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Abstract: The dysregulation of gene expression is a critical event involved in all steps of tumorigenesis.
Aberrant histone and non-histone acetylation modifications of gene expression due to the abnormal
activation of histone deacetylases (HDAC) have been reported in hematologic and solid types of
cancer. In this sense, the cancer-associated epigenetic alterations are promising targets for anticancer
therapy and chemoprevention. HDAC inhibitors (HDACi) induce histone hyperacetylation within
target proteins, altering cell cycle and proliferation, cell differentiation, and the regulation of cell
death programs. Over the last three decades, an increasing number of synthetic and naturally derived
compounds, such as dietary-derived products, have been demonstrated to act as HDACi and have
provided biological and molecular insights with regard to the role of HDAC in cancer. The first part
of this review is focused on the biological roles of the Zinc-dependent HDAC family in malignant
diseases. Accordingly, the small-molecules and natural products such as HDACi are described in
terms of cancer therapy and chemoprevention. Furthermore, structural considerations are included
to improve the HDACi selectivity and combinatory potential with other specific targeting agents in
bifunctional inhibitors and proteolysis targeting chimeras. Additionally, clinical trials that combine
HDACi with current therapies are discussed, which may open new avenues in terms of the feasibility
of HDACi’s future clinical applications in precision cancer therapies.

Keywords: histone deacetylases; cancer; epigenetic; chemoprevention; HDAC inhibitors; dietary-derived
inhibitors; bifunctional inhibitors; PROTAC; clinical trials

1. Introduction

Numerous epigenetic alterations are recognized as hallmarks of cancer biology [1].
Changes in methylation, such as global hypomethylation and CpG island hypermethylation,
along with acetylation, including hypoacetylation of histones H3 and H4 [2–5], have been
identified in the early stages of carcinogenesis.

Specifically, histone proteins are core packaged with the eukaryotic DNA in a chro-
matin unit called the nucleosome. Nucleosomes comprise 146 base pairs of DNA wrapped
by a histone octamer containing two H2A, H2B, H3, and H4 histones [6]. Chromatin can be
in a condensed state related to transcriptional gene repression, while the decondensation of
chromatin or open configuration permits the access of regulatory transcription factors to
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DNA and the control of RNA synthesis [7,8]. The regulation of chromatin configurations in
its different active states is controlled through posttranslational modifications (PTMs) that
primarily target amino acids within the N-terminal tail of the core histone proteins. PTMs
encompass a wide range of chemical reactions, including ubiquitination, SUMOylation,
GlcNAcylation, phosphorylation, methylation, and acetylation [9,10].

Histone acetylation status is controlled by reversible chromatin modifiers, such as
histone deacetylases (HDACs), also called erasers, that remove an acetyl group (COCH3)
on ε-amino groups of lysine residues in N-terminal regions. The deacetylation of histones
results in chromatin condensation, or “heterochromatin”, leading to gene silencing. His-
tone hypoacetylation alters the net electrostatic charge on the histones and facilitates the
interaction with the negative charge of DNA phosphate, which maintains chromatin in a
condensed structure [11,12]. Contrary to the deacetylating reaction, the accumulation of
acetyl-lysine residues on histones is mediated via histone acetyltransferases (HATs), also
called writers. As the positive charge of acetylated histones neutralizes the interaction
with the negatively charged DNA, a chromatin decondensation occurs towards a “euchro-
matin” configuration, which allows the accessibility to transcription factors and active gene
transcription (Figure 1) [7,13].
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Figure 1. Overview of acetylation/deacetylation of histone lysine residues. The acetylation of lysine
(Lys) residues catalyzed by histone acetyltransferases (HATs) induces decondensed chromatin and
transcriptionally active DNA. In contrast, the histone deacetylases (HDACs) remove acetyl (Ac)
residues and provoke condensed chromatin and repression of DNA transcription.

Although cancer implicates multistep processes with a series of transformations re-
lated to oncogenes’ activation and tumor suppressors’ inhibition, it is currently known that
epigenetic dysregulation highly influences cancer initiation and progression and tumor
plasticity and heterogeneity [14–16]. Alterations in the epigenetic control of the chromatin
status and histones during cellular transformation largely influence cellular homeostatic
control and cancer cell proliferation; these modifications result from the several DNA muta-
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genic events occurring during tumor progression [17,18]. Among epigenetic dysregulation
events in cancer progression, dysfunctions of the HDACs and the related modifications of
the protein acetylation levels highly influence cancer cells’ malignancy [19]. In this sense,
HDACs, due to their importance in epigenetic abnormalities, have been developed as
important therapeutic targets to control cancer progression and malignancy.

Aberrant HDAC expressions are involved in multiple different stages of cancer and
become one of the hallmarks in hematological malignancies and solid tumors [20–22].
Additionally, the increased expression of HDACs may be associated with poor outcomes
and advanced disease in cancer patients, such as gastric, ovarian, neuroblastoma cancer,
and multiple myeloma, among others [22]. As crucial players in cancer, HDACs are
involved in the regulation of several cellular and molecular events (Figure 2). HDACs
influence cell cycle and cellular proliferation, and HDAC inhibition induces cell cycle arrest
at the G1 phase by reducing the expression of cyclins and cyclin-dependent kinases (CDK)
or inducing the expression of CDK inhibitors [23,24]; HDACs inhibition also regulates
cancer cell apoptosis via the regulation of the expression of pro- and antiapoptotic factors,
such as cell surface death receptors and/or ligands including FAS/APO1-FASL, TNF-TNF
receptors and TRAIL-TRAIL receptors, reduction in the expression levels of cytoplasmic
FLICE-like inhibitory protein (c-FLIP), Bax, and Bcl2 family members [25,26]. Likewise,
DNA-damage repair (DDR) is critically regulated by HDACs due to its role in modulating
chromatin reorganization, maintaining the dynamic equilibrium of acetylation of DNA-
damage repair proteins, as well as influencing almost all events in DNA repair such as
base excision repair, nucleotide excision repair, and mismatch repair [27]; Autophagy, with
demonstrated involvement in the development, maintenance, and progression of cancer,
is susceptible to regulation by HDACs. In cancer cells, HDACs deacetylate cytoplasmic
proteins involved in the regulation of crucial autophagy proteins such as LC3-II and Beclin1,
as well as the intracellular signaling proteins mTor, apoptosis-inducing factor (AIF), and
p53 [28–33]. Epithelial-to-mesenchymal transition (EMT) is a crucial process in cancer
cell invasion and metastasis. The EMT implicates an extensive range of the silencing of
epithelial genes and the activation of mesenchymal genes via transcriptional mechanisms
that directly implicate histone modifications. For instance, transcriptional repressors of the
E-cadherin (CDH1), such as Snail or ZEB1, which recruit HDACs to CDH1 promoter for
histone deacetylation, result in gene silencing and potentiate the EMT [34,35]. As tumor
mass reaches 1–2 mm in size, the angiogenic process is activated for the supply of oxygen
and nutrients and the disposal of carbon dioxide and waste [36]. Angiogenesis is tightly
regulated by the hypoxic microenvironment and the transcription factor hypoxia-inducible
factors-1 α (HIF-1α). HDACs either directly deacetylate HIF-1α and inhibit the protein
degradation or indirectly facilitate HIF-1α stabilization by deacetylating its chaperones,
HSP70 and HSP90 [37,38].

This review will focus on the first generation of classic small-molecule and dietary-
derived HDAC inhibitors with demonstrated anticancer and chemopreventive activities.
Additionally, we will discuss some perspectives of addressing new ways of improving the
HDACi selectivity and the combinatory potential of HDACi, and other specific targets that
could be included in future clinical applications.
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2. Histone Deacetylases Overview

The discovery of this first mammalian histone deacetylase (HDAC1) marked the
beginning of the HDACs family. HDAC research dates from 1964, when a relationship
between the acetylation status of histones was linked to RNA synthesis, followed by
the description of a putative enzyme with histone deacetylase activity in 1969 [39,40].
Nonetheless, the first HDAC was discovered in 1999 using an affinity matrix based on
the covalent HDAC inhibitor trapoxin B. The sequencing of an isolated 46 kDa protein
with deacetylase enzymatic activity revealed a resemblance with the yeast transcriptional
regulator encoded by the RPD3 gene [41].

Eleven HDAC isoforms have been described and grouped into four classes based on
their homology with yeast deacetylases (Table 1) [42,43]. Class I encompasses HDAC1, 2,
3, and 8 with sequence homology to yeast deacetylase reduced potassium dependency-3
(Rpd3), which are mainly found in the nucleus and are part of multiprotein complexes that
are included in the epigenetic control of gene expression, cell proliferation, and survival.
Meanwhile, class II comprises HDAC4, 5, 6, 7, 9, and 10, sharing sequence homologies with
the yeast histone deacetylases-1 (Hda1). HDAC4, 5, 7, and 9 are classified into a class IIa
group and are found shuttling between the nucleus and cytoplasm. HDACs 6 and 10 are
categorized as class IIb due to a second catalytic domain and are primarily found in the
cytoplasm. Moreover, class IIa enzymes form multiprotein complexes with relatively weak
deacetylase activity, while class IIb HDACs are active deacetylases. Class IV includes a
unique and the smallest member, HDAC11 isoform, mainly found in the nucleus, which
shares sequence identity with Rpd3 and Hda1 yeast deacetylases [12,44–47]. Additionally,
these 11 HDACs are characterized by a Zn2+ in their active sites, which is fundamental for
hydrolase activity, and known as the zinc-dependent “classical” HDACs [48]. The class III
group encompasses seven NAD+-dependent histone deacetylase Sirtuins that are not in the
scope of this review [42].
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Table 1. Main cellular localization and basic molecular features of HDACs are indicated.

Histone Deacetylases

Class Member Cellular
Localization

Chromosome
Position

Aminoacids
No

(Molecular
Weight, kD)

Basic Structure

I

HDAC1

Nucleus

1p35-p35.1 483 (51)
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HDAcs are promising targets for cancer chemoprevention and chemotherapy de-
pending on their involvement in gene expression and the variety of cellular functions
involved in carcinogenesis, cell growth, survival, and homologous recombination [49–51].
Moreover, the manipulation of histone acetylation through HDAC inhibition has been
proposed as a mechanism for derepressing genes dysregulated in chronic conditions such
as neurodegenerative diseases, psychological disorders, and cancer [52,53].

3. Histone Deacetylases Inhibitors in the Treatment of Cancer

For decades cancer has been defined as an autonomous disease governed by the muta-
tional activation of oncogenes and/or the inactivation of tumor suppressor genes, which
triggers a sequence of molecular events that in time favor tumorigenesis [54]. Reasonably,
chemotherapy’s primary and ultimate aim is to eliminate malignant cells and restore cancer
patients’ cellular and physiological homeostasis. Historically, chemotherapy is based on
cytotoxic drugs to target the highly proliferating cancer cells potentially vulnerable due to
the aberrant molecular mechanisms associated with malignant transformation [54]. With-
out a doubt, chemotherapy is one of the most significant advances to treat cancer patients.
It exerts unpredictable or undesirable toxic effects that target normal cells, partly because
therapeutic drugs do not discriminate between rapidly dividing cancer cells from highly
proliferative non-malignant cells. Many efforts have been made to overcome the lack of
specificity of anticancer drugs; in this sense, in recent years, the concept of targeted therapy
or precision oncology has been developed to design therapeutic molecules targeting the
potential cancer-specific molecular and cellular signals. Therefore, the new era of cancer
therapies considers mapping crucial genes and signaling pathway components and the
development of ‘smart’ drugs that surgically target cancer cells, reducing the nonspecific
effects on normal cells [55–57].
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In cancer, epigenetic events crucially contribute to tumor development and malignant
progression. Tumorigenesis implicates multiple events beyond genetic alterations, such
as epigenetic regulation that influences gene expression and protein activities, making
epigenetic targeting an attractive therapeutic strategy to fight cancer [55,58].

As mentioned above, HDAC inhibitors promote proliferation arrest and differentiation,
trigger the cell death program, and control the tumor angiogenesis immune responses nec-
essary for tumor growth and spreading and escape from immune surveillance. In this sense,
the “epigenetic vulnerability of cancer cells” hypothesis has been coined; consequently,
HDACs could be essential for the expression of crucial genes implicated in the survival
and growth of transformed cells, providing a relative specificity of HDACs inhibition as
opposed to normal cells [59,60]. The rationality of the use of drugs considers that epigenetic
alterations are reversible; thereby, anti-epigenetic compounds may in some way recover the
non-transformed scenery. Meanwhile, chromatin regulators are susceptible to oncogenic
mutations, offering attractive molecular targets for cancer treatment [60,61]. The following
sections will address the main HDACi according to their chemical structure and impact on
cancer treatment.

3.1. Histone Deacetylase Inhibitors

Besides mediating the acetylation status of various proteins, the zinc-dependent
HDACs possess a mostly conserved catalytic active site [62,63]. To effectively inhibit the
hydrolysis of acetyl-lysine residues on the histone tails and non-histone proteins, HDACi
drugs should possess a cap group, aliphatic or aromatic linker, and a zinc-binding group
(ZBG), as a part of a generic (classical) pharmacophore model (Figure 3) [64,65]. The ZBG
includes carboxylic acid, hydroxamic acid, 2-aminobenzamide, thiol, and others, and it is
crucial for designing an HDACi. The zinc-chelating group is inserted with the active site of
the HDACs and mainly by bidentate mode interacts with and sequesters the zinc ion. When
positioned in the substrate-binding tunnel, the linker domain mimics the lysine residue
and establishes hydrophobic interactions with the amino acid residues in the crevice of the
HDAC active site.

Furthermore, the cap is usually built from a heterocyclic or carbocyclic group that
interacts with the aromatic amino acid residues located either close to the outer domain of
the active site or at the external surface of the enzyme [64,66]. This cap group is susceptible
to chemical modifications to enhance the selectivity of the HDACi. Nevertheless, recently
extended pharmacophore models have been proposed that can include the majority of
currently known HDAC inhibitors and may help classify and design new selective HDAC
inhibitors [67,68].

Chemically, HDACi can be classified according to their ZBG (Table 2): aliphatic (short-
chain fatty) acids; hydroxamic acids; ortho-aminoanilides, also called benzamides; thiols
and cyclic peptides [55,69]. In general, aliphatic acids seem to be the weaker HDACi
inhibitor with some limited class I HDAC selectivity because they weakly bind to Zn2+

ions inside the catalytic pocket of the HDAC isoforms. The concentrations of carboxylic
acid HDACi required to induce histone hyperacetylation are usually between micromolar
and millimolar. Contrary to carboxylic acids, hydroxamic acids inhibit a broad range of
HDACs (1–11) with nM potency, and ortho-aminoanilides, and cyclic peptides are highly
selective for class I HDACs [70].
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with carboxylic acid as ZBG, and it has been studied for almost 40 years as a chemopre-
ventive agent [71]. Butyrate was demonstrated to function as a weak ligand-competitive 
HDACi with a Ki of 46 μM when tested in MCF-7 breast cancer cell lysates in vitro, com-
pared with the Ki of 1 nM for trichostatin A (TSA) in similar experimental conditions [72]. 
This small-molecule HDACi induces the expression of the cyclin-dependent kinase inhib-
itor 1 (p21/WAF1) expression, which suppresses cell-cycle progression at the G1 phase 
and induces cellular differentiation [73]. Interestingly, butyrate is an effective natural 
product that acts on primary and secondary chemoprevention in model systems of colon 

Figure 3. Classical pharmacophore model of histone deacetylases inhibitors. The classical pharma-
cophore model of HDAC inhibitors (HDACi) considers three motifs and is illustrated with trichostatin
A agent: a hydrophobic cap group (green) that participates in the protein recognition and interaction,
a hydrocarbon linker (magenta), and a hydrophilic domain that interact with the Zinc cation (Zn2+)
at the enzyme active site called Zinc-binding group (ZBG) (yellow).

3.1.1. Aliphatic Acids

Sodium butyrate is produced by intestinal microbiota from dietary fibers and selec-
tively inhibits all class I HDAC isoenzymes [70,71]. Sodium butyrate is capless HDACi with
carboxylic acid as ZBG, and it has been studied for almost 40 years as a chemopreventive
agent [71]. Butyrate was demonstrated to function as a weak ligand-competitive HDACi
with a Ki of 46 µM when tested in MCF-7 breast cancer cell lysates in vitro, compared
with the Ki of 1 nM for trichostatin A (TSA) in similar experimental conditions [72]. This
small-molecule HDACi induces the expression of the cyclin-dependent kinase inhibitor
1 (p21/WAF1) expression, which suppresses cell-cycle progression at the G1 phase and
induces cellular differentiation [73]. Interestingly, butyrate is an effective natural product
that acts on primary and secondary chemoprevention in model systems of colon cancer [74].
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Sodium phenylbutyrate has a similar HDAC inhibitory profile as sodium butyrate, and it
was studied as differentiation therapy in certain malignant diseases [75].

Valproic acid (2-propylpentanoic acid), a well-known anticonvulsant drug, inhibits
class I HDAC isoforms, and it is currently being used in sixty clinical trials in patients
with different neoplastic diseases [76]. The epigenetic molecular mechanisms mediated by
valproic acid include the hyperacetylation of histones H3 and H4, which leads to growth
inhibition, the induction of differentiation, erythroid maturation, and the inhibition of
metastasis formation [77,78].

3.1.2. Hydroxamic Acids

Microbial metabolites provide many of the first HDACi. In this sense, the Streptomyces
hygroscopicus metabolite (TSA), described by Yoshida thirty years ago, remains one of the
most potent available HDACi [52,79]. In 1990, TSA was described to induce the in vitro
accumulation of highly acetylated histones, given the first evidence of the inhibition of
HDAC activity [79]. TSA is a pan-HDAC inhibitor that structurally consists of a substituted
phenyl ring cap group, a conjugated rigid diene linker region that sits in the substrate
channel, and a hydroxamic acid tail functioning as a bidentate zinc chelator in the active
site of HDACs. The general pharmacophore of HDAC inhibitors (zinc-binding group,
linker, and cap group) is illustrated in Figure 3.

Moreover, TSA can be considered a structural precursor prototypical inhibitor that
served as a model to design novel hydroxamate derivatives such as HDAC [66,80,81].
Although TSA initially was described as a non-competitive HDAC inhibitor, later reports
that reanalyzed the enzyme kinetics showed that TSA acts as a competitive inhibitor [71,79].
Besides, TSA widely affected the tumor cells’ gene expression and was demonstrated to be
useful as a therapeutic drug in other diseases, including asthma and neurodegenerative
conditions [82–84].

Vorinostat (suberoylanilide hydroxamic acid, SAHA) is a linear HDACi structurally
and functionally related to TSA; it chelates the Zn2+ with a hydroxamic acid moiety in a
bidentate mode, as was demonstrated in studies of the vorinostat crystal structure within
the active site of bacterium A. aeolicus HDAC1 homolog [85]. This drug was the first drug
approved by USFDA in 2006 for cutaneous T-cell lymphoma/leukemia (CTCL) that inhibits
class I, II, and IV HDACs [86]. When vorinostat is applied with synthetic triterpenoids,
the formation of estrogen receptor-negative mammary tumors can be successfully inhib-
ited in the mouse model [87]. As numerous SAHA derivatives are synthesized to date,
selenium-based SAHA derivatives retain HDAC inhibitory activity and prevent the de-
velopment of melanoma in laboratory-generated skin reconstructs [88]. Although several
toxicity reactions of vorinostat/SAHA are reported during clinical trials, the single use of
suberoylanilide hydroxamic acid is limited in primary chemoprevention.

To explore the possibilities of modulating the histone acetylome in cancer therapies,
HDAC inhibitors with high affinity for DNA were synthesized [89,90]. Belinostat (also
known as PXD101) inhibits HDACs in a nanomolar range (IC50 of 27 nM) [91]. It was
the third agent approved in 2014 by USFDA for relapsed or refractory peripheral T-cell
lymphoma (PTCL), which inhibits class I and II HDACs with nanomolar potency [92,93].

Panobinostat (LBH589 or Faridak®) is a pan-HDACi, cinnamic hydroxamate with
potent antitumor activity in preclinical models and promising clinical efficacy in cancer
patients. Panobinostat was approved in 2015 by USFDA for multiple myeloma therapies
due to its capacity to inhibit class I, II, and IV HDACs [94,95]. In preclinical models, panobi-
nostat was demonstrated to prevent the development of N-methylnitrosourea-induced rat
mammary tumors and inhibit lung tumorigenesis induced by 4-(methylnitrosamino)-1-
(3-pyridyl)-1-butanone [96,97]. Additionally, panobinostat demonstrates relevant anti-
tumorigenic activities in lymphoid malignancies, ovarian cancer, and pancreatic can-
cer [98–100]. Moreover, in combination with resveratrol (RVT), panobinostat can further
enhance the proapoptotic activities of Sirtuin1 on malignant lymphoid cells [101,102].
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Ricolinostat (ACY-1215) also belongs to the class of hydroxamate HDAC inhibitors,
in which the hydroxamate moiety coordinates with Zn2+ in bidentate mode, forming a
canonical five-membered chelate complex with Zn2+ of HDAC6 [103], which potently and
selectively inhibits HDAC6 (IC50 value of 5nM), and is 12-, 10-, and 11-fold less active
against HDAC1, HDAC2, and HDAC3, respectively. Meanwhile, it has minimal activ-
ity (IC50 > 1 µM) against HDAC4, HDAC5, HDAC7, HDAC9, HDAC11, and has slight
activity against HDAC8 (IC50 = 0.1 µM) [104]. Ricolinostat has demonstrated acceptable
tolerability and anti-myeloma efficacy upon combination treatment with lenalidomide and
dexamethasone, as well as pharmacodynamic evidence of both HDAC6 and class I HDAC
inhibition in multiple myeloma patients [105]. Furthermore, ricolinostat demonstrated a
favorable safety profile in patients with relapsed and refractory lymphoid malignancies
in a Phase I/II clinical trial (NCT02091063) [106]. In preclinical studies, ricolinostat effi-
ciently reduced tumor burden and increased survival in a mouse xenograft melanoma
model [107]. Furthermore, ACY-1215 enhances the anticancer activities of oxaliplatin in
colorectal cancer [108]. In addition, the HDAC6 inhibition provokes increased cellular
microtubule stability induced by cold and nocodazole treatment due to hyperacetylation of
the α-tubulin, which suppresses the microtubule dynamic instability in cancer cells [109].

Citarinostat (ACY-241) was designed as a second-generation orally available HDAC6
selective inhibitor (IC50 2,6 nM) with improved solubility properties over the structurally
related inhibitor ricolinostat. Citarinostat, in combination with paclitaxel, significantly
suppresses solid tumor growth in xenograft models [110].

3.1.3. Benzamides

Entinostat (MS-275-SNDX-275) is a synthetic benzamide derivative HDACi, which
potently and selectively inhibits class I and IV HDAC enzymes. It is an orally bioavailable
drug with a moderate variability in exposure and exerts cell proliferation inhibition, which
induces terminal cellular differentiation and apoptosis. Its selective inhibitory activity on
class I isoform HDACs suggests a potential better safety and efficacy than nonselective
pan-HDAC inhibitors. It has been included in several clinical trials addressing advanced
types of breast cancer and non-small lung cancer, among others [111–114].

Chidamide (CS055/HBI-8000; Tucidinostat), an analog of the class I HDACi entinostat,
is a novel HDAC low nanomolar inhibitor of the benzamide class, which specifically
inhibits HDAC1, 2, 3, and 10. It was approved by the China FDA and EMA (European
Medicines Agency) to treat hematologic malignancies [115–117].

Recently, an HDAC 1 and -2-selective entinostat derivative, MPT0L184, was de-
scribed to trigger premature mitosis with potential use to counteract cancer therapy
resistance. Structurally, MPT0L184 comprises a substituted isostere of the purine ring,
namely 7H-pyrrolo[2,3-d]pyrimidine, at the cap region, and the N-benzyl linker binds to a
2-aminoanilide moiety [118].

Mocetinostat (MGCD0103) is a selective inhibitor of class I and IV HDACs (isoforms 1,
2, 3, and 11) that does not affect the class II HDACs and was developed by MethylGene of
Canada [119]. It is an orally bioavailable agent with significant antitumor activity in vivo
against a broad spectrum of human cancer types, and antitumor activity is achieved at
clinically achievable doses [120]. Moreover, in preclinical human cancer cells models,
MGCD0103 induces core histone H3 and H4 acetylation at micromolar doses. Additionally,
mocetinostat, administered with gemcitabine, seems a valuable therapeutic strategy to
reverse chemoresistance in gemcitabine-resistant metastatic leiomyosarcoma patients [121].
Additionally, this drug has been studied in phase 2 clinical trials for refractory lymphoma
therapy with an acceptable safety profile [122].

3.1.4. Cyclic Peptides

Romidepsin (also called FK228, FR901228, depsipeptide, or Istodax®) was the second
drug approved by USFDA in 2009 for cutaneous T-cell lymphoma (CTCL), and in 2011 for
the therapy of peripheral T-cell lymphoma (PTCL), and is currently undergoing clinical
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trials for the treatment of other malignancies [123,124]. Romidepsin is a cyclic tetrapeptide
isolated from the fermentation product of Chromobacterium violaceum, developed by
Gloucester Pharmaceuticals. It is comprising L-valine, D-valine, (Z)-dehydrobutyrine, D-
cysteine, and (3S)-hydroxy-7-mercapto-4-heptenoic acid, connected by an internal disulfide
bond generating the bicyclic structure [125,126]. Interestingly, romidepsin is found as a
pro-drug after intracellular reduction of the disulfide bond by glutathione, allowing the
active free dithiol to attach to the active site and chelate the Zn2+ in class I HDAC in a
monodentate way [48,127]. Romidepsin potently inhibits HDACs with IC50 values for
HDAC 1 of 36 nM and HDAC2 of 47 nM and provokes cell growth inhibition and apoptosis
induction in leukemic cells [48,127–130]. This drug has been approved as second-line
therapy for treating cutaneous T-cell lymphoma (TCL) and peripheral TCL [131].

Table 2. Selected HDAC inhibitors.

Histone Deacetylases Inhibitors

Clasification Name HDACs (IC50) Structure Ref.

Aliphatic carboxylic
acids

Sodium butyrate
HDAC1 (16 mM), HDAC2
(12 µM), HDAC3 (9 µM),

HDAC8 (15 µM)
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Table 2. Cont.

Histone Deacetylases Inhibitors

Clasification Name HDACs (IC50) Structure Ref.

MPT0L184 HDAC1 (90 nM), HDAC2
(400 nM), HDAC3 (2,3 µM)
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3.2. Natural Compounds in Targeting Histone Deacetylases for Cancer Chemoprevention

Chemoprevention can be defined as the use of natural or synthetic chemical agents
to prevent, revoke, or reverse tumorigenesis or tumor progression in order to reduce the
inherent risks associated with cancer [132,133]. It is believed that preventing cancer from
developing to the advanced malignant stages is a promising strategy in controlling cancer
mortality due to the limited treatment in the last steps of tumorigenesis [133,134].

Because of the complexity of cancer, chemopreventive agents are expected to act, at
the molecular level, in the three steps of carcinogenesis: initiation, promotion, and progres-
sion [135]. For instance, chemopreventive agents that act at the initiation stage are essential
for DNA preservation in its native form by blocking DNA mutagenesis. These compounds
may inactivate carcinogens and prevent irreparable DNA damage. Additionally, they can
facilitate carcinogen metabolization and thus improve the anti-oxidative system by acting
as free-radical scavengers, either by themselves or by enhancing anti-oxidative enzyme
activities [135,136]. At the same time, chemopreventive compounds that influence cancer
promotion and progression inhibit the proliferative capacity of initiated cells, in part, by
acting on intracellular mitogenic signals such as NF-κB and mTOR, among others [137–139].
Additionally, agents acting in these steps are expected to reduce or delay metastasis by pro-
moting apoptosis, and inhibiting angiogenesis, the EMT, cell invasion, and the colonization
of distant organs [135].

Natural bioactive compounds have been investigated intensely for their potential
chemopreventive activities in cancer. Dietary-derived agents exhibit a significant advantage
in chemoprevention, as they generally have no or low adverse effects compared with the
long-term administration of pharmaceutical drugs [134,135].

Moreover, about 60–70% of chemotherapeutic drugs are natural compounds or serve
as a chemical scaffold for new drug synthesis and have contributed considerably to pharma-
cotherapy [140,141]. In addition, natural products have diverse pharmacological activities
and are also crucial in providing novel lead templates for drug discovery and development.
Furthermore, natural products’ biological effects rely partly on their capacity to bind bio-
macromolecules that somehow have been improved in nature [142,143]. Dietary factors
provide many new opportunities to develop new chemopreventive agents with potent
anticancer activities [12]. In this sense, dietary compounds may also serve as a pharmaco-
logical core for new drugs to reprogram cancer cells to “normal” differentiation features
and regulate gene expression by targeting the cancer epigenetic dysregulation [144–147].
Currently, due to the rich source of active dietary compounds, the pursuit of new, more
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specific, and more potent HDAC inhibitors has moved towards dietary factors; this aims
to identify novel drugs with HDACs inhibition activities for cancer treatment and other
epigenetic dysbalance-associated diseases, such as fragile X syndrome and autoimmune
disorders [148–150]. Next, selected natural compounds describing prominent HDAC
inhibition and anti-cancer and chemopreventive functions are described (Table 3).

Among dietary-derived HDAC inhibitors, n-butyrate was one of the first compounds
identified due to its capacity to provoke a reversible histone hyperacetylation in trans-
formed cells [151]. Moreover, n-butyrate exhibits a chemopreventive potential on colon
cancer [152].

Similarly, dietary allyl derivative or organosulfur compounds from garlic were de-
scribed to influence the acetylation status of histone in neoplastic cells [153]. For instance,
allyl mercaptan (AM) and diallyl disulfide (DADS) were shown to possess HDAC in-
hibitory properties and demonstrated a comparatively more potent inhibition of HDAC8
in cell-free conditions [154]. Under treatment with either AM or DADS, cancer cells show
increased acetylation levels of histones H3 and H4 associated with the tumor suppressor
CDK inhibitor 1A (CDKN1A) gene promoter. The upregulation of CDKN1A expression
promotes p21cip1/waf1 overexpression, which subsequently provokes cell proliferation ar-
rest [155–157].

Isothiocyanates (ITC), generated from the hydrolysis of brassica or cruciferous veg-
etable glucosinolates, exert an anticancer function through HDACs inhibition [146,158,159].
Benzyl isothiocyanate (BITC) was demonstrated to inhibit HDAC enzymatic activities and
downregulate HDAC1 and HDAC3 expression, which may function as an NF-κB inactiva-
tion mechanism resulting in the growth suppression of pancreatic cancer cells [160]. In turn,
sulforaphane (SFN) inhibits HDACs, such as HDAC6, in cancer colon cells alongside his-
tone hyperacetylation, cell proliferation arrest, and cellular apoptosis, whereas in prostate
cancer models, SFN reduces HDAC1, HDAC4, and HDAC7 expression levels [161,162].

Phenethyl isothiocyanate (PEITC) is shown to have promising chemopreventive activi-
ties due to its HDAC inhibitory functions in several cancer models [163–166]. PEITC inhibits
the binding of HDACs to the euchromatin in tumor cells and induces a de-repression of the
tumor suppressor p21Cip1/WAF1 expression in prostate cancer cells [164,167]. In addition,
indole-3-carbinol (I3C) and its derivate product of acid condensation, 3,3′-diindolylmethane
(DIM), have demonstrated potential chemoprotective properties. DIM has been effective in
downregulating the expression of class I HDAC1, HDAC2, and HDAC3 proteins, resulting
in the inhibition of the antiapoptotic protein survivin expression and increased P21 and
P27 expression in cancer cells [48,165,168–170].

Furthermore, a growing number of dietary-derived flavonoids have been identified for
HDAC’s inhibition, which possesses anticancer and anti-inflammatory functions [171,172].

Quercetin (3,5,7,3′,4′-pentahydroxyflavone) is a ubiquitous and abundant flavonoid
in plants and fruits that inhibits HDAC1 and HDAC8 in cancer cells [173–175]. Apigenin
(5,7,4′-trihydroxyflavone) is a phytoestrogen aglycone abundantly found in plants be-
longing to the Asteraceae family genera Artemisia, Achillea, Matricaria, and Tanacetum [176].
Apigenin induces the inhibition of HDAC1 and HDAC3 alongside increasing histones acety-
lation on gene promoters of p21Cip1/WAF1 and subsequent apoptosis [177,178]. Chrysin
(5,7-dihydroxyflavone) is a naturally occurring flavone belonging to a group of polypheno-
lic compounds found in mushrooms, olive oil, tea, red wine, and passion fruit flowers, as
well as Thai propolis and honey, which exerts antitumor activities on various cancer cell
types [48,179,180]. Chrysin inhibits HDAC8 activity and reduces melanoma cells’ HDAC-2,
3, and 8 protein levels. Moreover, it induces cell cycle arrest at the G1 phase and chro-
matin remodeling at the p21CIP1/WAF1 promoter gene due to increased histones H3 and H4
hyperacetylation [181].

Curcumin (diferuloylmethane) is a bioactive lipophilic polyphenol isolated from the
rhizome of Curcuma longa of the Zingiberaceae (Ginger) plant family. The chemopreventive
activity of curcumin, in part, lies in its capacity to modulate the epigenetic regulation of
cancer cells [182–184]. Curcumin inhibits HDAC4 and HDAC6 in medulloblastoma and
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leukemic cells, respectively, while increasing histone acetylation on gene promoters of the
proapoptotic BAX gene due to inhibition of HDAC1, 3, and 8 activity and expression in
leukemic cells [185–187].

(−)Epigallocatechin-3-gallate (EGCG) is the more abundant polyphenol of green tea
that can also be found in curry spices, grapes, soy, and berries [188]. Among the chemo-
preventive activities, EGCG can inhibit class I HDAC1, HDAC2, and HDAC3 and increase
histone acetylation, leading to cell cycle arrest and apoptosis in cancer cells [189–192].

Resveratrol (3,5,4′-trihydroxytrans-stilbene) is a naturally occurring nonflavonoid
stilbene polyphenol compound in grapes and wine, with cancer chemoprevention proper-
ties, because of its multitargeting activities on cancer initiation, promotion, and progres-
sion [182,193,194]. RVT is a pan-inhibitor of all eleven human HDACs of class I and II and
is associated with the inhibition proliferation of cancer cells [195,196].

Genistein (5,7,4′-trihydroxyisoflavone) is a naturally occurring compound that struc-
turally belongs to isoflavones and is found profusely in soybeans [197]. Genistein exhibits a
wide range of biological properties, such as antioxidant, anti-inflammatory, antiangiogenic,
proapoptotic, and antiproliferative activities, which explain the chemopreventive and ther-
apeutic potential of this isoflavone [198]. In cancer cells, genistein stimulates the expression
of the tumor suppressor genes p21WAF1 and p16INK4a associated with reducing HDACs
activity in breast cancer and colon cancer [199,200]. Moreover, Genistein inhibits HDAC1,
HDAC5, and HDAC6 in colon, prostate, and human cervical carcinoma cells [201–203].

Table 3. Inhibition of HDAC activity by selected natural products in cancer cells.

Natural HDAC Inhibitors

Compound Name and Structure Source HDAC Isoforms Ref.

Organosulfurs

allyl mercaptan
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turally belongs to isoflavones and is found profusely in soybeans [197]. Genistein exhibits 
a wide range of biological properties, such as antioxidant, anti-inflammatory, antiangio-
genic, proapoptotic, and antiproliferative activities, which explain the chemopreventive 
and therapeutic potential of this isoflavone [198]. In cancer cells, genistein stimulates the 
expression of the tumor suppressor genes p21WAF1 and p16INK4a associated with reducing 
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4. Perspectives in the Development of New HDAC Inhibitors 
To date, approved HDACi for clinical treatments, such as vorinostat, romidepsin, 

belinostat, and panobinostat, exhibit relatively low specificity. For instance, as was above-
mentioned, vorinostat inhibits class I, II, and IV HDACs, romidepsin inhibits predomi-
nantly class I HDACs, belinostat inhibits class I and II HDACs, and panobinostat class I, 
II, and IV HDACs. Moreover, all drugs are indicated mainly for the treatment of hemato-
logical cancers with shallow success in treating solid tumors. Although the underlying 
reason is not well understood, the low capacity of the agents to reach within the solid 
tumor and potential HDACi in vivo instability may influence the success of the treatments 
[204–207]. Additionally, the common mechanisms within HDACs classes, such as zinc-
dependent functions, may impose a barrier to developing anti-HDACs agents with highly 
specific activities. 

4.1. Structural Considerations to Design Histone Deacetylases Inhibitors 
Recently, a new expanded model for HDAC classical pharmacophore has been pro-

posed, with the aim to consider more possibilities for the design of more specific and se-
lective HDAC inhibitors. Besides the ZBG, linker, and cap group, Melesina et al. [208] 
proposed that the catalytic pocket of HDACs can be composed of two main entities: the 
main pocket that comprises the acetate binding cavity, the substrate-binding tunnel, and 
the rim of the pocket; and the sub-pockets, such as the side pocket (SP), a lower pocket 
(LP), and the foot pocket (FP) (review in [209]). Additionally, it is crucial to consider that 
class IIb HDACs possess a pseudo-catalytic domain or a unique zinc-finger domain as in 
HDAC6. The classical model perfectly fits with inhibitors targeting the main pocket but 
do not fully explain the features of inhibitors that also interact with sub-pockets domains, 
as is observed in the case of TH65 targeting the SP of HDAC8, cyclopropyl hydroxamic 
acid derivative that addresses the LP of HDAC4, and p-thienyl-anilinobenzamide deriva-
tive that targets the of HDAC2 [208,210,211]. Therefore, this expanded model may signif-
icantly contribute to designing new, more potent, and selective HDACs inhibitors. 

Accordingly, strategies to design selective HDAC inhibitors implicate an optimiza-
tion of all three HDAC pharmacophoric features. The ZBG is present in most HDAC in-
hibitors. For instance, the hydroxamic acid ZBG fits all HDAC isoforms but is less favor-
able for class IIa HDACs, while trifluoromethyloxadiazole ZBG is preferred by class IIa 
HDACs [212,213]. In contrast, ortho-aminoanilide inhibitors exhibit selectivity towards 
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4. Perspectives in the Development of New HDAC Inhibitors

To date, approved HDACi for clinical treatments, such as vorinostat, romidepsin,
belinostat, and panobinostat, exhibit relatively low specificity. For instance, as was above-
mentioned, vorinostat inhibits class I, II, and IV HDACs, romidepsin inhibits predomi-
nantly class I HDACs, belinostat inhibits class I and II HDACs, and panobinostat class I,
II, and IV HDACs. Moreover, all drugs are indicated mainly for the treatment of hema-
tological cancers with shallow success in treating solid tumors. Although the underlying
reason is not well understood, the low capacity of the agents to reach within the solid
tumor and potential HDACi in vivo instability may influence the success of the treat-
ments [204–207]. Additionally, the common mechanisms within HDACs classes, such as
zinc-dependent functions, may impose a barrier to developing anti-HDACs agents with highly
specific activities.

4.1. Structural Considerations to Design Histone Deacetylases Inhibitors

Recently, a new expanded model for HDAC classical pharmacophore has been pro-
posed, with the aim to consider more possibilities for the design of more specific and
selective HDAC inhibitors. Besides the ZBG, linker, and cap group, Melesina et al. [208]
proposed that the catalytic pocket of HDACs can be composed of two main entities: the
main pocket that comprises the acetate binding cavity, the substrate-binding tunnel, and
the rim of the pocket; and the sub-pockets, such as the side pocket (SP), a lower pocket
(LP), and the foot pocket (FP) (review in [209]). Additionally, it is crucial to consider that
class IIb HDACs possess a pseudo-catalytic domain or a unique zinc-finger domain as in
HDAC6. The classical model perfectly fits with inhibitors targeting the main pocket but do
not fully explain the features of inhibitors that also interact with sub-pockets domains, as
is observed in the case of TH65 targeting the SP of HDAC8, cyclopropyl hydroxamic acid
derivative that addresses the LP of HDAC4, and p-thienyl-anilinobenzamide derivative
that targets the of HDAC2 [208,210,211]. Therefore, this expanded model may significantly
contribute to designing new, more potent, and selective HDACs inhibitors.

Accordingly, strategies to design selective HDAC inhibitors implicate an optimization
of all three HDAC pharmacophoric features. The ZBG is present in most HDAC inhibitors.
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For instance, the hydroxamic acid ZBG fits all HDAC isoforms but is less favorable for class
IIa HDACs, while trifluoromethyloxadiazole ZBG is preferred by class IIa HDACs [212,213].
In contrast, ortho-aminoanilide inhibitors exhibit selectivity towards HDAC1, 2, and 3 [214].
Despite the high conservation of the amino acid residues around the zinc ion among HDAC
isoforms, the selectivity of different ZBGs might be achieved due to the structural differ-
ences in the acetate binding cavity [213]. The second strategy which can be implemented
to obtain isoform-selective HDAC inhibitors is the modification of the linker attached to
the ZBG and placed in the substrate-binding tunnel. It is possible to identify pan-HDAC
interacting linkers and selective HDAC interacting linker domains. For instance, the hy-
droxamic acid TSA and the cinnamic acid derivatives belinostat and panobinostat, with
a vinyl linker region, and vorinostat with saturated alkyl linkers, exhibit high inhibitory
potency and a poor HDAC isoform selectivity, respectively [98,215–218]. In comparison,
inhibitors with aromatic linkers possess high isoform selectivity toward HDAC6, HDAC8,
and HDAC10 depending on the cap group [209]. For instance, benzohydroxamic acid
exhibits an IC50 of 115 nM on HDAC6 and selectivity between 17- and 290-fold greater
than the other HDACs. At the same time, cyclohexene hydroxamic acid possesses an IC50
of 12 nM on HDAC6 and a selectivity about 36- to 760-fold greater than other HDACs.
Moreover, both are small and capless compounds with significantly HDAC selectivity [219].
For tubacin, a highly potent and selective HDAC6 inhibitor (IC50 = 4 nM), the selectivity
is due to specific interactions between the unique capping motif and the surface topology
of HDAC6 [219,220]. Thus, in general, it is essential to define the nature of the linker
region in compound design, as aliphatic linkers are nonselective in comparison with the
aromatic and carbocyclic rings often preferred by HDAC6 [209]. Another strategy is the
modification of the cap group, which interacts with the edge of the binding pocket and
the surface of the protein. Although the protein margin area’s structural diversity offers
many possibilities for inhibitors to adopt bioactive conformations, it can be challenging
to predict a ligand’s binding conformation. Regardless, some cap residues exhibit class I
HDAC selectivity. For example, the natural cyclic depsipeptides, such as romidepsin and
largazole, and cyclic tetrapeptides, such as HC toxin and chlamydocin, possess HDAC1
selectivity over HDAC6 [221–223]. Not only the nature of the cap influences the HDACi
selectivity, but the position of the cap group may also improve the isoform specificity of
inhibitory agents [209]. This condition is mainly observed in benzohydroxamic acids with a
meta-substitution at the aromatic linker to generate HDAC inhibitors with improved selec-
tivity on HDAC8 over HDAC1 and HDAC6 [224]. Similarly, benzohydroxamic acids with
an N-substituted indolyl-6-hydroxamic acid core exhibit 290-fold greater selectivity against
HDAC8 than HDAC1-3 and HDAC6 [225]. Other strategies consider the optimization of
the lower-pocket-targeting group and the foot-pocket-targeting group [209].

4.2. Bifunctional Histone Deacetylase Inhibitors

In preclinical models, HDACi monotherapy has been shown to be effective for hema-
tological and solid tumor treatments; these compounds seem to be well tolerated and with
low toxicity to normal tissues, while in clinical trials, the success, especially on solid tumors,
is minimal, and secondary effects are observed [226]. Therefore, new combinatory treat-
ments have been explored to resolve the issues of HDAC monotherapies in cancer patients.
The combinatory strategies with current anticancer agents seem to work in synergistic or
additive antitumor modes, which substantially improve the conventional therapies due to
the enhancement of therapeutic efficacy, including reduced side effects of HDACi [227].

In this sense, new treatments have been developed by conjugating two distinct thera-
peutic compounds in a single molecule for dual-targeting strategies [228–230]. The use of
bifunctional drugs may provide increased efficacy by targeting additional disease-related
pathways, mitigate side effects, reverse drug resistance by blocking specific mechanisms of
resistance, offer the advantage of a more predictable pharmacokinetic profile, modulate
drug resistance, and reduce patient compliance difficulties and clinical trial costs, as well as
drug–drug interaction adversities [231].
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Among the different linked mechanisms in creating a multitarget ligand, HDAC-
based dual inhibitors are synthesized through a pharmacophore fusion approach; the
secondary targeting agents are mainly linked to the cap of the selected single-targeting
HDAC inhibitors (Table 4) [64,232]. Dual HDAC inhibitors are considered as a combination
with a variety of molecular targets. For instance, class I HDAC/kinase dual inhibitors
have been developed. The bifunctional inhibitor CUDC-101, resulting from the fusion
of hydroxamic acid-based HDACi with the methoxyethoxy group of the phenylamino
quinazoline backbone of the receptor tyrosine kinase (RTK) inhibitors, potently inhibits
HDAC and EGFR and HER2 with IC50 = 4.4 nM, 2.4 nM, and 15.7 nM, respectively [233].
CUD-101 demonstrated a strong anticancer function in anaplastic thyroid cancer, pancreatic
cancer, and glioblastoma, among others [234–236].

HDAC–tubulin dual inhibitors also display improved antitumor activities. In this
sense, the combination of colchicine with hydroxamic acid and o-aminoanilide moieties
generated compounds with potent class I HDAC inhibition, with particular selectivity for
HDAC2 (IC50 = 0.19 µM) over HDACs 1 and 3 (IC50 = 1.50 and 1.49 µM, respectively) for
one of the compounds (6a). Moreover, this hybrid compound retained similar activities
to colchicine. Additionally, a second dual inhibitor compound (11a), although it exhibits
lower potency against HDACs 1–3 (IC50 = 12.50, 6.73, and 11.23 µM, respectively), shows
a better antiproliferative activity in a panel of 11 human cancer cell lines than the first
compound and colchicine [237].

Class II HDAC6-selective dual inhibitors designed to simultaneously target Janus
kinases (JAKs) via the conjugation of a JAK inhibitor with a hydroxamic acid ZBG have
been developed. Specifically, the JAK2-selective inhibitor pacritinib conjugated with Vorino-
stat/SAHA generated a series of hybrids incorporating aromatic or nonaromatic linkers
of varying lengths and either a monodentate carboxylic acid or bidentate hydroxamic
acid ZBG. One of the compounds demonstrated a selective JAK2/HDAC6 dual inhibitory
capacity with an IC50 value of 2.1 nM for HDAC6 and the most significant JAK2 inhibi-
tion, among all hybrids, with an IC50 = 1.4 nM. Moreover, a high HDAC6 selectivity was
displayed, with a selectivity >1000-fold greater than HDAC3 (IC50 = 2.17 µM), >100-fold
greater than HDACs 1,8 and 11, and >20-fold greater than HDACs 2 and 10, and slight
activity against the class IIa isoforms. In addition, this bifunctional inhibitor shows a
>50-fold greater selectivity for JAK2 over the other JAK isoforms [238].

Interestingly, dual anti-epigenetic compounds have also been developed. HDAC1
or HDAC-2 form a complex with scaffold protein REST corepressor 1 (RCOR1/Co-REST)
alongside the epigenetic eraser lysine-specific demethylase 1 (LSD1); LSD1 catalyzes the
removal of activating mono- and dimethyl marks on nucleosomal H3K4 residues, resulting
in transcriptional repression. Additionally, a critical functional interplay between HDACs
and LSD1 within the complex has been reported, since the enzymes mutually influence
each other’s activity through the CoREST protein [239]. The conjugation of the LSD1
inhibitor tranylcypromine to various o-aminoanilide and hydroxamic acid-based HDAC
inhibitors generated a variety of bifunctional HDAC and LSD1 inhibitors. One of these
hybrid compounds (7), resulting from the conjugation with vorinostat/SAHA, exhibits
the most potent inhibitory activity against HDAC1 and HDAC2, with IC50 of 15 nM and
23 nM, as well as potent inhibition against LSD1, with IC50 of 1.20 µM. Moreover, this
compound shows more robust antiproliferative activities than vorinostat/SAHA against
several cancer cell lines in vitro [240].



Pharmaceutics 2022, 14, 209 17 of 35

Table 4. Selected bifunctional HDAC inhibitors. Red shows HDAC pharmacophoric features, and
blue represents receptor tyrosine kinase inhibitor (1), colchicine (2), JAK2 inhibitor (3), and lysine-
specific demethylase 1 (LSD1) inhibitor (4).

Bifunctional HDAC Inhibitors

Name Targets (IC50) Structure Ref.

(1) CUDC-101
HDAC (4.2 nM)
EGFR (2.4 nM)

HER2 (15.7 nM)
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4.3. Proteolysis Targeting Chimeras

One characteristic of small-inhibitor compounds is that they are designed, for example,
to inhibit the catalytic activities of the protein target, while the potential non-catalytic
functions are not affected. A new method of drug design implicates the complete protein
target depletion by constructing proteolysis-targeting chimeras (PROTACs) that achieve
the regulation of both enzymatic and non-enzymatic functions [241].

Specifically, PROTACs regulate the expression of the protein of interest at the post-
translational level by directing the targets to the cellular proteolytic machinery, such as
the ubiquitin–proteasome pathway [242]. PROTAC technology makes druggable the tra-
ditional “unable to medicine” targets and has tremendous potential in overcoming drug
resistance [241,243]. PROTACs comprise heterobifunctional compounds engineered to
recruit the protein target to the E3 ubiquitin ligase for ubiquitination, and subsequently
proteasomal degradation [244,245]. The unique PROTACs mechanism of action provides
several advantages, such as a catalytic mode of action instead of high equilibrium target
occupancy, improving potency, enhancing selectivity compared with the initial promiscu-
ous targeting warhead, persistent target protein depletion, and potential tissue–cellular
selectivity, compared with conventional small-compound inhibitors [241]. Furthermore,
because PROTACs exert an acute and reversible post-translational protein depletion, this
technology offers better advantages than other genetic knockdown methodologies. Addi-
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tionally, PROTACs may function as molecular probes to elucidate the epigenetic regulation
in health and diseases as a new modality in precision medicine [246].

In 2018, one of the first HDAC-targeting PROTACs was described as the first HDAC6
degrader, generated based on nonselective HDAC inhibitors with E3 ubiquitin ligase
ligand pomalidomide as cereblon (CRBN) (Table 5). CRBN ligands rely on the structure
of the anticancer drug thalidomide and its derivatives [247]. The PROTAC compound
exhibits a degrader concentration (DC)50 of 34 nM and a maximum percentage of HDAC6
degradation (Dmax) of 70.5% without significant effects on other HDACs family members.
Moreover, the degradation of HDAC6 results in an upregulation of tubulin acetylation in
treated MCF-7 cells [248]. Similarly, An et al. [249] synthesized an HDAC6 degrader (NP8)
by combining Next-A, at the end of the aliphatic chain, with the CRBN pomalidomide.
NP8 provokes a significant inhibition of the proliferation of the multiple myeloma cell line
MM.1S, comparable with parental agent Nex-A, with the DC50 value for NP8 of 3.8 nM.
Moreover, the HDAC6-pomalidomide degrader showed a high grade of specificity, as other
representative HDAC family members were not affected by NP8 treatment. Additionally,
Yang et al. [250] described the synthesis of a degrader (NH2) combining Next-A, at the NH2
residue, with pomalidomide as CRBN. NH2 effectively depletes HDAC6 in MM.1S with
a DC50 of 3,2 nM after 24 h of treatment; moreover, the HDAC6–NH2–CRBN PROTAC
provokes HDAC6 degradation at 1 h of treatment, reaching maximum degradation at
around 6–8 h. In addition, the NH2 washout in HeLa cells recovered the HDAC6 protein
level within 3 h, confirming the suitability of use of NH2 as a reversible knockdown
compound for HDAC6 protein in cancer cells.

In addition, a cell-permeable HDAC-targeting PROTAC based on Von Hippel-Lindau
(VHL) as an E3 ligase-binding motif and Nexturastat A (Next-A), a well-known HDAC6-
selective inhibitor, has been synthesized. VHL has demonstrated efficacy and the robust
degradation of a wide range of protein targets and shown the ability to bypass the pos-
sible off-target effects of CRBN recruitment [247]. The resulting PROTAC agent induces
HDAC6 degradation with a DC50 of 7.1 nM and a Dmax of 90% in the MM1S cell line [251].
Additionally, SR-3558, a potent and selective inhibitor of class I HDACs, with VHL as an
E3 ligase ligand, generates a selective HDAC3 degrader (XZ9002) with a DC50 value of
42 nM [252]. Similarly, Smalley et al. [253] generated a PROTAC molecule targeting the
nucleus-localized class I HDACs. The class I o-aminoanilide HDAC inhibitor CI-994 was
conjugated to the VHL ligand via a twelve-carbon alkyl linker to synthesize a PROTAC
with a DC50 of 1 µM for HDACs 1, 2 and 3 in HCT116 human colon cancer cells.

Finally, Cao et al. used bestatin, a cellular inhibitor of apoptosis (cIAP) ligand, as
E3 ligase-binding motifs to develop cIAP–HDAC–PROTACs [254]. Namely, cIAP ligands
function as E3 ubiquitin ligases that target RIP1 for polyubiquitination and have shown
success in the design of PROTACs [247,255]. Several HDAC–cIAP hybrid molecules were
synthesized and one in particular, named P1, significantly reduced the HDAC1, HDAC6,
and HDAC8 expression levels on the B lymphocytes cell line RPMI-8226 after 24 h treatment,
at concentrations ranging from 1 µM to 4 µM, although it did not induce HDAC degradation
at 6 h of treatment [255].
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Table 5. Selected proteolysis targeting chimeras for HDACs degradation. Red shows HDAC pharma-
cophoric features, black shows linker regions, and blue shows E3 ligases. VHL: Von Hippel–Lindau;
DC50, concentration to reduce the target protein expression in a 50%; DCmax: maximum percentage
of degradation; ND: non-determined.

Proteolysis Targeting Chimeras

Name Targets (DC50,
Dmax) Structure Ref.

9c—HDAC6
degrader

HDAC6
(DC50 = 34 nM,
Dmax = 70.5%)
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5. Combined Clinical Strategies with Histone Deacetylases Inhibitors

The clinical approval of vorinostat, romidepsin, belinostat, panobinostat, and tucidi-
nostat/chidamide allows the inclusion of HDACi as part of the therapeutic armament for
an increasing number of cancers. Nevertheless, HDACi, when used as a mono-therapeutic
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chemical agent, showed a limited cancer application, mainly in treating hematological ma-
lignancies. Moreover, tumor resistance to HDACis treatment has been observed alongside
a limited therapy achievement of solid tumors [256,257], whereas combining HDACis with
chemotherapy agents may improve and maximize cancer treatment and reduce treatment-
associated toxicity side effects due to reduced agent doses. Furthermore, combined thera-
pies can synergistically avoid or reduce undesirable cancer treatment resistance [257]. In
this sense, HDACis may function as chemosensitizers and synergistically work with an
increasing number of diverse therapeutic chemical drugs, biological-derived active proteins
and polypeptides, and immunotherapies [258]. Thus, combined therapeutic strategies of
HDACis with other approved cancer therapies may increase the efficacy of clinical ap-
proaches and have shown great promise in clinical trials. A considerable number of clinical
trials have been implemented toward the combined application of HDACis, and in this
section we will analyze selected clinical studies focusing mainly on solid tumors (Table 6).

Receptor tyrosine kinases (RTKs), due to regulating a vast range of biological and
molecular functions and their dysregulated intracellular signals in several cancers, have
been shown to be promising onco-targets. In particular, RTKs promote cancer cell prolif-
eration, increasing c-Myc and cyclin D1 oncogenes expression. Cyclin D1 interacts with
class I/II HDACs to regulate c-Myc expression, thus making the combinations of RTK
targeted therapies and HDACi important strategies for cancer therapy [258–261]. A phase
I/II clinical trial (NCT01027676), addressing the capacity of vorinostat to synergize and
overcome resistance to the EGFR-TKI gefitinib in treated patients with advanced non-
small-cell lung cancer (NSCLC), has demonstrated this combination to be feasible and
well tolerated at the clinical regime of biweekly 400 mg/day vorinostat and daily doses of
250 mg gefitinib. EGFR-mutant NSCLC-treated patients showed a median progression-free
survival (PFS) of 9.1 months and median overall survival (OS) of 24.1 months. This combi-
nation showed potential for improving the efficacy of gefitinib in EGFR-mutant NSCLC
and suggested the potential benefit of vorinostat for improving the efficacy of EGFR-TKIs
in these patients [262].

Angiogenesis is one of the hallmark events contributing to tumor growth and metas-
tasis [36]. For instance, HDACs stabilize and inhibit the degradation of HIF-1α [37,38].
Meanwhile, the vascular endothelial growth factor (VEGF) secreted by cancer cells stim-
ulates endothelial cells to form new blood vessels. Moreover, anti-VEGF treatment in
preclinical studies has demonstrated the additive and synergistical benefits of combined
treatments with other onco-therapies [263]. In this sense, a clinical study has tested the
safety and efficacy of vorinostat and the VEGF blocker bevacizumab in metastatic clear-cell
renal cell carcinoma (ccRCC) patients that were previously undertreated with different
agents, such as sunitinib, sorafenib, axitinib, and temsirolimus, among others. A total of
200 mg vorinostat twice per day, for 14 days, and bevacizumab 15 mg kg−1, intravenously,
every 21 days were administered as phase II doses. The toxicity of combined therapy seems
to be acceptable and safe, and the median PFS and OS were 5.7 months and 12.9 months,
respectively. Nevertheless, the study is limited due to the sample size and the single-arm
design [264].

Additionally, hormone signaling is dysregulated in several cancers, such as breast and
prostate cancer, and contributes to promoting tumorigenesis [258,265]. Thus, combined
hormonal therapies with HDACis are promising strategies for the treatment of hormone-
dependent cancers. Recently, a phase III trial of tucidinostat/chidamide (30 mg twice a
week for four weeks) combined with the steroidal aromatase inhibitor exemestane (25 mg
orally daily) improved the PFS compared with placebo plus exemestane, with a median
PFS of 7.4 months and 3.8 months, respectively. Moreover, a substantially increased overall
response and clinical benefit was observed in combined therapy of patients with advanced,
hormone receptor-positive (HR+) and HER2-negative breast cancer that progressed after
prior endocrine therapy [266]. Another phase I clinical study explored the safety and
preliminary efficacy of combined entinostat therapy (3 and 5 mg orally per week) with
the hormonal therapy drug enzalutamide in castration-resistant PCa (CRPC) patients. The
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median duration of treatment with entinostat was 18 weeks. Entinostat did not affect the
steady plasma concentration of enzalutamide, and no defining dose-limiting toxicity (DLT)
related to entinostat in these patients was observed. Despite the small number of enrolled
patients (6), 5 mg of entinostat weekly combined with enzalutamide seems to have an
acceptable safety profile [267].

In addition, a multicenter, randomized, double-blind, placebo-controlled phase III
study (E2112) enrolled patients with advanced HR-positive, HER2-negative breast cancer
whose disease progressed after nonsteroidal aromatase inhibitors had been performed. This
phase III clinical trial was based on a previous ENCORE301 phase II study that reported
improvement in PFS and OS with combined entinostat and exemestane therapy [268]. In
this study, the patients were randomly treated with oral 25 mg exemestane once daily
and 5 mg entinostat or placebo 5 mg once weekly. The results indicate that the median
PFS of exemestane plus entinostat showed no significant difference with 3.3 months and
3.1 months, respectively.

Similarly, no median OS differences between exemestane plus entinostat and exemes-
tane plus placebo arms were obtained, being 23.4 months and 21.7 months, respectively.
Although the pharmacodynamic endpoint analysis indicated that in the exemestane plus
entinostat arm a significant increase in lysine acetylation in PBMCs by C1D15 analysis was
observed, confirming HDACi function, the combination of entinostat and exemestane did
not improve advanced endocrine-resistant breast cancer patients’ outcomes [269].

In addition, HDACs regulate autophagy signals, including mTor pathways, that
help tumor cells survive under metabolic stress conditions [22]. Moreover, preclinical
approaches identified the mTOR/HDAC inhibitor combination as a promising strategy for
cancer treatment [270]. In this regard, a phase I dose-finding trial (NCT01582009) for the
mTOR inhibitor everolimus combined with the HDAC inhibitor panobinostat in advanced
clear-cell renal cell carcinoma (ccRCC) patients has been completed. Based on the maximum
tolerated dose, the therapeutic strategy was everolimus 5 mg PO daily and panobinostat
10 mg PO 3 times weekly (weeks 1 and 2) given in 21-day cycles. The 6-month PFS was 31%,
with a median of 4.1 months. Although the combined everolimus/panobinostat therapy
seems to be safe and tolerable in the indicated dosing regimen, with myelosuppression as
the major DLT, this pairing did not appear to improve the clinical outcomes in the studied
group of advanced ccRCC patients [271].

To date, chemotherapy continues to be among the most widely used cancer treat-
ments, causing cell death. Despite the initial therapeutic success, cancer cells often develop
chemoresistance, particularly in non-germ-cell solid tumors, which severely reduce the clin-
ical benefits for cancer patients [272]. Additionally, HDACi therapies, due to the broad role
of HDAC in diverse cellular functions, have been demonstrated to act as sensitizer agents
for chemotherapy [273]. For instance, combining cisplatin with HDACi shows a promising
strategy for increasing the efficacy of this platinum-based agent. A phase II, single-arm
clinical trial was conducted to investigate the efficacy and safety of a combination treatment
of tucidinostat/chidamide with cisplatin in metastatic advanced triple-negative breast
cancer (TNBC) patients. Women with TNBC were treated with tucidinostat/chidamide and
cisplatin, 20 mg twice weekly for 2 weeks, and 75 mg/m2 on a 21-day cycle, respectively.
Despite the fact that this trial had several limitations, including a small sample size, non-
randomized character, and the un-selection of the enrolled patients, the combination of
chidamide and cisplatin did not seem to exhibit a superior efficacy compared with classical
cisplatin-based chemotherapy in treating advanced TNBC [274]. Additionally, romidepsin
has been included in a phase I dose-escalation study (NCT01902225) in combination with
liposomal doxorubicin, an anthracycline that intercalates within DNA base pairs and in-
hibits topoisomerase II to treat cutaneous T-cell lymphoma (CTCL) and peripheral T-cell
lymphoma (PTCL). Liposomal doxorubicin dose was fixed at 20 mg/m2 i.v. over 1 h on
day 1 of each 28-day cycle, and the maximum tolerated dose (MTD) of romidepsin was
determined to be 12 mg/m2. The results indicate that the overall response rate (ORR) in
the CTCL patients cohort was 70%, while the PTCL cohort was 27%. Combined romidepsin
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and liposomal doxorubicin therapy regimes indicated high and rapid response rates in
CTCL patients. The authors concluded that drug combination is highly active, safe, and
well tolerated [275].

Furthermore, preclinical studies demonstrated the feasibility and efficacy of the combi-
nation of DNA synthesis inhibitor agents and HDACi in improving cancer sensitivity [276].
An open-label, non-randomized phase I/II clinical trial study (NCT00372437) addressed
the safety and efficacy of the class I/IV HDACi mocetinostat combined with DNA synthesis
inhibitor gemcitabine in patients with solid tumors. The therapeutic regime included gemc-
itabine at 1000 mg/m2, day 1 of three consecutive weeks, in 4-week cycles, and 50–110 mg,
three times per week of oral mocetinostat. MTD and the recommended phase II dose for
mocetinostat was 90 mg, while the ORR was 11% in the phase I study, and non-responses
were observed in phase II. Due to the lack of significant positive results and significant
toxicities in patients with advanced pancreatic cancer following the combined therapy, the
study was terminated without merit for further testing [277].

One characteristic of cancer cells is their capacity to regulate immune functions and es-
cape from immune surveillance [278]. In turn, HDACi demonstrated the ability to promote
cancer cells’ immunogenicity [279], making the combination of HDACi with immunother-
apies promising for cancer treatment. For example, the combination of vorinostat and
the anti-PD-1 pembrolizumab, an immune checkpoint inhibitor, was evaluated in a phase
II study (NCT02538510) in recurrent/metastatic squamous cell carcinomas of the head
and neck (HN) and salivary gland cancer (SGC) patients. The therapeutic regime was
conducted with oral 400 mg vorinostat 5 days on and 2 days off during each 21-day cycle,
while intravenous pembrolizumab 200 mg was administrated every 21 days. The combined
HDACi and immunotherapy demonstrated activity in HN patients with fewer responses
in SGC. Although the combination demonstrated activity in HN, with fewer responses
in SGC, high-grade toxicities compared with single-agent pembrolizumab were observed.
Nevertheless, the obtained data provide new clues for the activity and tolerability of the
proposed combined HDACis and immunotherapies in HN and SGC patients [280].

Similarly, a PEMDAC phase II clinical trial (NCT02697630) combining entinostat and
pembrolizumab in patients with metastatic uveal melanoma (UM) showed manageable
toxicities and no treatment-related patient deaths. Patients were treated intravenously
with 200 mg pembrolizumab every third week in combination with entinostat 5 mg orally
once a week. Median OS was 13.4 months, and OS at one year was 59%, while median
PFS was 2.1 months, and one-year PFS was 17%. Additionally, combined therapy can
cause tumor regression in a small subset of patients with metastatic UM, which provides
data for a small subset of patients who can benefit from combined epigenetic therapy
and immunotherapy [281]. Furthermore, a phase Ib clinical trial combining the second-
generation HDAC6-selective inhibitor citarinostat (ACY-241) with the immune checkpoint
inhibitor nivolumab has been conducted in patients with advanced NSCLC. Patients
received orally administered citarinostat once daily for 28 days of two 28-day treatment
cycles with a modified Fibonacci sequence of 180 mg QD, 360 mg QD, and 480 mg QD.
For cycle 1, nivolumab was administered on day 15 at 3 mg/kg by intravenous injection,
while in cycle 2, nivolumab was administered every 2 weeks on days 1 and 15. The results
of this single-arm and dose-escalation study indicated an MTD for citarinostat of 360 mg.
Additionally, a transient increase in histone (class I target) and tubulin (HDAC6 target)
acetylation levels following treatment were observed in patients’ samples. Together, the
results indicate that a combined HDACi and immunotherapy strategy is safe and tolerable
and may be feasible in patients with advanced NSCLC [282].
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Table 6. Selected histone deacetylase inhibitors in combined clinical trials. TKi: tyrosine kinase
inhibitors; PD-1; programed cell death receptor-1.

Combined Clinical Trails Strategies

HDACi Combined Targeting Cancer Type Ref.

Vorinostat Phase I/II, gefitinib- EGFR-TKi Non-small-cell lung cancer [262]

Vorinostat Phase II, bevacizumab- angiogenic
VEGF blocker Metastatic clear-cell renal cell carcinoma [264]

Tucidinostat Phase III, exemestane-steroidal aromatase
inhibitor, hormonal therapies

Hormone receptor-positive (HR+) and
HER2 negative breast cancer [266]

Entinostat Phase I, testosterone antagonist
therapy-enzalutamide, hormonal therapy Castration-resistant prostate cancer [267]

Entinostat
Placebo-controlled phase III study,

exemestane-steroidal aromatase inhibitor,
hormonal therapy

Hormone receptor-positive (HR+) and
HER2-negative breast cancer [269]

Panobinostat Phase I dose-finding trial, -mTOR
inhibitor-everolimus, autophagy Advanced clear-cell renal cell carcinoma [271]

Tucidinostat Phase II, cisplatin, chemotherapy Triple-negative breast cancer [274]

Romidepsin Phase I dose-escalation study, liposomal
doxorubicin chemotherapy Cutaneous T-cell lymphoma [275]

Mocetinostat Non-randomized phase I/II,
gemcitabine chemotherapy

Various solid tumors, including advanced
pancreatic cancer [277]

Vorinostat Phase II, immune checkpoint inhibitor
anti–PD-1-pembrolizumab, immunotherapy

Recurrent/metastatic squamous cell
carcinomas of the head and neck and

salivary gland cancer
[280]

Entinostat Phase II, immune checkpoint inhibitor
anti–PD-1-pembrolizumab, immunotherapy Metastatic uveal melanoma [281]

Citarinostat Phase Ib, immune checkpoint inhibitor
anti–PD-1-nivolumab, immunotherapy Non-small-cell lung cancer [282]

Romidepsin
Phase I, immunomodulatory drug
lenalidomide and the proteasome

inhibitor carfilzomib
T-cell lymphoma and B-cell lymphoma [283]

Finally, two-phase I studies (NCT01755975 and NCT02341014) have combined ro-
midepsin with the immunomodulatory drug lenalidomide and proteasome inhibitor carfil-
zomib in relapsed/refractory lymphoma to evaluate the MTD. Two study regimes were
performed, A: romidepsin and lenalidomide, and B: and romidepsin, lenalidomide, and
carfilzomib. The clinical trial included the enrollment of T-cell lymphoma (TCL) and
B-cell lymphoma (BCL) as separate cohorts. The results indicate an MTD for regime A
of romidepsin 14 mg/m2 IV on days 1, 8, and 15 and lenalidomide 25 mg oral on days
1–21 of a 28-day cycle, while for regime B an MTD of romidepsin 8 mg/m2 on days 1 and
8, lenalidomide 10 mg oral on days 1–14 and carfilzomib 36 mg/m2 IV on days 1 and
8 of a 21-day cycle. The ORR for regime A was 50% TCL and 47% BCL with a PFS of
5.7 months. The ORR was 50% TCL, 50% BCL with a PFS of 3.4 months for regime B. The
results demonstrate that both regimes exhibit activity and acceptable safety profiles in both
subtypes of relapsed/refractory lymphoma patients [283].

6. Conclusions and Concluding Remarks

Cancer is characterized by dysregulation in the balance of protein acetylation due to
aberrant alterations in the expression and activity of HDACs, making epigenetic alterations
one of the hallmarks of cancer generation and progression to metastatic stages. In this
sense, HDACs targeting has emerged as a promising strategy in cancer treatment. To
date, five HDACi have been approved for clinical approaches: three hydroxamic acids
(vorinostat, panobinostat, and belinostat), one cyclic peptide (romidepsin), and one ben-
zamide (chidamide). The clinical use of these drugs strongly supports the importance
of targeting HDACs in cancer therapy and opens the path to designing new compounds
with better efficacy, high selectivity, and lower side effects. Mainly, HDACi demonstrated
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efficacy for treating hematological malignancies and lymphomas. At the same time, an
increasing number of clinical trials are ongoing to evaluate the safety and therapeutic
benefits for refractory, advanced, and recurrent solid tumors. Unfortunately, most clinical
trials revealed adverse issues, such as different grades of thrombocytopenia, neutropenia,
anemia, arrhythmia, and gastrointestinal toxicity. At molecular levels, the adverse effects
are alongside several events, such as abnormal gene transcription, genomic instability, and
aberrant free radical production, which reduce the therapeutic success of HDACi [284].
Therefore, the design of new HDACi to overcome undesirable side effects and increased
efficacy to penetrate solid tumors represents a critical pharmacology challenge.

In addition, a deeper understanding of the molecular mechanisms of the anticancer
functions of HDACi, analyses of HDAC structural conformations, and chemical-specific
modifications are necessary to improve the therapeutic efficacy of HDACi. This review
describes HDACs’ features and their involvement in several cancer-associated cellular
and molecular events, which picture the HDAC involvement in cancer physiopathology.
Two main groups of HDACi inhibitors are analyzed according to their use for cancer
treatment and dietary-derived compounds for chemoprevention. However, they can be
highly intertwined since natural agents provide almost unlimited chemical structures for
HDACi design.

In addition, the currently approved drugs such as HDACi for cancer treatment dis-
played relatively low selectivity. Due to the diversity of HDACs and cellular-specific
functions, the design of more potent isoform-selective inhibitors is highly needed. Accord-
ing to the pharmacophore model, HDACis are susceptible to be modified in all three of the
main groups (ZBG, linker, and cap), which may help design selective HDAC inhibitors
via the optimization of the interaction with particular HDACs. Additionally, due to the
oncogenic nature of cancer and the development of more potent and selective oncogene
inhibitors, new investigations which addressed the potential of bifunctional inhibitors,
which involve oncoprotein inhibitors and specific HDACi, have shown the potential of
improving conventional therapies, in part by enhancing therapeutic efficacy and reducing
HDACi side effects. Furthermore, PROTAC technology helps in the generation of a new
class of HDAC targeting agents. PROTAC leads to the proteasomal degradation of HDACs
with several advantages, such as target protein depletion and potential tissue-cellular selec-
tivity that, with the development of more HDACi specificity, may highly improve cancer
treatment and drug resistance. Finally, the HDACi can be combined with different basic
anticancer experimental strategies, for inhibiting tumor growth, angiogenesis, metastasis,
and apoptosis induction, which has allowed the execution of an increasing number of
combined clinical trials. Together, these therapeutic strategies might benefit the survival
and improve the quality of life of cancer patients when traditional treatments fail.
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