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Background and Objective: Pancreatic ductal adenocarcinoma (PDAC) is 3rd most lethal cancer in the 
USA leading to a median survival of six months and less than 5% 5-year overall survival (OS). As the only 
potentially curative treatment, surgical resection is not suitable for up to 90% of the patients with PDAC 
due to late diagnosis. Highly fibrotic PDAC with an immunosuppressive tumor microenvironment restricts 
cytotoxic T lymphocyte (CTL) infiltration and functions causing limited success with systemic therapies like 
dendritic cell (DC)-based immunotherapy. In this study, we investigated the potential benefits of irreversible 
electroporation (IRE) ablation therapy in combination with DC vaccine therapy against PDAC.
Methods: We performed a literature search to identify studies focused on DC vaccine therapy and IRE 
ablation to boost therapeutic response against PDAC indexed in PubMed, Web of Science, and Scopus until 
February 20th, 2023.
Key Content and Findings: IRE ablation destructs tumor structure while preserving extracellular matrix 
and blood vessels facilitating local inflammation. The studies demonstrated IRE ablation reduces tumor 
fibrosis and promotes CTL tumor infiltration to PDAC tumors in addition to boosting immune response 
in rodent models. The administration of the DC vaccine following IRE ablation synergistically enhances 
therapeutic response and extends OS rates compared to the use of DC vaccination or IRE alone. Moreover, 
the implementation of data-driven approaches further allows dynamic and longitudinal monitoring of 
therapeutic response and OS following IRE plus DC vaccine immunoablation. 
Conclusions: The combination of IRE ablation and DC vaccine immunotherapy is a potent strategy to 
enhance the therapeutic outcomes in patients with PDAC. 
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Introduction

Despite the advancement of immunotherapy during the last 
decade, pancreatic ductal adenocarcinoma (PDAC) was not 
able to reflect similar benefits observed in several cancers. 
The recent preclinical studies suggested that dendritic 
cell (DC)-based immunotherapy may inhibit growth and 
improve survival (1-4); however, immunosuppressive 
tumor microenvironment (TME) remains a challenge for 
researchers (5-12). 

Thermal ablation techniques were utilized to sensitize 
the tumors to chemotherapeutic or immunotherapeutic 
agents by destructing TME and facilitating systemic 
immune response in solid cancers (13). However, these 
ablation therapies demonstrated limited success and led 
to high morbidity in PDAC patients (14,15). In contrast, 
irreversible electroporation (IRE) ablation, facilitating 
lethal nanopores via delivery of strong shorth electrical 
pulses, destroys TME and promotes an antitumor immune 
response leading to promising therapeutic responses (16). 
Based on the distance from the origin, the underlying 
structures of the tissues underwent either temporary or 
permanent ablation reflecting the therapeutic efficacy which 
is clinically challenging (17). While ultrasound (US) and 
computed tomography (CT) imaging techniques are utilized 
to monitor dynamic changes following IRE ablation (18,19), 
magnetic resonance imaging (MRI) provides superior 
efficacy associated with soft-tissue contrast. Previous studies 
suggested that MRI can detect rapid tumor changes in TME 
following IRE ablation therapy (20,21). Traditional imaging 
techniques lack precision in identifying TME changes; 
however, data-driven artificial intelligence (AI) strategies 
enhance the detection of imaging biomarkers from MRI data 
in which these quantitative imaging biomarkers correlate 
with therapeutic response indicators (19,22). Recent studies 
emphasized the potential benefit of AI-derived quantitative 
models for the differentiation of IRE ablation regions 
allowing immediate assessment (22,23). 

In this review, we focused on the combination of IRE 
ablation with DC vaccine immunotherapy as a potent 
therapeutic strategy for PDAC and the role of AI-driven 
MRI biomarkers in the early assessment of the combination 
therapy. We present this article in accordance with the 
Narrative Review reporting checklist (available at https://
atm.amegroups.com/article/view/10.21037/atm-23-1882/rc).

Methods

We performed a literature search on PubMed and Web of 

Science databases to identify papers related to DC vaccine 
therapy and IRE ablation as therapeutic strategies against 
PDAC, published up to February 20, 2023. Our search 
terms were “pancreatic ductal adenocarcinoma”, “PDAC”, 
“immunotherapy”, “IRE”, “irreversible electroporation”, 
“DC vaccine”, “dendritic cell”, “radiomics”, “machine 
learning”, “artificial intelligence”, and “AI” (Table 1). 

DC vaccination combined with IRE ablation

Treatment for advanced PDAC

Despite advanced treatments, the prognosis of PDAC 
remains grim with a 5-year survival rate under 10% (24). 
Nearly 80% of cases are inoperable at diagnosis, resulting 
in 5-year OS rates below 5% (25). Standard treatments 
like chemotherapy and radiotherapy offer limited success, 
with median survival under 10 months for unresectable 
PDAC (26-28). Although immunotherapy holds potential, 
immunosuppressive nature of PDAC TME hinders its 
efficacy (29). DCs, which can trigger specific immune 
responses, have been tested for PDAC (30). However, 
immunosuppressive TME restricts effective immune 
response. There’s a pressing need for innovative strategies 
to enhance treatments like DC vaccination for PDAC.

Clinical challenge in assessing treatment response to cancer 
immunotherapy

Evaluating the response to cancer immunotherapy using 
imaging poses a significant challenge. Conventional 
imaging biomarkers of treatment response, which are based 
on changes in tumor size (31,32), such as immune-RECIST 
(iRECIST), immune-modified RECIST (imRECIST), and 
immune-related response criteria (irRC), often fall short 
in accurately detecting novel patterns of immunotherapy 
responses (33-35). These existing methods don’t account 
for tumor heterogeneity; are susceptible to inaccurate 
assessments due to pseudoprogression and mixed immune-
related response patterns; and are limited in assessing early 
responses or forecasting overall survival (OS).

IRE mitigates immune suppression and boosts 
immunotherapy against PDAC

A non-thermal method, IRE ablation, uses electric pulses to 
cause tumor cell death and reduce fibrosis in PDAC models 
and patients (36-39). It has been found to instigate a robust 
antitumor response by altering the TME and activating 

77

https://atm.amegroups.com/article/view/10.21037/atm-23-1882/rc
https://atm.amegroups.com/article/view/10.21037/atm-23-1882/rc


Annals of Translational Medicine, Vol 12, No 4 August 2024 Page 3 of 13

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2024;12(4):77 | https://dx.doi.org/10.21037/atm-23-1882

immune cells and has the potential to trigger apoptosis 
in the initial phases and reduce the presence of immune-
suppressive cells (36-39). This impact of IRE might enhance 
the efficacy of immunotherapy by transitioning from 
an inherently immunosuppressive microenvironment 
to one with proinflammatory and anti-tumorigenic 
propert ies  (40) .  In terms of cancer hallmarks, the 
treatment primarily influences cellular injury and 
regeneration. Prior to undergoing IRE treatment, patient-
derived xenograft (PDX) tumors exhibited heightened 
cellular injury signaling, which subsequently decreased 
following the therapy. Moreover, there was an observed 
increase in regenerative processes and repaired signaling, 
particularly with higher dosages of IRE (41). Current 
research shows that IRE increases immune cells like NK1.1, 
CD8+ T cells, and CD11c+ DCs in PDAC mouse models, 
promoting broader immune responses (42-44). This 
technique also enhances tumor tissue permeability, aiding in 
the influx of immune cells for treatment. The immune boost 
from IRE might counter the immunosuppressive TME of 
PDAC, enhancing DC-vaccine therapy. Still, integrating 
IRE with DC vaccination for PDAC needs more research.

Clinical challenge for assessing changes in TME during 
IRE ablation

IRE, a predominantly non-thermal method, offers 
advantages over traditional thermal ablations like 
radiofrequency and cryoablation (45,46). It utilizes 
targeted electric pulses for electroporation to cause cell 
death by permanently disrupting cell membranes (45,46). 
Electroporation involves applying a brief electric field to 
the cell membrane, leading to the formation of nanoscale 

pores, which in turn enhances membrane permeability (47).  
Normally, these pores close shortly after the electric 
field is applied, a reversible electroporation (RE) process 
extensively employed to aid in gene transfer (8-10,48-50) 
and drug delivery (51,52). Nevertheless, if the electric field 
strength across the cell membrane is significantly high, 
the pores fail to reseal, disrupting cellular homeostasis 
and ultimately causing cell demise. There are challenges 
in using imaging to assess tumor responses post-IRE: 
Conventional imaging methods, such as US, CT, positron 
emission tomography (PET), and MRI, display changes 
due to electroporation, not specific TME changes from 
IRE. While these changes might hint at IRE responses in 
regular tissues, they’re not consistently seen in tumors (53). 
Previous imaging was practical for thermal ablation but 
might not be suited for detecting early non-thermal IRE 
effects. The core clinical hurdle with IRE is pinpointing 
TME changes and determining fully treated areas (IRE 
zone) from partially treated ones (RE zone). Such insights 
are vital for assessing treatment effectiveness and preserving 
healthy pancreatic tissue.

Identification of novel AI-derived imaging biomarkers for 
TME changes in response to IRE-immunotherapy

AI-derived new biomarkers from conventional MRI 
data can be used for tracking responses to cancer 
immunotherapy and IRE ablation. AI methods often excel 
over human efforts in cancer imaging, particularly in 
image segmentation and tracking tumor progress (54,55). 
Using radiomics and statistical methods, AI can derive 
detailed imaging features or biomarkers from radiological 
data (54,55). The goal is to correlate these AI-derived 

Table 1 Summary of the search strategy

Items Specification

Date of search February 20th, 2023

Databases and other sources searched PubMed and Web of Science

Search terms used “Pancreatic ductal adenocarcinoma”, “Pancreatic Cancer”, “PDAC”, “immunotherapy”, 
“IRE”, “Irreversible Electroporation”, “DC vaccine”, “dendritic cell”, “radiomics”, “machine 
learning”, “artificial intelligence”, “AI”

Timeframe From 1972 until February 20th, 2023

Inclusion and exclusion criteria No restrictions on study type or language

Selection process Search conducted by Zigeng Zhang and Guangbo Yu, with consensus by all authors

PDAC, pancreatic ductal adenocarcinoma; IRE, irreversible electroporation; DC, dendritic cell, AI, artificial intelligence.
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biomarkers from MRI with histological tumor markers and 
treatment results. Therefore, these AI markers will be able 
to accurately link imaging features to histological findings, 
providing insights into prognosis and treatment responses 
to IRE ablation, DC vaccination, or their combination in 
the future. Furthermore, AI can standardize evaluations 
across multiple institutions, reducing the potential 
variability introduced by subjective interpretations of 
clinicians (56,57). Consequently, the integration of AI into 
cancer immunotherapy has the potential to yield favorable 
results for patients.

Combined therapy of local IRE with DC immunotherapy

Surgery is the primary treatment for PDAC (5-12). 
Traditional thermal ablation methods for the pancreas are 
discouraged due to high risks and complications (58-63). 
In contrast, non-thermal IRE ablation effectively causes 
tumor cell death, reduces fibrosis, and releases tumor 
neoantigens, facilitating the migration of immune cells 
to the tumor (29,64,65). IRE demonstrated the ability to 

rapidly increase specific immune cells in blood samples 
from PDAC mice (Figure 1). Numerous studies confirm 
the potent local and systemic antitumor response from IRE 
(22,29,40,43,44,65,66). This response involves disrupting 
the tumor environment, induction of tumor cell apoptosis, 
and activation of immune cells (29,64,65). A recent study 
suggests IRE boosts the efficiency of DC vaccination in 
PDAC (22). Additionally, it has been demonstrated that IRE 
reduces PDAC fibrosis, aiding immune cells in accessing 
and infiltrating the tumor (30,43,44). Given these insights, 
taken together, IRE can combat the immunosuppressive 
environment of PDAC. Researchers should focus on 
optimizing a combined IRE-DC vaccination strategy to 
enhance PDAC treatment outcomes. 

Translational potential of intraperitoneal delivery of DC 
vaccination

DC-vaccine delivery lacks a standardized method in 
research. Subcutaneous (s.c.) administration, commonly 
used in studies, allows only a limited amount of DC 

Figure 1 Flow cytometry analyses depicting the temporal dynamics of immune cell subsets in peripheral blood samples from a murine 
model of PDAC following irreversible electroporation. The upper row illustrates the flow cytometry analysis gating strategy for CD8+ 
CTLs, CD11c+ DCs, NK1.1+ NK cells, and F4/80+ monocytes (from left to right). The lower row presents quantitative measurements (%) 
of CD8+ CTLs, CD11c+ DCs, NK1.1+ NK cells, and F4/80+ monocytes. The experimental results highlight the optimal administration 
time for T cells at 4 hours post-IRE, while NK cells demonstrate peak activation at the 24-hour mark. Additionally, DCs exhibit maximal 
responsiveness at 12 hours, and macrophages at 24 hours post-treatment. SSC-A, side scatter-area; FSC-A, forward scatter-area; FSC-H, 
forward scatter-height; SSC-W, side scatter-width; PDAC, pancreatic ductal adenocarcinoma; CTLs, cytotoxic T lymphocytes; NK, natural 
killer; CD, cluster of differentiation; IRE, irreversible electroporation; DCs, dendritic cells.
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vaccines to reach lymph nodes (LNs) (67,68). Intratumoral 
injections expose vaccines to immunosuppressive tumor-
released cytokines, diminishing their effect (69). Intranodal 
injections deliver DC vaccines directly to LNs but damage 
their structure, impacting DC-T cell interactions and 
reducing cytotoxic T lymphocyte (CTL) generation (70,71). 
However, intraperitoneal (i.p.) administration permits a 
larger dosage, directing DC vaccines to peritoneal LNs 
without harming LN integrity, and boosting the antitumor 
response (70,71). Studies have proven that the i.p. method 
surpassed the s.c. and i.t. approaches in therapeutic 
outcomes (72-74). Given these findings, establishing a 
single dose i.p. DC vaccine strategy combined with IRE 
ablation for PDAC for quicker clinical application should 
be the focus of today’s research.

Innovative AI-derived imaging biomarkers from 
conventional MRI data present new possibilities for 
understanding tumor pathophysiology and monitoring 
treatment response

A large volume of clinical imaging data is collected daily, 
but only a small fraction of this information is utilized 
to confirm or exclude medical conditions (75). Most 
information in clinical images remains unquantified due 
to the lack of reliable and efficient analysis methods (54).  
AI provides an effective means to automate image 
interpretation, transforming the clinical workflow of 
radiographic detection (76). Recent progress in radiomics 
and AI algorithms enables AI to identify complex patterns 
within imaging data, providing quantitative evaluations 
of radiographic features with minimal additional cost and 
high speed (54,76,77). The heterogeneity and changes in 
the TME that occur in response to IRE ablation or cancer 
immunotherapy will be detected using our AI-derived 
MRI biomarkers, which represent unique microstructural 
properties of tissues shortly after treatment (78,79). 
Researchers should employ AI-derived MRI biomarkers to 
evaluate TME in preclinical tumor models and validate the 
findings using histopathological data.

AI-enhanced MRI biomarkers: monitoring and optimizing 
PDAC treatment responses through IRE and DC 
vaccination

Recent advancements underscore the profound potential of 
utilizing AI-driven MRI biomarkers to monitor and assess 
treatment responses in PDAC. In the study conducted 

by Figini et al., rabbits with VX2 liver tumors underwent 
immediate MRI post-IRE ablation, which displayed regions 
of IRE and RE on TRIP-MRI (43). Classification models 
were developed and evaluated for their effectiveness, 
with RF classifiers achieving notable accuracies of up 
to 97% (Figure 2) (80). In another study using the KPC 
mouse model for PDAC, machine learning (ML) models, 
leveraging MRI data, predicted OS with remarkable 
precision (81). A synergistic approach, combining IRE 
ablation and DC vaccination in the KPC tumor-bearing 
mouse model, further demonstrated extended median 
survival, thereby illuminating a promising avenue for 
PDAC treatment that merits in-depth exploration in clinical 
scenarios (Figure 3) (22).

AI-derived MRI biomarkers, confirmed by gold-standard 
histological results, have not yet been employed to monitor 
responses to IRE ablation, immunotherapy, and IRE-
immunotherapy

Locoregional-immunotherapy combinations are vital for 
treating cancers like PDAC (82,83). While animal and 
clinical studies show IRE ablation’s immunological effects, 
DC-based immunotherapy’s long-term outcomes for 
advanced PDAC differ. Boosting DC vaccination’s efficacy 
requires broadening immune response to counter tumor 
immunosuppression (53,84). IRE ablation, superior to 
other thermal techniques, can trigger antitumor immunity 
by altering the TME in PDAC mice, enhancing DC 
vaccination effectiveness (85). Further research is needed 
on the best combination of IRE immunotherapy. In the 
realm of research, scientists are delving into the potential 
of AI to develop new imaging biomarkers from mp-MRI 
data, hoping these will match histological tumor markers. 
There’s a growing consensus that these AI-powered MRI 
biomarkers could offer a deeper understanding of the TME, 
enhancing prognostic precision and predicting treatment 
responses. A pivotal step in this endeavor involves validating 
these AI-enhanced MRI markers against the gold-standard 
histological benchmarks, laying the groundwork for their 
prospective clinical applications.

IRE ablation destroys TME and triggers immune responses 

Researchers have created pancreatic and liver tumor models 
to evaluate the effects of IRE, immunotherapy, and their 
combination. Preliminary findings indicate that IRE causes 
early changes in the TME, like cellular permeabilization, 
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Figure 2 Imaging characteristics in IRE ablation regions with T1w and T2w images. RE and IRE zones on T1w (A) and T2w (B) MRI. 
ROC curves (C-F) visualize the classifier performance of differentiation of IRE ablation regions (B) and voxel-wise tissue segmentation 
in the ablated area. Reused with permission from Eresen et al. (80), Acad Radiol 2022;29:1378-86. Copyright ©Elsevier. IRE, irreversible 
electroporation; TR, training set; VL, validation set; TE, test set; RE, reversible electroporation; T1w, T1 weighted; T2w, T2 weighted; 
MRI, magnetic resonance imaging; ROC curves, receiver operating characteristic curve. 
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apoptosis, and reduction of tumor fibrosis in mouse PDAC 
models (43). Moreover, real-time imaging can fine-tune 
IRE procedures (44,86). Notably, IRE increases NK and 
CD8+ CTL accumulation in PDAC mouse tumors, hinting 
at enhanced antitumor immunity. IRE also results in more 
pronounced macrophage, NK, and CD8+ CTL infiltration 
compared to cryoablation in these models (30). Additionally, 
MRI’s potential for tracking early IRE responses non-
invasively has been explored.

DC-based immunotherapy for PDAC

DCs have emerged as  powerful  agents  in  cancer 
immunotherapy. In the 1990s, DCs pulsed with protein 
antigens were shown to stimulate antigen-responsive T-cell 
proliferation in mice (87). Despite their ease of manufacture, 
peptides or proteins for DC pulsing are limited to tumors 
with identified tumor-associated antigens (TAAs). Recent 
advancements have seen DCs pulsed with DNA constructs, 
such as one where a recombinant adeno-associated virus 
carrying the AFP gene was used to induce a CTL response 

against HCC, showcasing the potential of combining 
multiple TAAs for enhanced efficacy (88). DCs pulsed 
with tumor lysates offer the promise of prolonged antigen 
presentation and the potential to initiate broad T-cell 
responses due to their encompassing multiple epitopes. 
Especially noteworthy is the development of a therapeutic 
cancer vaccine using tumor cell-derived autophagosomes, 
which has shown promise in mouse models (89). Another 
intriguing method involves the fusion of DCs and tumor cells, 
which presents a comprehensive array of TAAs, activating both 
CD4+ and CD8+ T cells (90). Though potent, its application 
has been hindered by challenges like low fusion efficiency 
and limited availability of viable autologous tumor cells.

In the continually advancing field of DC-based 
immunotherapy for PDAC in mouse models, several 
milestones stand out. Previous studies revealed the 
feasibility, safety, and immunogenicity of the allogeneic 
tumor lysate-based DC therapy, MesoPher, in patients 
with surgically resected PDAC who are free of local 
disease recurrence (91,92). Additionally, prophylactic 
DC vaccination through i.p. injection has been shown to 
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effectively inhibit PDAC tumor growth and extend OS 
in PDAC mouse models (93). Furthermore, a recent pilot 
study revealed that i.p. injection of DC-vaccines results in 
better therapeutic outcomes in a genetically engineered 
mouse model of PDAC compared to i.t. and s.c. routes (72).  
More recently, it has been observed that IRE ablation 
augments the effectiveness of DC vaccination in mouse 
models of pancreatic cancer (22).

AI-derived tumor MRI biomarkers for evaluating 
treatment responses 

In recent years, ML leveraging radiomic features has 

demonstrated robust efficacy in medical image analysis. 
Radiomics employs advanced pattern recognition techniques 
to extract a plethora of quantitative features from digital 
images. This extraction elucidates relationships between 
these features and the underlying pathophysiology, thereby 
enhancing diagnostic, prognostic, and predictive precision.

The advancements in AI have painted a promising 
landscape for PDAC treatment. Notably demonstrating 
the potential of AI-derived MRI texture features to predict 
histopathological tumor markers and long-term outcomes 
in a mouse model of PDAC (2), developing and validating 
an MRI radiomics-based ML classifier for quantitatively 
evaluating the tumor-stroma ratio (TSR) in patients with 

Figure 3 Intratumor immune responses of the IRE and DC vaccination combination. The images reveal the use of rat monoclonal anti-
mouse CD8 antibody for CD8 staining (A) and rabbit anti-GrB antibody for GrB staining (B) after different treatments, with an image 
magnification of 200×. Relative quantification of CD8+ (C) and GrB+ (D) cells in KPC tumors for each group. *, P=0.001; **, P=0.007. 
Reused with permission from Yang et al. (22), Oncoimmunology 2021;10:1875638. Copyright ©Taylor & Francis. CD, cluster of 
differentiation; DC, dendritic cell; GrB, granzyme B; IRE, irreversible electroporation; KPC, KrasG12D/+, Trp53R172H/+, P48-Cre.
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PDAC (94), using ML model with radiomics features 
computed from diffusion weighted imaging (DWI) MRI data 
to predict OS in PDAC in clinical studies (95), and showing 
that AI-derived MRI imaging biomarkers accurately predict 
gene expression profiles and LN metastasis in patients 
with PDAC (96,97). Supporting the proposed research, 
preclinical studies have showcased strong correlations 
between AI-derived MRI and histological tumor biomarkers 
measured after immunotherapy. These AI biomarkers have 
been particularly insightful in distinguishing between IRE 
and RE zones post-IRE ablation. Emerging strategies focus 
on the longitudinal monitoring of IRE-DC vaccination to 
maximize the therapeutic response.

Future directions

Analysis of the multiparametric MRI texture using 
comprehensive feature models enables the computation 
of distinct characteristics of the tissues in which advanced 
statistical learning techniques are capable of distinguishing 
IRE ablation zones in alignment with histological tumor 
markers. Specifically, integrating traditional MRI with 
statistical analysis strategies may produce MRI indicators 
that discriminate between tumor RE and IRE zones post-
IRE ablation of solid tumor models (80,98-101). These 
expert models heavily analyze the underlying characteristics 
of the TME following IRE ablation captured with multi-
parametric MRI and associated with biological changes 
measured with histopathological analysis. 

After IRE ablation, the cellular structures in the origin 
of the ablated region became nerotic due to delivered 
high-voltage pulses however, the cells in the perimeter 
of this region underwent recovery. The inner ablated 
region is anticipated to have higher apoptosis and lower 
fibrosis levels compared to the RE region which leads 
to characteristic changes that can be evaluated using 
different MRI sequences. Previous studies focused on the 
interpretation of conventional MRI data in the detection 
of these changes and suggested using more complex 
imaging techniques leading to repeatability issues (21,102). 
In a recent study, Eresen et al. (80) demonstrated that 
quantitative MRI biomarkers are capable of characterizing 
the IRE and RE ablation regions and differentiating them 
with high accuracy. However, further larger studies should 
be performed to validate the findings before translation to 
clinical trials. 

Conclusions

DC vaccination, recognized for its feasibility, safety, and 
efficacy in PDAC treatment, has witnessed significant 
advancements with DC vaccines undergoing continuous 
optimization. However, the favorable outcomes observed 
in preclinical studies, notably improved OS, have not been 
consistently mirrored in clinical settings. IRE, a novel 
non-thermal ablation approach for tumors, offers in situ 
tumor vaccination by releasing critical damage-associated 
molecular patterns from ablated, non-extracted tumor 
tissues. As more studies explore IRE and as its technology 
advances, the combination of IRE with immunotherapy 
emerges as a compelling approach, particularly for patients 
with unresectable tumors. This evolving landscape 
highlights the imperative for interdisciplinary collaboration. 
The integration and advancement of AI-assisted systems, 
which can precisely discern the target population for 
immunotherapy, forecast efficacy, and improve prognostic 
accuracy, become paramount. Such synergistic endeavors 
not only optimize treatment outcomes but also solidify trust 
among both medical professionals and patients.
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