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Abstract

Accurate estimates of the penetrance rate of autosomal dominant conditions are important, among other issues, for
optimizing recurrence risks in genetic counseling. The present work on penetrance rate estimation from pedigree
data considers the following situations: 1) estimation of the penetrance rate K (brief review of the method); 2) con-
struction of exact credible intervals for K estimates; 3) specificity and heterogeneity issues; 4) penetrance rate esti-
mates obtained through molecular testing of families; 5) lack of information about the phenotype of the pedigree
generator; 6) genealogies containing grouped parent-offspring information; 7) ascertainment issues responsible for
the inflation of K estimates.
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Introduction

Human autosomal dominant diseases are extremely

rare conditions in which affected individuals are heterozy-

gotes. Many of these heterozygous genotypes exhibit the

phenomenon of incomplete penetrance. For this set of rare

conditions the penetrance rate is therefore understood as

the probability of a heterozygote presenting the disease (or,

at least, presenting a minimum number of signs and symp-

toms that enable his/her identification as a carrier of the del-

eterious allele). Other details, as well as a full review of the

subject can be found in Horimoto and Otto (2008). Accu-

rate estimates of the penetrance value K are important not

only for determining genetic disease risks in families with

segregating cases of autosomal dominant disorders, but

also for performing linkage studies. Crude penetrance esti-

mates can be derived by dividing the observed number of

diseased (penetrant) individuals by the number of obligate

carriers (penetrant as well as obligate non-penetrant, that is,

normal individuals with several affected offspring or nor-

mal individuals with affected parent and child). Presently

the penetrance parameter can be estimated on a routine ba-

sis by computer programs that perform segregation analy-

sis or the estimation of linkage based on complex pedigree

structures that cannot be expressed in closed form, such as

the classical S.A.G.E. (S.A.G.E., 2009) and LINKAGE

(Lathrop et al., 1985) programs.

Rogatko et al. (1986) provided a simple but efficient

methodology for dealing with the problem, but neither their

solution nor more complex alternatives, such as the above-

mentioned computer programs, take into account many of

the details we discuss here. These concern specificity and

heterogeneity issues (section 3), penetrance rate estimates

from families undergoing molecular testing (section 4),

lack of information about the phenotype of the pedigree

generator (section 5), genealogies containing grouped par-

ent-offspring information (section 6), and ascertainment is-

sues responsible for the inflation of K estimates (section 7).

In section 1 we briefly review the method for estimating the

penetrance rate from pedigree data, and in section 2 we

make a digression on the determination of the exact credi-

ble interval for this estimate.

(1) Method for Estimating the Penetrance
Rate K

More details on the method described below are

found in the original paper by Rogatko et al. (1986) and

Horimoto et al. (2010). The first step of the method consists

in trimming or filtering the pedigree information, that is, re-

placing the original pedigree with one containing only indi-

viduals that are informative or relevant with respect to

penetrance estimation. Expressions like trimming and trim-

med seem to be more appropriate, but we shall keep the no-

menclature coined originally by Rogatko et al. (1986). As

an example we will consider the hypothetical filtered pedi-

gree shown in Figure 1, with several individuals affected by
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a rare autosomal dominant condition. The individual of the

first generation is the genealogy or pedigree generator. The

symbols marked with a point indicate obligate normal

(non-penetrant) heterozygous carriers of the gene, and the

darkened symbols represent affected (penetrant) heterozy-

gotes.

The filtered pedigree contains four affected individu-

als, four normal obligate carriers, three normal offspring of

obligate carriers, and one tree of normal individuals de-

scendants from an obligate carrier (one normal female with

two normal male offspring, shown at the leftmost position

of the pedigree). Letting K be the penetrance rate value, the

probabilities associated with each of these four different

structures are, respectively, K/2, (1-K) in the case of the

pedigree generator, or (1-K)/2 in the case of the other three

normal obligate carriers, (2-K)/2, and {1/2 + (1-K)/2.

[(2-K)/2]2}.

The likelihood function, that is the probability of oc-

currence of the pedigree conditional to the observed struc-

tures occurring in it, is derived from the quantities associ-

ated with these structures. In the present case, by neglecting

constant values unimportant in the maximization procedure

that will follow, the likelihood function takes the form p =

K4(1-K)4 (2-K)3[4+(1-K)(2-K)2]. By solving the equation

dP/dK = 0 (or, more conveniently, dL/dK = dlog(P)/dK =

4.log(K)+4.log(1-K)+3.log(2-K)+log[4+(1-K)(2-K)2] = 0),

we obtain the maximum likelihood estimate of the pene-

trance value K, which for this family takes the value of

0.418.

Heterozygosis probabilities and the corresponding

risks for the offspring of all individuals of the filtered pedi-

gree can then be determined without difficulties. Obligate

carriers (known non-penetrant carriers and affected pene-

trant heterozygotes) have genotype Aa and the risk for their

offspring is simply R1 = K/2 = 0.418/2 = 0.209, or approxi-

mately 21%, for the above shown example. The probability

of heterozygosis for normal individuals born to obligate

carriers (three of which occur in the family used as exam-

ple) is taken directly from the quantity (2-K)/2 =

1/2+(1-K)/2 as P(het) = [(1-K)/2]/ [(2-K)/2] = (1-K)/(2-K) =

0.582/1.582 = 0.368. The probability of affected offspring

for these individuals is then R2 = (1-K)/(2-K).K/2 = 0.368 x

0.209 = 0.077, or approximately 8%. The heterozygosis

probabilities for all three individuals of the single tree of

normal individuals occurring in the worked pedigree can be

obtained from the term {1/2 + (1-K)/2.[(2-K)/2]2} by apply-

ing simple Bayesian reasoning, or by means of computer

programs. In an earlier work (Horimoto et al., 2010) we de-

scribe two self-contained computer programs that perform

most calculations necessary to estimate the penetrance rate.

These are the programs PenCalc for Windows and PenCalc

Web, which can be obtained free of charge from the web

page http://www.ib.usp.br/~otto/software.htm. Both pro-

grams are described in detail in the above mentioned article

as well as in the PDF-guide included in the zipped file of the

program PenCalc for Windows.

(2) Construction of Exact Credible Intervals for
K Estimates

Rogatko et. al. (1986) also used an exact credible in-

terval associated with a given K estimate. This interval can

be obtained by finding the area that corresponds to a given

proportion (v.g., 95%) of the total area under the graph of

the likelihood function. Mathematically, the problem is re-

duced to integrating the function y = f(K) between two lim-

its a and b with the same ordinate value [f(K = a) = f(K = b)],

so that �a,b[f(K)dK]/ �0,1[f(K)dK] = 0.95, an operation which

can be accomplished by simple computer programs using

numerical integration techniques such as Romberg’s

oscullatory method. The lower and upper limits of the exact

95% credible interval for the estimate K = 0.418 of the ex-

ample above are 0.163 and 0.725, respectively. This credi-

ble interval is so large that it might seem to be impractical in

a clinical setting. The reason for this particular extreme

range is that it was derived from the few data of the small

family used as example. In practice, larger pedigrees are

usually used. The ideal situation is one where several pedi-

grees of the same condition are available for analysis, and

the pooled data are used to perform the calculations of the

penetrance rate and of its 95% credible interval. For

instance, from the analysis of 21 different published pedi-

grees on the autosomal dominant ectrodactyly-tibial hemi-

melia syndrome, penetrance estimates and their correspon-

ding credible intervals varied from 0.191 (0.044-0.574) to

0.750 (0.329-0.973), while the global (pooled) penetrance

value estimate was 0.392, with a 95% credible interval of

0.339 to 0.447 (Horimoto, 2009).

(3) Specificity and Heterogeneity Issues

Another point that merits discussion is whether the K

value is specific for the family in which the disease segre-

gates or for the condition itself, independently from the fam-

ily. The non-penetrance of a genetic trait is assumed to

represent the lack of its phenotypic manifestation exclu-

sively or predominantly due to environmental factors (Mur-

phy and Chase, 1975; Praxedes and Otto, 2000) or random
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Figure 1 - Filtered pedigree of a family with several cases of an incom-

pletely penetrant autosomal disease.



genetic and epigenetic processes linked to the disease locus.

Of course penetrance can also be affected by a number of

events that include the epistatic action of modifying genes

and even temporal modifications of diagnostic criteria.

Therefore, to a certain extent, penetrance estimates might be

family-specific. Another complicating issue is that geneti-

cally heterogeneous conditions can be merged in the pooling

process. Nevertheless, since the statistical credible intervals

of isolated pedigrees usually are large, pooled estimates of

the parameter should be preferred, unless statistical tests dis-

close the existence of great amounts of heterogeneity among

penetrance estimates from various pedigrees.

(4) Penetrance Rate Estimates from Families
Undergoing Molecular Testing

In this section we discuss the comparison of estimates

obtained from families without molecular testing as to those

for which DNA testing has been used for classifying non-

penetrant heterozygotes and normal homozygotes. In the lat-

ter case, if molecular testing discloses all non-penetrant het-

erozygotes inside normal trees of individuals descending

from obligate carriers, and if there are n1 affected (penetrant)

individuals and n2 non-penetrant heterozygotes in the family,

the likelihood function reduces to L = log(P) =

n1.log(K)+n2.log(1-K). The maximum likelihood estimate is

then K = n1/(n1+n2), with binomial sampling variance of

var(K) = K(1-K)/(n1+n2). This would be an ideal situation in

which, besides providing a better estimate of K, the corre-

sponding 95% credible interval of the penetrance value thus

evaluated will be much smaller than the one provided by the

analysis of the family without DNA testing.

(5) Lack of Information about the Phenotype of
the Pedigree Generator

In some published pedigrees there is a lack of pheno-

typic information about the genealogy generator (affected

or non-affected?). Furthermore, the likelihood function P

may not include the parameter K or (1-K) corresponding to

the genealogy generator.

In order to evaluate whether the inclusion of the pedi-

gree generator significantly alters this K estimate, it is not

necessary to repeat the calculations for the two configura-

tions possible (penetrant or non-penetrant common ascen-

dant), because the likelihood function P, derived without

information on the pedigree generator, is correct, and thus

cannot be improved. In fact, if one wants to refer to the ped-

igree founder, one can say that she/he was affected with

probability K and unaffected with probability (1-K). The re-

sulting likelihood is KP + (1-K)P = P.

(6) Genealogies Containing Grouped Parent-
Offspring Information within Trees of Normal
Individuals Descending from Obligate Carriers

Certain published pedigrees present grouped parent-

offspring trees of normal individuals, without informing

the corresponding offspring numbers of all individuals in a

given sibship, as is the case of the pedigree with cases of the

ectrodactyly-tibial hemimelia syndrome (Majewski et al.,

1985) shown in Figure 2. This tree of normal individuals

represented by individuals II.8 to II.11 and III.14 to III.28

does not detail individual offspring numbers, and only the

total number of 15 is given.

Incomplete pedigree information is a simple but inter-

esting problem in combinatorial analysis that can be

straightforwardly solved by means of the theory of differ-

ence operators. Table 1 lists the numbers of possible gene-

alogy structures for a case of incomplete parent-offspring

information as a function of both parent and offspring num-

bers. Therein, with four parents, the number of possible

structures is given by y4(n) = (n+1)2 + (n+1)n(n-1)/6, where

n is the total offspring number of the four parents. For

n = 15, the outcome is y4(15) = 816 of such structures.

For each combination {i, j, l, m} of offspring number

the likelihood function of the whole tree is:

K4(1-K)2(2-K)5{1/2+(1-K)/2[(2-K)/2]9}{1/2+(1-K)/2

.[(2-K)/2]i}{1/2+(1-K)/2.[(2-K)/2]j}{1/2+(1-K)/2.[(2

-K)/2]l}{1/2+(1-K)/2.[(2-K)/2]m},

where i, j, l, and m are the unknown numbers of children for

each of the individuals II-8, II-9, II-10, and II-11, respec-
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Figure 2 - Pedigree containing a grouped tree of normal individuals (mod-

ified from Majewski et al., 1985).

Table 1 - Numbers of possible genealogy structures for the case of incom-

plete parent-offspring information.

Off-

spring

number

Parent number

1 2 3 4 5 6 7 8

0 1 1 1 1 1 1 1 1

1 1 2 3 4 5 6 7 8

2 1 3 6 10 15 21 28 36

3 1 4 10 20 35 56 84 120

4 1 5 15 35 70 126 210 330

5 1 6 21 56 126 252 462 792

6 1 7 28 84 210 462 924 1716

7 1 8 36 120 330 792 1716 3432

8 1 9 45 165 495 1287 3003 6435

9 1 10 55 220 715 2002 5005 11440



tively. In a population of approximately stable size, the av-

erage offspring number per couple does not differ from two

and it is known that the number of children per couple ade-

quately fits a Poisson distribution g(x) = e-22x/x! .

If each possible configuration is weighed by its prob-

ability (according to the Poisson distribution for the num-

ber of children per couple), this gives a credible interval on

K in a straightforward manner. This can be achieved as fol-

lows using the function:

P(i,j,l,m) = K4(1-K)2(2-K)5 {1/2+(1-K)/2[(2-K)/2]9}

{1/2+(1-K)/2.[(2-K)/2]i} e-22i/i!{1/2+(1-K)/2.

[(2-K)/2]j}e-22j/j!{1/2+(1-K)/2[(2-K)/2]l}e-22l/l!{1/2

+(1-K)/2[(2-K)/2]m}e-22m/m!,

and considering all 816 possible configurations referred

to above. For each configuration one can then obtain not

only a Kijlm estimate but also its exact 95% credible inter-

val. Estimates for the penetrance value K, as well as for

its exact 95% lower and upper credible limits LK and UK,

corresponding to the given tree structure can be straight-

forwardly obtained by averaging the estimates Kijlm, as

well as those for the lower and upper limits LKijlm and

UKijlm, as:

K = �(Kijlm.e-22i/i!.e-22j/j!.e-22l/l!.e-22m/m!) / �(e-22i/i!

. e-22j/j! . e-22l/l! . e-22m/m!) = �[Kijlm. 2i+j+l+m/(i! . j! .

l! . m!)] / �[2i+j+l+m/(i! . j! . l! . m!)] = �[Kijlm. 1/(i! .

j! . l! . m!)] / �[1/(i! . j! . l! . m!)] .

The numerical procedure is herein detailed using as

an example the simple hypothetical pedigree represented in

Figure 3. Table 2 shows the penetrance rate estimates for all

possible configurations contained in the grouped tree of

normal individuals of Figure 3. The final estimates for the

penetrance rate and for the lower and upper limits of its

95% credible interval are 0.4377, 0.1471 and 0.7813, re-

spectively.

(7) Ascertainment Issues

The general method proposed by Rogatko et al.

(1986) does not take into account any ascertainment biases.

The authors are correct in their paper in stating that their ap-

proach gets around the sample space problem by using only

the likelihood of the parameters, given the actual observa-

tions. Yet if ascertainment is not included, that likelihood

itself will not be correct. Advanced computer programs that

perform segregation analysis or estimate linkage, such as

the classical S.A.G.E. (S.A.G.E., 2009) and LINKAGE

(Lathrop et al., 1985) programs we referred to in the intro-

duction section, do not apply any ascertainment bias to the

penetrance rate they indirectly estimate.

By using a very simple example we could show that

the crude K estimates obtained from genealogies are actu-

ally inflated. Figure 4 lists all possible trees of offspring

size = 2 with a pedigree generator carrier of the pathologic

gene (affected in A, B and C, and non-penetrant heterozy-

gous in D, E and F) disclosed by an (impossible) ascertain-

ment devoid of any bias. The probabilities associated with

each tree are shown in Figure 4.

Let now nA, nB, nC, nD, nE, and nF be the numbers of

structures A, B, C, D, E, and F observed in an ideal, large

sample collected without any ascertainment bias. Then, the

corresponding likelihood function in logarithmic form

would be:

L1 = (3nA+2nB+2nD+nE).ln(K) + (nD+nE+nF).ln(1-K)

+ (nB+2nC+nE+2nF).ln(2-K),

from which the maximum likelihood estimate of K is ob-

tained without difficulties.

A careful collection of a large number of families

with offspring number 2 and a tree-generator carrier of the

gene would consist only of structures A, B, C and D. Con-

figuration E would not be included, as the only affected in-

dividual would be, with a large probability, the result of a

new mutation; and configuration F would never be ascer-
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Table 2 - Maximum likelihood estimates of penetrance value (Kij) and

lower (LKij) and upper (UKij) limits of its correspondent 95% credibility in-

terval for all possible configurations obtained from the grouped tree of

normal individuals shown in the pedigree of Figure 3.

i j Pij Kij LKij UKij

0 4 0.0625 0.443106 0.149314 0.782835

1 3 0.2500 0.437653 0.147112 0.781286

2 2 0.3750 0.435844 0.146389 0.780826

3 1 0.2500 0.437653 0.147112 0.781286

4 0 0.0625 0.443106 0.149314 0.782835

1.0000 0.437656 0.147116 0.781307

i, j: offspring numbers of the two parents; Pij: normalized product

(weighing factor) obtained through Pij = e-22i/i!.e-22j/j!/�(e-22i/i!.e-22j/j!);

average estimates for Kij, LKij and UKij are shown in bottom line.

Figure 3 - Hypothetical pedigree containing a grouped tree of normal indi-

viduals with incomplete information (at left) and the possible configura-

tions obtained from the grouped tree (at right).



tained, because it contains only normal individuals. The

corresponding (logarithmic) likelihood expression would

then be given by:

L2 = (3nA+2nB+nC+2nD).ln(K) + nD.ln(1-K) +

(nB+2nC).ln(2-K),

from which, as in the previous case, the maximum likeli-

hood estimate can be easily obtained.

Let us now take the following numerical example. Let

the actual (unknown) value of K be 0.8; then the probabili-

ties associated with structures A, B, C, D, E, and F would

take the values P(A) = 0.128, P(B) = 0.384, P(C) = 0.288,

P(D) = 0.032, P(E) = 0.096, and P(F) = 0.288. In a sample

of size 1000 we would therefore expect to find the sample

numbers nA = 128, nB = 384, nC = 288, nD = 32, nE = 96, and

nF = 72. The unbiased estimate would then take the value

K = 0.8, as expected. In the case of an incompletely ascer-

tained sample, the biased estimate of K’ would take the

value 0.951825 > 0.8.

It is not possible to obtain an exact solution in simple

analytical form for the function K’ = f(K), where K’ is the

biased maximum likelihood estimate and K the true one

(unknown, completely unbiased estimate of the penetrance

value), but we can evaluate K’ estimates for any given fixed

value of K by means of likelihood expression L2. For any

true value of K the biased estimate, K’ is an inflated value,

as we could guess intuitively. Using a program on non-

linear regression analysis, such as the NLREG software

(Sherrod, 2000), we can adjust the observed set of points to

the generalized empirical function y = axb.ecx (Bronshtein

and Semendiaev, 1973) where y = K’ and x = K.

We then estimated sets of pairs of values K and K’

varying offspring size from 2 to 10, and in each case we ob-

tained corresponding generalized empirical functions

yi = aix
bi.ecix, where y = K’ and x = K. as in the case of the

previous example. The functions corresponding to off-

spring sizes from 2 to 10, all showing a perfect statistical

fitting with the corresponding observed biased estimates,

are plotted in Figure 5, where y stands for K’ and x for K.

The graph also shows the function K’ = K that corresponds

to the case of an offspring with infinite size.

As expected, with sibship size increasing the differ-

ence between corresponding estimates K’ and K becomes

negligible, mainly in relation to values of K in its usual

range (K > 0.8). This is a result that certainly can be gener-

alized for any homogeneous or heterogeneous set of
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Figure 5 - Relation between unbiased (K) and biased (K’) penetrance val-

ues, shown at abscissa and ordinate axes respectively, depending on off-

spring size (2, 3, 4, 5, 6, ..., infinite).

Figure 4 - Probabilities associated with all possible trees of offspring

size = 2, in which the pedigree generator is an obligate carrier of a patho-

logic gene. The pedigree generator is affected in the first three trees and

unaffected in the remaining ones.



pedigrees. Since optimized K estimates are obtained from

large filtered pedigrees, or from the pooling of many pedi-

grees, the ascertainment bias just discussed will only pro-

duce slightly inflated K estimates. In the case the actual

values of K, as well as the total number of informative indi-

viduals (penetrant, obligate non-penetrant and those be-

longing to normal trees descending from obligate carriers)

are both small, the K estimates will not be reliable, as

shown in Figure 5. For offspring sizes of 10 (total of 11 in-

formative individuals) or more, it is also easy to conclude

that estimated values of K in the range of 0.5 or more are re-

liable and do not need to be corrected. In any case, estimate

corrections can be performed by enumerating all possible

filtered pedigrees corresponding to a given tree structure

and comparing the estimated K values to the inferred actual

ones, just as we did before using the very simple examples

discussed above.
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