components, which additionally contribute to the retention
of lipoproteins. The plaque macrophage’s capability to migrate is low, so they prevent the
resolution of inflammation and contribute to the lesions’ development into complex, tear-
prone plaques [41]. In addition, stable inflammation stimulates apoptosis of macrophages
and, in the absence of effective efferocytosis, results in ruins and apoptotic cell storage,
contributing to the establishment of a necrotic nucleus in an atherosclerotic plaque [42].

Plasticity is the defining distinguishing feature of macrophages. Plasticity allows
macrophages to develop an individual response to local stimuli of the microenvironment.
During the inflammatory process, macrophages can either stimulate inflammation or vice
versa eliminate it during the recovery of wounds and tissues. The traditional model
of macrophage activation describes both pro- and anti-inflammatory macrophages with
different physiological purposes and triggers. At the widest possible level, macrophages
should be categorized either as (1) M1-classically activated; or as (2) M2-alternatively
activated [43,44].

In vitro, M1 macrophages are polarized in response to toll-like receptor ligands, inter-
ferons, molecular complexes linked with pathogens, lipopolysaccharides and lipoproteins
fed by glycolysis, M1 macrophages stimulate tissue destruction and secrete proinflamma-
tory factors, including increased IL (interleukin)-1β, IL-6 and TNF-α (tumor necrosis factor-
α) levels [45]. Pursuing their inflammatory phenotype, they express proinflammatory
transcription factors as nuclear factor-kB and STAT (signal transformer and transcription
activator)-1. M2 macrophages exist at the other spectrums’ end with a phenotype hinged on
the oxidation of the fatty acids, and anti-inflammatory properties [46]. M2 macrophages are
polarized in response to the cytokines IL-4 and IL-13 and secrete anti-inflammatory factors
including collagen and IL-1 receptor agonist, IL-10. M2 macrophages are characterized by
the expression of CD163 (cluster of differentiation 163), mannose receptor 1, resistin-like β,
and an increased level of arginase-1 [47].

Within the framework of plaques, macrophages belonging to traditionally included
and alternatively activated subsets participate in both human and mouse lesions. No-
tably, the predominant subtype is M1 [48]. In human lesions, macrophages expressing
proinflammatory markers are located in unstable areas predisposed to break, and M2-
like macrophages are located in persistent areas and adventitia. However, recent data
demonstrate that macrophages exist in the activation continuum, and that the M1/M2
classification system is a very strong simplification of the heterogeneity of macrophages
and their various functions [49].

Several classifications are described in the context of murine ASCVD [37]. These
alternative phenotypes involve Mhem macrophages, which are contained in hemorrhages
and which phagocytize, as well as use red blood cell residues and hemoglobin deposits [25].
This subset is atheroprotective and resistant to the development of foam cells. It is shown
with their increased expression of cholesterol transporters ABCA1 (ATP-binding cassette
transporter A1) and ABCG1 (ATP-binding cassette transporter G1) and nuclear receptors,
LXR-α and LXR-β [50]. Mox macrophages (proatherogenic subset) are triggered by modi-
fied phospholipids and defend against oxidative stress utilizing a 2-nuclear factor-related
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factor 2 linked with erythroid, mediated by the expression of the antioxidant enzymes
such as heme oxygenase 1, thioredoxin reductase 1, and sulfiredoxin–1 [51,52]. It is re-
ported that in mice with hypercholesterolemia, Mox macrophages make up 30% of plaque
macrophages, with subsets M1 equals 40% and M2 equals 20% of the remaining cohort,
accordingly [53]. Ultimately, M4 macrophages are a subset polarized by platelet factor
4. This population is found in human lesions that have increased expression of matrix
metalloprotease 7 and S100A8. M4 macrophages are defined as atherogenic based on their
development of proinflammatory cytokines (IL-6 and TNF-α) and defective phagocytic
properties [13,54]. For the first time, the heterogeneity of macrophages in plaques was
evaluated using immunohistochemistry and, at the molecular level, using laser capture
microdissection. In response to technological advances, which also involve mass time-of-
flight cytometry and single-cell RNA sequencing, it has become possible to further expand
our knowledge about the heterogeneity of macrophages in progressive plaques. As a result,
these technologies helped to characterize the heterogeneous nature of plaque macrophages
and revealed a fresh, undetected earlier subset of identified ones [55].

Called the activated receptor expressed on myeloid cell macrophages 2 (TREM)hi, this
subset expresses increased Trem2, Cd9, Ctsd, and Spp 1 genes levels and reduced expression
of inflammatory cytokines with attributed biological functions of lipid metabolism and
cholesterol outflow [56]. It is assumed that this extraordinary population is fulfilled with
cholesterol and represents foam macrophages. Thus, the macrophages of the TREM)hi give
an alternative hypothesis, which implies that subsets of macrophages are inflammatory in
some places [57].

There are multiple models of macrophage activation. Taken together, they show that
macrophages in plaques are able to have solely fractional similarity with the phenotypes
of M1 and M2 macrophages [43]. In order to discover the gene expression profiles and
transcription pathways that are the basis for the identity and diversity of macrophages in
ASCVD, further research is needed. Moreover, it is also important to determine whether the
results in mice can be translated into human plaques that have clear phenotypic differences
(such as hemorrhage and rupture), in order to develop treatments aimed at reducing the
risk of residual inflammation associated with macrophages [58].

6. Foam Cells

Following the joining of the ECs, monocytes get through the ECs into the suben-
dothelial area and persist there due to the reduced aptitude to migrate, preventing the
resolution of inflammation. Moved by pro-differentiation factors (e.g., macrophage colony-
stimulating factor (M-CSF)) monocytes evoke phenotypes similar to macrophages or den-
dritic cells (DC) [59]. DC are intensively involved in lipoprotein particle purification and
transformation into foam cells, which are cytoplasmic and membrane-bound splashes
resulting in greater storage of modified LDL in the subendothelial space [4,41]. For this
implementation course, several mechanisms have been offered. Some studies have shown
that scavenger receptors expressed on macrophages (mainly the scavenger receptor type A
(SR-A) and a part of the CD36 family type B) are key markers on affected macrophages
that turn into foam cells [60,61]. Obstructed sera trigger the absorption of lipids and the
foam cells generation, thus further blocking the local proliferation of macrophages in the
lesion [62]. It is worth noting that in the triple knockout models of Apoe−/− CD36−/−
Msr1−/− mice, there was no reduction in the foam cells transformation in contrast to
Apoe−/− mice, which determines that additional mechanisms for monitoring this process
have yet to be specified [63]. Lately, newer scavenger receptors have been established, such
as protein 1 associated with the LDL receptor (LRP1) and the lectin-like VLDL receptor
1 (LOX1), which also promote the absorption of lipids. It has been proven that blocking
LRP1 in affected macrophages reduces the cholesterol concentration in macrophages [64].
On the contrary, the liver X-receptor (LXR) enabled by oxLDL contributes to the outflow of
cholesterol and lowers the expression of proinflammatory factors in macrophages, therefore
having a beneficial influence on atherosclerosis [15]. In addition to modified LDL, it was



Biomedicines 2021, 9, 1221 7 of 12

established that the transformation of foam elements is also able to occur due to the receipt
of native LDL, independent of receptors. This process is called fluid-phase endocytosis and
is based on the activation of phorbol 12-myristate 13-acetate (PMA), a trigger of protein
kinase C (PKC) [65].

7. Foam Cells Are Not Always Macrophage-Derived

The classical conception of the formation of atherosclerotic lesions focuses on the
generation of foam cells from macrophages derived from monocytes, but a significant
part of the foam cells actually originate from the cells of the intimal smooth muscle cells
(SMCs), and, moreover, from endothelial cells (see Figure 2) [37]. It was described that
under the influence of platelet-derived growth factor β (PDGF-β), SMCs are able to lose
their contractile phenotype and transform into a more synthetic phenotype that produces
an extracellular matrix and has a regenerating, wound-healing function, which restores
and stabilizes the artery wall; and in the atherosclerotic lesions, thickens and stabilizes the
fibrous membrane [66]. However, during lesion development, synthetic SMCs are one of
the first cell types that remain lipoprotein contents.
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Further impact to signals inside the plaque (e.g., TGF-β, oxidized lipids, and cytokines)
are able to cause transdifferentiation of synthetic SMCs into foam cells. It is worth noting
that cholesterol itself has been shown to trigger transdifferentiation of mouse SMCs and
an elevation in the expression of CD68, Mac-2, and ABCA1 foam cell markers [67]. It is
also believed that up to 50% of all foam cells in the field of human lesions have SMC-
origin. This quantitative assessment is based on co-staining with markers specific to SMC
and foam cells, which does not take into account the complete phenotype and the vector
of transdifferentiation and may result in a re-evaluation of transdifferentiating cells [68].
However, mouse-based line-tracking tests have allowed us to identify and characterize
these transitions in vivo and the underlying epigenetic mechanisms. For example, thus, the
Kruppel-Like Factor 4 (KLF4) TF program was identified as an SMC transdifferentiation
driver. Myeloid DTF Sp1 (PU 1) has been shown to bind to the KLF4 promoter in response
to PDF-β signaling. Like STAT6, KLF4 triggers the anti-inflammatory state of macrophages
by inducing a protein triggered by MCP-1 (encoded by the ZC3H12A gene), which inhibits
the function of NF-kB and activates the C/EBPb and PPAR-G programs [12].

Although the foam cells obtained from SMC acquire macrophage markers (for exam-
ple, CD68 and Lgals3), as well as storing cholesterol and lipoproteins, they do not acquire
phagocytic or efferocytic abilities and, accordingly, do not turn into real macrophages [53].
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However, the simultaneous loss of SMC markers complicates the separation of foam cells
obtained from SMS from their analogues obtained from monocytes. In macrophages
obtained from monocytes, activation of the KLF4 program results in atheroprotective,
anti-inflammatory phenotype [69]. Epigenetic expression of KLF4 is controlled by methy-
lation of its promoter DNMT1. In inflammatory macrophages, KLF4 is hypermethylated,
which results in the inhibition of its TF program. While KLF4 plays a neuroprotective role
in macrophages, KLF4 in SMCS appears to be proatherogenic, and its loss results in the
reduction of the lesion size and an elevation in the stability of plaques. In fact, in cultured
SMCS, cholesterol-induced KLF4 expression resulted in KLF4-dependent activation of
proinflammatory cytokines, thereby contributing to the formation of a proinflammatory
atherogenic plaque [70].

8. Therapeutic Strategies Targeting Macrophages

Antiatherosclerotic biomarkers or lipid modulation strategies are nonspecific measures
that inhibit macrophage functions and other cells in the plaque (for example smooth muscle
cells (SMCs) and endothelial cells (ECs)). Nevertheless, treatment methods that expressly
and peculiarly target macrophages are insufficient, and up to now the research has been a
preclinical work, possibly due to the complex phenotypic and functional heterogeneity of
the affected macrophages [71].

Now, new systems of drug supply (such as NPs, stents, liposomes, glucon shell
microparticles, oligopeptide complexes, and monoclonal antibodies) allow the selective
modification of macrophages. Macrophage surface markers (F4/80, CD11b, CD68, CD
206) and scavenger receptors enforce distinctive targets for all macrophages or different
subsets [72]. In combination with surface coating receptors or depending on their chemical
properties, these systems are able to provide drugs or RNA interference (RNAi) to local
atherosclerotic plaques or specific subsets of macrophages, making changes with minimal
nontargeted effects and toxicity [73]. Targeting macrophages, various approaches are able
to be used to modulate their activity, including impelling cell apoptosis, cell proliferation
suppression, and administering anti-inflammatory drugs.

Verheye et al. established that the rapamycin inhibitor everolimus, transferred to
plaques in a rabbit found on a stent, resulted in autophagy in macrophages without
influencing the number of SMCs [74]. In a mouse model with a high-fat diet, clodronate
liposome injection effectively exhausts the microphone of visceral adipose tissue and blocks
weight gain and metabolic disorders caused by a high-fat diet. Stoneman et al. found
the effect of general ablation directed at macrophages and blood monocytes by creating a
transgenic mouse model with the CD11b-DTR by introducing DT [26]. When DT was used
at the beginning of atherogenesis, the plaques were significantly reduced. At the same time,
the detected plaques were not touched by DT, even though macrophages were lowered to
the same level, which demonstrates that the atherogenesis process is more susceptible to a
decrease in monocytes/macrophages than stable plaques. Sadly, despite the high-potential
results, all the proof has been obtained in vitro or animal models, and further research is
required for the development of new drugs and clinical translation.

An alternative option for removing macrophages that affect the polarization of
macrophages into an anti-inflammatory phenotype involves not the M1 macrophages,
but those of M2 phenotype. Possible targets may be many factors affecting the M2 polar-
ization signals [75]. For instance, it is assumed that dipeptidyl peptidase (DPP) inhibitors,
such as gliptins and sitagliptin, can stimulate M2 polarization in vitro by transmitting
SDF-1/CXCR4 signals. Thiazolidinediones or TZDs (rosiglitazone and pioglitazone, ac-
tivators of PPAR-γ), are able to contribute to the polarization of monocytes into the M2
phenotype by changing the expression of M2 markers, such as the mannose receptor (MR)
and CD163 [35].
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9. Therapeutic Strategies Targeting Foam Cells

One of the most significant events in foam cell formation is cholesterol efflux. This
process is mediated by ATP-binding cassette transporters ABCA1, ABCG1, as well as SR-
B1, the function of which is to maintain cholesterol and phospholipid homeostasis in the
cell [15]. The treatment of LDLR−/− mice with PPARα and PPARγ agonists was shown
to increase the production of ABCG1 and ABCA1, which contributed to the inhibition
of atherosclerosis progression [76]. However, there are other cholesterol-transporting
mechanisms, so this approach is limited.

Another approach targeting foam cells is to slow the foam cell degradation, which can
potentially have an atheroprotective effect [77]. Among such approaches are promoting
efferocytosis of apoptotic macrophages by using LXR ligands or glucocorticoids, activating
PPARγ pathways, knockdown of apoptosis inhibitor of macrophages, targeting apoptotic
pathways, such as the genetic inhibition of BAX or Bcl-2 and other atherogenic proteins,
targeting secondary necrosis pathways (e.g., the clearance of apoptotic cells).

Although, most of the therapeutic strategies involving foam cells were based on the
hypothesis of only macrophage origin of foam cells, while today we know the heterogeneity
of this kind of cells [78].

10. Conclusions

The wide involvement in atherogenesis makes macrophages an interesting target
for potential therapeutic strategies. Various approaches can be used for macrophage
activity modulation, such as impelling cell apoptosis, cell proliferation suppression, and
administering anti-inflammatory drugs. However, treatment strategies that directly target
macrophages are insufficient and may be more efficient in complexity with other measures.
The same can be said about foam cells. It was long believed that macrophages are their only
source, and this misconception severely limited understanding of the therapeutic potential
of foam cells. However, over time, more and more new data on the heterogeneity of foam
cells appear, which will allow more efficient targeting options for atherosclerosis treatment.
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