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Abstract: Infectious diseases are the second leading cause of death worldwide, highlighting the
importance of the development of a novel and improved strategy for fighting pathogenic microbes.
Streptococcus pneumoniae is a highly pathogenic bacteria that causes pneumonia with high mortality
rates, especially in children and elderly individuals. To solve these issues, a mucosal vaccine system
would be the best solution for the prevention and treatment of these diseases. We have recently
reported that enzymatically polymerized caffeic acid (pCA) acts as a mucosal adjuvant when co-
administered with antigenic proteins via the nasal route. Moreover, the sources of caffeic acid and
horseradish peroxidase are ingredients found commonly in coffee beans and horseradish, respectively.
In this study, we aimed to develop a pneumococcal nasal vaccine comprising pneumococcal surface
protein A (PspA) and pCA as the mucosal adjuvant. Intranasal immunization with PspA and
pCA induced the production of PspA-specific antibody responses in the mucosal and systemic
compartments. Furthermore, the protective effects were tested in a murine model of S. pneumoniae
infection. Intranasal vaccination conferred antigen-dependent protective immunity against a lethal
infection of S. pneumoniae. In conclusion, pCA is useful as a serotype-independent universal nasal
pneumococcal vaccine formulation.

Keywords: polyphenol; mucosal vaccine; mucosal adjuvant; PspA; Streptococcus pneumoniae

1. Introduction

Although there have been substantial advances in modern medicine, infectious dis-
eases are the second leading cause of death worldwide [1]. Hence, there is an urgent need
to develop novel drugs or strategies for the prevention and treatment of infectious diseases.
For this purpose, vaccines are considered an important path to overcome infectious diseases
and are being actively researched. However, there are only about 20 infectious diseases
that can be prevented by a vaccine, termed vaccine-preventable diseases (VPD) [2].

Streptococcus pneumoniae is a highly pathogenic bacteria that causes pneumonia, menin-
gitis, and septicemia with high mortality rates, especially in children and elderly individu-
als. Moreover, the increase in the number of antibiotic-resistant S. pneumoniae strains has
made the treatment and management of pneumococcal infections more challenging [3].
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Although the 23-valent pneumococcal polysaccharide vaccine (PPSV-23) and the 13-valent
pneumococcal conjugate vaccine (PCV-13) are currently licensed and clinically applied as
vaccines [4], recent evidence indicates that the diseases caused by pneumococcal infections
are responsible for 3–5 million deaths annually [5].

The major drawbacks of existing pneumococcal vaccines are as follows. (1) The pro-
tective effects induced by administering these vaccines are serotype dependent. This is
because these vaccines use the capsular polysaccharide, located at the outermost layer
of S. pneumoniae, as the antigen, which varies among serotypes [6,7]. Additionally, in
recent years, there has been an increase in the prevalence of serologically non-typeable S.
pneumoniae (also known as non-encapsulated S. pneumoniae due to the lack of a capsule);
these vaccines are ineffective against such strains [8]. (2) Since existing pneumococcal
vaccines are administered systemically (e.g., intramuscular or subcutaneous injections),
antigen-specific immunoglobulin (Ig) G is induced in the blood, but not in the upper
respiratory tract (including the nasal mucosa), which is the site of infection and/or colo-
nization [9]. (3) Polysaccharide antigens inadequately exert long-lasting immune memory
responses [10]. Furthermore, children and elderly individuals, the major targets for pneu-
mococcal vaccines, inherently respond poorly to polysaccharide antigens because of the
lack of T cell memory [11]. To overcome these issues, the development of a vaccine system
based on an antigenic protein that is expressed in a broad range of S. pneumoniae strains
and is serotype independent is crucial. Moreover, developing a mucosal vaccine system
that effectively elicits an immune response in the upper respiratory tract is also important.

Pneumococcal surface protein A (PspA) is expressed on the cell surface of all S.
pneumoniae strains isolated to date. PspA is classified into three families and six clades
(family 1, clades 1 and 2; family 2, clades 3–5; family 3, clade 6) [12,13]. Although the
sequence varies between the S. pneumoniae strains, the PspA-specific immune response
is known to confer serotype-independent protection against pneumococcal infection [14].
Notably, the PspA protein derived from Rx1 (family 1, clade 2) induces potent cross-
reactivity against PspA family 1 and 2 [15,16]. Hence, the protein is a promising antigen
candidate for use in a universal pneumococcal vaccine system. Moreover, S. pneumoniae is
transmitted through the upper respiratory tract, including the nasal mucosa. Therefore,
such mucosal vaccine systems are ideal and act by inducing antigen-specific immune
responses in the target region. Although mucosal vaccines are crucial for the prevention
and treatment of various infectious diseases, very few are readily available in clinics.
Protein antigens have intrinsically poor immunogenicity when administered through the
mucosal route; thus, an appropriate adjuvant is required to induce mucosal antigen-specific
immune responses. Nevertheless, there is currently a need for the further development of
safe and effective mucosal adjuvants [17–20].

In our previous studies, we enzymatically synthesized polymerized polyphenols (such
as caffeic acid [CA]) from phenylpropanoids using horseradish peroxidase (HRP) [21–24].
We had reported that polymerized CA (pCA) acts as a mucosal adjuvant when
co-administered with antigenic proteins via the nasal route. This method resulted in
the induction of a higher titer of antigen-specific mucosal and systemic antibody responses
in mice. Since intranasal administration of pCA does not exert any toxicity in mice, pCA
maybe useful to the development of a safe mucosal vaccine system [25,26]. Further, the
sources of CA and HRP are coffee beans and horseradish, respectively, which are easily
available. Hence, we expect pCA to be useful as a highly safe mucosal adjuvant for nasal
pneumococcal vaccine systems. In this study, we have tested the protective effects of a
pCA-based nasal pneumococcal vaccine system using PspA as an antigenic protein against
pneumococcal infections.

2. Materials and Methods
2.1. Animals and Materials

Seven-week-old BALB/cCrSlc female mice were procured from Japan SLC (Shizuoka,
Japan) and kept under specific pathogen-free conditions. All experimental protocols



Pharmaceutics 2021, 13, 585 3 of 10

involving animals were pre-approved by the Tokyo University of Pharmacy and Life
Sciences Committee for Laboratory Animal Experiments (P17–26, P18–71, and P19–58), as
well as by the National Institutes of Biomedical Innovation, Health and Nutrition committee
(DS25–3R8). Bacterial infection studies on mice were performed under anesthesia with
isoflurane gas, and all efforts were strictly taken to minimize pain. Furthermore, 3-(3,4-
Dihydroxyphenyl)-2-propenoic acid (CA) was purchased from Tokyo Chemical Industry
Co., Ltd. (Tokyo, Japan), and HRP was obtained from Merck Millipore (Billerica, MA, USA).

2.2. Preparation of pCA

pCA was synthesized as previously reported [24]. CA was dissolved in 1 M NaOH
and neutralized by adding phosphate-buffered saline (PBS) at a final concentration of
20 mg/mL containing HRP (0.1 mg/mL). Thereafter, H2O2 (1.5 mol equivalent to CA) was
added to the reaction mixture with stirring at 25 ◦C for 3 h and boiled for 20 min to remove
HRP. The mixture was then centrifuged, and the supernatant was dialyzed (molecular
weight cutoff: 50,000 Da) against ultrapure water and then lyophilized to collect pCA.
The sample was then dissolved in endotoxin-free PBS (FUJIFILM Wako Pure Chemical
Corporation, Osaka, Japan) to prepare a stock solution (10 mg/mL) that was sterilized by
filtration through 0.22-µm filter membranes (Osaka Chemical Co., Ltd., Osaka, Japan). The
stock solution was stored at −20 ◦C until further use.

2.3. Preparation of PspA Expression Plasmid

To prepare the expression vector, the PspA gene fragment was amplified by poly-
merase chain reaction (PCR) from a pET16b-PspA template containing the pspa gene
from S. pneumoniae Rx1 (PspA family 1 and clade 2) using KOD One DNA polymerase
(Toyobo, Tokyo, Japan) [27,28]. The following primer pairs were used for amplification:
forward primer: 5′-ATCATATCGAAGGTAGGCATATGGAAGAATCTCCCGTA-3′; reverse
primer: 5′-TTTAAGCAGAGATTACCTATCTAGATTATTCTGGGGCTGGAGTTT-3′. After
treatment with DpnI (Toyobo) as a destroying plasmid template, the obtained PspA PCR
fragment was cloned into the expression vector pCold1 (Takara Bio Inc., Shiga, Japan),
linearized by NdeI (Takara Bio Inc.) in combination with XbaI (Takara Bio Inc.), using a
Seamless Ligation Cloning Extract cloning method [29,30]. After the SLiCE reaction, the
sample was immediately transformed into the Escherichia coli DH5α strain (BioDynamics
Laboratory Inc., Tokyo, Japan).

2.4. Purification of Recombinant PspA Protein

To produce the recombinant PspA protein (PspAp), the prepared expression plasmid,
named as a pCold1-PspA plasmid, was transformed into an E. coli BL21 (DE3) strain (Bio-
Dynamics Laboratory Inc.). The transformed cells were pre-cultured overnight in 5 mL of
LB medium containing ampicillin at 37 ◦C. Further, pre-cultured cells (2 mL) were inocu-
lated into 200 mL of LB medium containing ampicillin at 37 ◦C to reach an optical density
value of 0.4. The cultured E. coli cells were transferred onto ice for 30 min and then incu-
bated at 15 ◦C for 30 min. After incubation, 0.5 mM of isopropyl-D-thiogalactopyranoside
(IPTG; FUJIFILM Wako Pure Chemical Corporation) was added to the culture and left for
24 h to induce the expression of PspA. The cell pellets were re-suspended in a TALON
equilibration buffer (pH 7.0) containing 5% glycerol, 5 mM 2-mercaptoethanol (2-ME), and
an ethylenediaminetetraacetic acid-free protease inhibitor cocktail (Nacalai Tesque, Inc.,
Kyoto, Japan) and sonicated extensively on ice to disrupt the cells. After removing the
insoluble fraction by centrifugation, the obtained supernatant was subjected to a column
packed with TALON metal affinity resin (Takara Bio Inc.). The column was washed with
TALON equilibration buffer (pH 7.0) containing 5% glycerol and 5 mM 2-ME, followed
by another TALON equilibration buffer (pH 7.0) containing 5% glycerol, 5 mM 2-ME, and
10 mM imidazole to remove non-specific proteins bound to the resins. The bound recombi-
nant PspAp was eluted with the final TALON equilibration buffer (pH 7.0) containing 5%
glycerol, 5 mM 2-ME, and 150 mM imidazole. The eluted protein fractions were dialyzed
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against PBS using a dialysis membrane (molecular weight cutoff: 3500 Da). After dialysis,
endotoxin removal was performed using Pierce™ High Capacity Endotoxin Removal Spin
Columns (Thermo Fisher Scientific, Waltham, MA, USA) according to the manufacturer’s
instructions. The concentration of purified PspA protein was quantified using the BCA
Protein Assay Kit (FUJIFILM Wako Pure Chemical Corporation). The purity of PspAp
was assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, followed by
Coomassie brilliant blue staining (Figure S1). The purified PspA protein was stored at
−80 ◦C until further use.

2.5. Immunization and Sampling Schedule for the Assessment of PspA-Specific
Antibody Production

The mice were nasally immunized with PBS (vehicle), PspA alone (5 µg/mouse), pCA
alone (100 µg/mouse), or PspA (5 µg/mouse) with pCA (100 µg/mouse) at a volume of
13 µL once a week for 3 consecutive weeks. To assess systemic PspA-specific antibody
responses, the blood was collected and incubated at 25 ◦C for 30 min. Further, the obtained
samples were incubated for 1 h at 4 ◦C, and the serum sample was collected after cen-
trifugation at 1200× g for 30 min. The nasal wash (200 µL of cold D-PBS), vaginal wash
(100 µL of cold D-PBS), and bronchoalveolar lavage fluid (1000 µL of cold D-PBS) were
collected [16,31,32]. The samples were stored at −80 ◦C until use.

2.6. ELISA for Detection of PspA-Specific Antibody

A 96-well Sumilon ELISA H plate (Sumitomo Bakelite Co., Ltd., Tokyo, Japan) was
coated with 50 ng of PspA in 0.1 M carbonate buffer (pH 9.5) overnight at 4 ◦C. After
washing with PBS containing 0.05% Tween-20 (PBST), the wells were blocked with 1%
bovine serum albumin (FUJIFILM Wako Pure Chemical Corporation) in PBST (BPBST)
at 37 ◦C for 1 h. The plate was further washed and the samples was added to each
well and incubated overnight at 4 ◦C. After washing with PBST, the plates were treated
with peroxidase-conjugated anti-mouse IgA, IgG, IgG1, or IgG2a secondary antibodies
(4000-fold dilution) (Southern Biotech, Birmingham, AL, USA) in BPBST, and color was
developed using a tetramethylbenzidine substrate system (SeraCare Life Sciences, Inc.,
Milford, MA, USA). Color development was stopped by adding 1 N phosphoric acid,
followed by the measurement of absorbance at 450 nm with 650 nm as a reference using
a Synergy HTX Multi-Mode Microplate Reader (BioTek Instruments, Inc., Whiting, VT,
USA) [33]. The endpoint titers were measured as the reciprocal of the last dilution, reaching
a cut-off value set to twice the mean absorbance value of a negative control [34,35].

2.7. In vivo Pneumococcal Infection Study

The S. pneumoniae Xen10 strain (parental strain, A66.1 serotype 3), which expresses
family 1, clades 1 and 2 PspA [36], (Caliper Life Sciences, Hopkinton, MA, USA), was
cultured overnight in brain-heart infusion broth at 37 ◦C in a 5% CO2 atmosphere without
aeration. Thereafter, the cultured S. pneumoniae cells were collected and the cells were
washed twice and diluted with PBS. Based on immunization, the study involved four
groups of animals receiving (1) vehicle (PBS), (2) PspA alone (5 µg/mouse), (3) pCA alone
(100 µg/mouse), or (4) pCA (100 µg/mouse) in combination with PspA (5 µg/mouse) at
a volume of 13 µL once a week for three consecutive weeks. Seven days after the final
immunization, the mice were nasally challenged with 5.0× 106 colony-forming units (CFU)
of S. pneumoniae Xen10 strain. The survival of mice was monitored for two weeks [27,28].

2.8. Statistical Analysis

Statistical analyses were performed by using the Kruskal–Wallis with Dunn’s post hoc
test for antibody production or the Mantel–Cox test for survival assays, using GraphPad
Prism 8 software (GraphPad Software, San Diego, CA, USA). Statistical significance was
set at p < 0.05.
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3. Results
3.1. Nasal Immunization of a PspA Antigen with pCA Elicits PspA-Specific Antibody Responses
in the Mucosal and Systemic Compartments

In a previous study, we have reported that intranasal administration of pCA with
ovalbumin (OVA), as a model antigen, enhanced OVA-specific antibody production in
the mucosal and systemic compartments [25,26]. In this study, we aimed to develop a
nasal vaccine against pneumococcal infection using pCA. First, we examined whether the
combined intranasal administration of pCA and PspA, a well-known pneumococcal antigen
expressed in all pneumococcal strains, enhanced PspA-specific antibody production in
the mucosal and systemic compartments. As shown in Figure 1, intranasal immunization
with PspA and pCA markedly increased the production of PspA-specific antibodies in the
mucosa. The median endpoint antibody titers for nasal IgA, lung IgA, lung IgG, and vaginal
IgA were 551.2, 8.100, 456.4, and 162.2, respectively. In contrast, intranasal vaccination
with PBS or PspA alone did not result in PspA-specific IgA and IgG production in the
nasal, lung, and vaginal compartments under the same experimental conditions. Moreover,
intranasal immunization with PspA and pCA markedly increased the production of PspA-
specific antibodies in the serum (median endpoint titer = 537,387) compared to intranasal
immunization with PspA alone (median endpoint titer = 2288; Figure 2A).
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Figure 1. Induction of mucosal PspA-specific antibody responses in BALB/c female mice who nasally
received PspA and pCA. BALB/c female mice were nasally immunized with vehicle (PBS), PspA (5
µg/mouse), or PspA (5 µg/mouse) in combination with polymeric caffeic acid (pCA) (100 µg/mouse)
on days 0, 7, and 14. Seven days after the last immunization, the nasal wash, bronchoalveolar lavage
fluid, and vaginal wash were collected. The PspA-specific antibodies in the samples were evaluated
by enzyme-linked immunosorbent assay. Data are obtained from three independent experiments.
Vehicle, n = 9; PspA, n = 12; PspA plus pCA, n = 12. Significant differences were calculated using the
Kruskal–Wallis test with Dunn’s post hoc test. * p < 0.05, ** p < 0.01.
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Figure 2. Induction of PspA-specific (A) serum total IgG responses and (B) serum IgG subclasses in
BALB/c female mice that nasally received PspA and pCA. BALB/c female mice were nasally immu-
nized with vehicle (PBS), PspA (5 µg/mouse), or PspA (5 µg/mouse) in combination with polymeric
caffeic acid (pCA) (100 µg/mouse) on days 0, 7, and 14. Seven days after the last immunization,
serum samples were collected. The PspA-specific immunoglobulin G antibodies in the samples
were evaluated by enzyme-linked immunosorbent assay. Data are obtained from three independent
experiments. Vehicle, n = 9; PspA, n = 12; PspA plus pCA, n = 12. Significant differences were
calculated using the Kruskal–Wallis test with Dunn’s post hoc test. * p < 0.05, ** p < 0.01, *** p < 0.001.

Next, to evaluate the type of immune response induced by intranasal immunization
with PspA and pCA, we examined the production of PspA-specific IgG1 and IgG2a in
the serum since the murine IgG subclasses well reflect the helper T (Th) responses to anti-
gens [37]. Figure 2B shows that intranasal immunization with PspA and pCA significantly
enhanced the production of PspA-specific IgG1 compared to that of PspA-specific IgG2a,
suggesting that pCA exhibits a Th2-biased immune response. Taken together, these results
indicate that intranasal immunization with PspA and pCA strongly induces PspA-specific
mucosal and systemic antibody responses.

3.2. Nasal Vaccination with PspA and pCA Confers Protective Immunity against a Lethal Dose of
Pneumococcal Infection

Next, to determine whether intranasal immunization with PspA and pCA induces pro-
tective immune responses against S. pneumoniae infections, mice were nasally immunized
with PBS, PspA (5 µg/mouse) alone, pCA (100 µg/mouse) alone, or PspA (5 µg/mouse)
plus pCA (100 µg/mouse) once a week for 3 consecutive weeks. One week after the last
immunization, mice were nasally challenged with S. pneumoniae (5.0 × 106 CFUs/mouse),
and their survival rates were monitored for 14 days. The survival rate after pneumococcal
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infection was negligible in the group that received intranasal immunization with PBS
(<10%) or PspA alone (approximately 30%) (Figure 3). In contrast, >70% mice that were
intranasally immunized with PspA in combination with pCA survived under the same
experimental conditions (Figure 3). Notably, there was no improvement in the survival
rate of mice nasally immunized with pCA alone (Figure 3), implying that the improvement
in the survival rate of mice nasally vaccinated with PspA and pCA was mediated via
antigen-specific immune responses.

Pharmaceutics 2021, 13, x  8 of 11 
 

 

3.2. Nasal Vaccination with PspA and pCA Confers Protective Immunity against a Lethal Dose 
of Pneumococcal Infection 

Next, to determine whether intranasal immunization with PspA and pCA induces 
protective immune responses against S. pneumoniae infections, mice were nasally immun-
ized with PBS, PspA (5 μg/mouse) alone, pCA (100 μg/mouse) alone, or PspA (5 
μg/mouse) plus pCA (100 μg/mouse) once a week for 3 consecutive weeks. One week after 
the last immunization, mice were nasally challenged with S. pneumoniae (5.0 × 106 
CFUs/mouse), and their survival rates were monitored for 14 days. The survival rate after 
pneumococcal infection was negligible in the group that received intranasal immuniza-
tion with PBS (<10%) or PspA alone (approximately 30%) (Figure 3). In contrast, >70% 
mice that were intranasally immunized with PspA in combination with pCA survived 
under the same experimental conditions (Figure 3). Notably, there was no improvement 
in the survival rate of mice nasally immunized with pCA alone (Figure 3), implying that 
the improvement in the survival rate of mice nasally vaccinated with PspA and pCA was 
mediated via antigen-specific immune responses. 

 
Figure 3. Protective effect of intranasal vaccination with PspA and pCA on the survival rate of 
mice against pneumococcal infections. BALB/c female mice were nasally immunized with vehicle 
(PBS), PspA alone (5 μg/mouse), pCA alone (100 μg/mouse), or PspA (5 μg/mouse) in combination 
with pCA (100 μg/mouse) on days 0, 7, and 14. Seven days after the last immunization, BALB/c 
female mice were respiratory challenged with Streptococcus pneumoniae (5.0 × 106 colony forming 
units/mice). Survival was monitored for 14 days after challenge. Data were collected from two 
independent in vivo infection experiments. Vehicle, n = 16; PspA alone, n = 16; pCA alone, n = 16; 
PspA plus pCA, n = 16. Significant differences in the survival rate among the groups were as-
sessed using the Mantel–Cox test. The p-values are shown in the figure. 

4. Discussion 
Mucosal vaccines are one of the most promising tools for the prevention of infectious 

diseases. Vaccines inducing both mucosal and systemic immune responses are considered 
superior to existing parenteral vaccines as they can effectively prevent pathogens from 
entering the host during the early stages of infection. This can be achieved by using mu-
cosal vaccine systems. However, it is essential to develop safe mucosal adjuvants to effec-
tively elicit antigen-specific immune responses in the mucosa. In this study, we showed 
that intranasally administered mucosal vaccine systems, using enzymatic polyphenols in 
combination with PspA, can elicit antigen-specific immune responses in the mucosal and 
systemic compartments. Further, the mucosal vaccine system was found to have protec-
tive effects in a mouse model of pneumococcal infections. These results indicate that the 
novel intranasal pneumococcal vaccine developed in this study is promising for control-
ling pneumococcal infections. 

In this study, we have demonstrated that intranasal immunization with pCA and 
PspA induces mucosal and systemic PspA antigen-specific antibody responses (Figures 1 
and 2). Additionally, pCA preferentially elicited a Th2 response as antigen-specific IgG1 

Figure 3. Protective effect of intranasal vaccination with PspA and pCA on the survival rate of mice against pneumococcal
infections. BALB/c female mice were nasally immunized with vehicle (PBS), PspA alone (5 µg/mouse), pCA alone
(100 µg/mouse), or PspA (5 µg/mouse) in combination with pCA (100 µg/mouse) on days 0, 7, and 14. Seven days after
the last immunization, BALB/c female mice were respiratory challenged with Streptococcus pneumoniae (5.0 × 106 colony
forming units/mice). Survival was monitored for 14 days after challenge. Data were collected from two independent in vivo
infection experiments. Vehicle, n = 16; PspA alone, n = 16; pCA alone, n = 16; PspA plus pCA, n = 16. Significant differences
in the survival rate among the groups were assessed using the Mantel–Cox test. The p-values are shown in the figure.

4. Discussion

Mucosal vaccines are one of the most promising tools for the prevention of infectious
diseases. Vaccines inducing both mucosal and systemic immune responses are considered
superior to existing parenteral vaccines as they can effectively prevent pathogens from
entering the host during the early stages of infection. This can be achieved by using
mucosal vaccine systems. However, it is essential to develop safe mucosal adjuvants to
effectively elicit antigen-specific immune responses in the mucosa. In this study, we showed
that intranasally administered mucosal vaccine systems, using enzymatic polyphenols
in combination with PspA, can elicit antigen-specific immune responses in the mucosal
and systemic compartments. Further, the mucosal vaccine system was found to have
protective effects in a mouse model of pneumococcal infections. These results indicate
that the novel intranasal pneumococcal vaccine developed in this study is promising for
controlling pneumococcal infections.

In this study, we have demonstrated that intranasal immunization with pCA and PspA
induces mucosal and systemic PspA antigen-specific antibody responses (Figures 1 and 2).
Additionally, pCA preferentially elicited a Th2 response as antigen-specific IgG1 production
was higher than antigen-specific IgG2a production (Figure 2). A limitation of this study,
however, is that we did not evaluate the in vitro production of antigen-specific cytokines
from leukocytes, derived from mice intranasally immunized with PspA and pCA, to further
investigate the type of immune response elicited by pCA.

Given that this method of immunization could produce PspA-specific antibody re-
sponses, we investigated the protective effect of this mucosal vaccine system against
pneumococcal infection using in vivo infection experiments. We found that it induced a
protective immune response against pneumococcal infection in mice (Figure 3).

Although the detailed mechanism of induction of protective immune response against
pneumococcal infection is not fully understood in this study, the fact that intranasal admin-
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istration of pCA alone did not induce a protective immune response against pneumococcal
infection suggests that at least an antigen-specific immune response is responsible for the
protective effect against infection. In previous studies, the PspA-specific IgA response was
considered to prevent the initial stages of S. pneumoniae colony formation and invasion [38].
Moreover, the PspA-specific serum IgG response is responsible for the elimination of invad-
ing S. pneumoniae from the host [16]. For instance, PspA can immobilize the complement
component C3 [39], a humoral arm of innate immunity, to inhibit its deposition, thereby
eliminating S. pneumoniae from the blood [40]. Therefore, it is likely that PspA-specific
serum IgG promotes bacterial elimination from the host.

We could not elucidate the mechanism(s) of mucosal adjuvant effects of pCA using
enzymatically synthesized polyphenols as a nasal vaccine system. However, recent studies
have indicated that polyphenols can form complexes with peptides and proteins. These
complexes are formed by hydrophobic or hydrophilic interactions of polyphenols with
proline, phenylalanine, and arginine in the peptides and proteins [41,42]. Hence, we
are currently investigating the possibility that polyphenols form nanocomplexes with
antigen proteins and function as carriers of antigen delivery, thus eliciting antigen-specific
immune responses.

5. Conclusions

In conclusion, we developed a novel nasal pneumococcal vaccine system using en-
zymatically polymerized caffeic acid as a mucosal adjuvant. Our results confirm that
enzymatically pCA is a promising safe and effective mucosal adjuvant candidate for
vaccination systems to combat airway infections.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/pharmaceutics13040585/s1, Figure S1: Preparation of recombinant PspA protein.
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