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Color serves both to segment a scene into objects and
background and to identify objects. Although objects
and surfaces usually contain multiple colors, humans can
readily extract a representative color description, for
instance, that tomatoes are red and bananas yellow. The
study of color discrimination and identification has a
long history, yet we know little about the formation of
summary representations of multicolored stimuli. Here,
we characterize the human ability to integrate hue
information over space for simple color stimuli varying
in the amount of information, stimulus size, and spatial
configuration of stimulus elements. We show that
humans are efficient at integrating hue information over
space beyond what has been shown before for color
stimuli. Integration depends only on the amount of
information in the display and not on spatial factors
such as element size or spatial configuration in the range
measured. Finally, we find that observers spontaneously
prefer a simple averaging strategy even with skewed
color distributions. These results shed light on how
human observers form summary representations of
color and make a link between the perception of
polychromatic surfaces and the broader literature of
ensemble perception.

Introduction

How do we attribute the color red to an apple?
Objects often appear to have one predominant color,
although their surfaces may contain substantial spatial
variation in how they reflect wavelengths of light.
Consider the apples in Figure 1 and the range of
different colors shown in the insets. Parts of the apple

reflect more long-wavelength light, appearing mostly
reddish, while some parts reflect light more evenly
across the wavelength spectrum, appearing more
yellowish or brownish. Despite this variety in the
wavelengths of reflected light, we probably classify both
apples as red and may determine that the one on the left
is the redder of the two.

To form an estimate of the “representative” color—
perhaps the mean—of one of the apples in Figure 1, the
visual system has to integrate color information from
different spatial locations. Summarizing information
across several samples is generally useful as it reduces
noise in perceptual estimates (Alvarez, 2011), making it
a potentially beneficial strategy across sensory domains.
For a wide variety of visual stimulus attributes, distinct
items can be swiftly and effortlessly integrated from
several parts of the visual field into something akin to
a statistical representation (for reviews, see Alvarez,
2011; Whitney & Leib, 2018). The visual system is able
to form ensemble percepts for a wide variety of visual
stimulus attributes ranging from orientation (Parkes
et al., 2001) to facial emotions (Haberman & Whitney,
2007, 2009).

Although spatial variation in surface color is the
norm, we know relatively little about integration of
color information across space. A small number of
studies have investigated the extraction of summary
descriptions from natural polychromatic surfaces
(Milojevic et al., 2018; Vurro et al., 2013), multicolor
mosaics (Kimura, 2018; Kuriki, 2004), and hue
ensembles (Maule & Franklin, 2015, 2016; Maule
et al., 2014; Webster et al., 2014). Milojevic et al. (2018)
showed that human observers use the mean hue (or
possibly the colorimetric mean) when sorting autumn
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Figure 1. A photograph of two apples with insets showing colors
in different locations on the surface of the apples. Despite the
large range of surface colors, most observers have no trouble
assigning a representative color to these apples.

leaves by color. This is also true for more simplistic
color arrays (Maule et al., 2014; Webster et al., 2014),
although there is a tendency to deviate toward the most
saturated sample in a color mosaic (Kimura, 2018;
Kuriki, 2004).

But how efficiently do observers use information
in a multicolored array? Maule and Franklin (2016)
estimated that observers only use as few as two samples
in a 16-element hue array when judging average color.
This is a remarkably low estimate, compared to those
from other visual feature dimensions such as orientation
and motion where the number of samples utilized by
the visual system grows as a function—in some cases
roughly as the square root—of the number of samples
available (Dakin, 2001; Dakin et al., 2005; also see
Figure 4 in Whitney & Leib, 2018). No studies focusing
on color, however, have systematically manipulated the
number of elements (and noise) in the stimulus, which
might be necessary to adequately quantify the efficiency
of spatial integration.

Finally, previous research on color ensembles has
mostly focused on the perceived average color of a
symmetric color distribution. There is evidence that
the shape of a color distribution can be implicitly
represented in certain tasks (Chetverikov et al., 2017).
As of yet, we do not know how the shape of a color
distribution affects the perceived color of an ensemble
stimulus, if at all.

Here we systematically investigate the rapid
extraction of summary information from color
ensembles. We use an approach similar to one that
has been used to study the integration of orientation
signals in the human visual system (Dakin, 2001). In
natural viewing, object color varies along multiple
dimensions (lightness, saturation, and hue). We focus
here on the hue dimension of color. Hue variation
is highly prevalent in most natural surfaces, while

it may be less variable in man-made objects. It is
arguably the most informative aspect of color in terms
of underlying surface pigment (Kingdom, 2008),
categorization by color (Milojevic et al., 2018), and
object identity (see Figure 3 in Olkkonen et al., 2008).
In order to estimate the efficiency in extracting hue
information from ensembles, we systematically vary
the external noise (variance of the hue distribution
from which the stimuli are drawn) and the number of
samples available to the observer and estimate effective
sampling through mathematical modeling. We find that
observers use a vastly larger number of samples than
previously estimated for color. In a control experiment,
we dissociate the effects of number of samples and
total stimulus area in the visual field. Surprisingly,
hue averaging performance is equivalent whether the
stimulus elements are abutting or spatially separated,
suggesting a greater role for surface as opposed to edge
information. Finally, we show that the spontaneous
integration strategy for most observers is to use a
simple average when the shape of the hue distribution is
varied.

General methods

We conducted three experiments to characterize
different aspects of the spatial integration of hue. Below,
we present the general methods that apply to all three
experiments unless otherwise noted. Methods specific
to each experiment are presented in their respective
sections.

Observers

Twelve observers took part in the experiments (eight
female, age range 20–60, mean age 33 years). Not all
observers participated in all experiments; Table 1 lists
the participants for each experiment. Two observers
were the authors LSV and TPS; the other 10 observers
were naïve to the theoretical aims of the experiment.
All observers had normal or corrected-to-normal
visual acuity and normal color vision as assessed by
the Ishihara color plates (Ishihara, 1987). Observers
gave informed consent and received cinema tickets for
their time. The experimental protocol was approved
by the University of Helsinki Ethical Review Board in
Humanities and Social and Behavioral Sciences.

One of the nine observers who participated in
Experiment 1 reported not being able to determine hue
differences toward “bluer” and “yellower” in the stimuli,
which was essential to the task. This difficulty persisted
even after the observer was shown a continuum from
yellow to blue. For some of the experimental conditions,
a psychometric function could not be fit, so this
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O1 O2 O3 O4 O5 O6 O7 O8 O9 O10 O11 O12 Total

Experiment 1 x x x x x x x x (x) 8 (9)
Experiment 2 x x x x x x x x 8
Experiment 3 x x x x x x x x 8

Table 1. List of observer participation in different experiments. Observer 12 was omitted from analysis because psychometric
functions could not be fit to the data for several experimental conditions.

Figure 2. The time course of a single trial. The observer was
shown a dot indicating the center of the screen for 250 ms,
then the standard stimulus for 500 ms. This was followed by an
inter-stimulus interval with the center dot for 250 ms and then
the comparison stimulus for 500 ms. Finally, the screen
remained blank until the observer gave a response indicating
whether the second stimulus was yellower or bluer than the
first. The following trial began after response.

observer was omitted from further analysis. After this
omission, each experiment had eight participants.

Apparatus

The experiments were conducted on an HP Z230
Desktop PC runningMATLAB (Version R2016b, Build
9.1.0.441655) with the PsychToolBox-3 extensions
(Brainard, 1997; Kleiner et al., 2007; Pelli, 1997).
Stimuli were presented on a 23 inch. ViewPixx monitor
controlled by an Nvidia Quadro K620 graphics card.
The monitor resolution was 1,920 × 1,080 pixels,
with 100-Hz refresh rate, 10-bit color channels, and
a maximum luminance of 250 cd/m2. The display
white point was set to be metameric to D65. The
display primary spectra and gamma functions were

measured using the X-Rite i1Pro spectrophotometer,
and linearization of luminance was achieved by
interpolating the gamma functions. Observers took
the experiment in a dimmed room, and their viewing
distance was held constant at 90 cm from the screen
using a chinrest. Observers gave their responses using a
regular keyboard.

Stimuli

We defined stimulus chromaticities in the CIELAB
color space with the monitor white point as the
reference. Stimulus lightness and chroma were held
constant at L = 60 and C = 50, while hue varied on
the hue circle in the CIELAB space. To ensure good
visibility of the color stimuli, the background was
set to a slightly darker uniform gray (luminance 46
cd/m2, L = 50). As hue averaging is compromised over
excessively large variations (Maule & Franklin, 2015),
we chose to limit hue variation within “greenish” colors.
To enable a choice task between “bluer” and “yellower”
categories, we employed hues around the center point
of 150 degrees of hue angle, which is roughly in the
middle of the green category (Bae et al., 2015).

The standard stimulus consisted of a square grid
with a varying number of square elements (from 1 to
64) near the middle of the screen. The mean color of
the standard stimulus was randomized on each trial
between 140 and 160 degrees of hue angle, so that the
observer would have to estimate the average hue of both
the standard and the comparison (see below) stimulus
on every trial, instead of forming and relying on an
“implicit standard” based on the standard stimulus
mean. The stimulus center location was randomized
around the screen center within a 60-pixel range from
the screen midpoint to avoid local adaptation to edges
and color aftereffects. Each element was filled with a
uniform color and extended one degree of visual angle.
Depending on the experimental condition, the elements
were either abutting or separated by a 1

3 -degree gap
of background gray. For no-noise trials, all stimulus
elements shared the standard stimulus mean hue,
making the whole stimulus uniform in hue. For noise
trials, a set of random hue angles for the elements was
drawn from a circular von Mises distribution centered
at the standard stimulus mean hue. The von Mises
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distribution’s probability density function for angle x is
of the form:

d (x | μ, κ ) = eκ cos(x−μ)

2πI0(κ )
, (1)

where I0(κ ) is the modified Bessel function of order 0,
μ is the mean, and κ is the concentration parameter.
We used the values κ = 40 and κ = 15 for the low-noise
and high-noise conditions, respectively (corresponding
approximately to normal distributions with standard
deviations of 9.12 and 14.79 degrees).

The comparison stimulus was spatially identical to
the standard stimulus but had its mean hue drawn
from a distribution centered at one of the nine
comparison levels around the standard stimulus mean.
The comparison levels were selected from preset ranges
for each noise (e.g., Experiment 1) or set size (e.g.,
Experiment 2) condition. The decision was based on
the practice results of individual observers so that the
comparison stimulus covered the range that allowed
measuring thresholds.

Procedure

The time course of one trial is illustrated in Figure 2.
On each trial, the observer was shown a blank screen
(uniform gray of the background) with a white dot of
0.1 degrees of visual angle indicating the middle of the
screen for 250 ms. The observers knew that the white dot
indicates the approximate location of the stimulus, but
they were not required to maintain fixation exactly on
the dot. Next, the standard stimulus was displayed for
500 ms. Again, the blank screen with a center dot was
displayed for 250 ms, now followed by the comparison
stimulus for 500 ms. Finally, the screen remained blank
until the observer gave a response. The observer’s task
was to respond whether the hue represented by the
whole of the comparison stimulus was “yellower” or
“bluer” than that for the standard stimulus. We did
not use the word “mean” in the instructions in order
to avoid encouraging particular strategies (this was
especially important for Experiment 3). The observer
responded by pressing the left or right arrow key on
the keyboard. The mapping between response and
left/right key was counterbalanced across observers.
Observers received no feedback for the correctness of
their responses. Standard and comparison intervals
were not randomized (always presented in a fixed order)
for consistency across experiments, as randomization
was not possible in some experiments.

Data analysis

Data analysis was performed in MATLAB (Version
R2018b, Build 9.5.0.944444), except for the Bayesian

analyses of variance (ANOVAs) and t-tests, which were
conducted in JASP (JASP Team, 2018). We recorded
the number of “bluer” responses by the observer
for each comparison level. A psychometric function
(cumulative Gaussian) was fit to these response data by
a maximum likelihood method with mean and standard
deviation (SD) as parameters. The mean gives the
point of subjective equality (PSE), and its difference
from the true value gives an estimate of bias (used in
Experiment 3). We used the SD as an estimate of the
discrimination threshold (Experiments 1 and 2).

A bootstrap method was used to estimate the
standard error of the mean (SEM) for individual
observers in different experimental conditions (Efron
& Tibshirani, 1986). The data were sampled with
replacement for each data point, and a psychometric
function was fit to the sampled data. This was repeated
for 2,000 iterations, and the 68.27% confidence limits
of the resampled parameters were drawn to represent
±1 SEM. Repeated-measures Bayesian ANOVAs and t
tests were performed to test the effects of the particular
experimental manipulations in each experiment.

Modeling

In Experiment 1, external noise as symmetric and
equal among stimulus elements. Internal noise was also
assumed to be symmetric and equal, making simple
averaging with equal weights an optimal strategy to
estimate stimulus hue. To estimate the effective sampling
(the number of stimulus elements the observer is able to
use), we fit a noise model to each observer’s data. The
model is similar to one that has been used for modeling
the integration of orientation signals (Dakin, 2001).
The model observer averages hue samples with equal
weights, matching the optimal strategy in the task.
Internal noise in the model has a zero-mean Gaussian
distribution, and it affects the coding of each sample
equally and independently. The bottleneck for the
model observer is limited capacity in sampling—not all
samples can necessarily be used, making performance
sub-optimal. The more samples the observers are able to
utilize, the more they are able to average out noise in the
stimulus. By introducing external noise and estimated
internal noise to the equation, one can estimate how
many individual cues are needed to average out enough
noise to match the observer’s performance. The basic
form of the model is:

σr =
√

σi2 + σe2

ns
+ σo2, (2)

where σr is the noise in the internal response to the
whole stimulus, σ e

2 is the external noise variance, σ i
2 is

the variance in the internal response to a single element,
σ o

2 are other sources of noise, and ns is the number
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Figure 3. Experimental conditions for Experiment 1. The experiment included five different types of stimuli as seen on the left side of
the figure and three levels of added noise for the element hues on the right. The one-element stimulus was only tested in the
no-noise condition to avoid redundancy. Please note that the stimulus examples here and in subsequent figures are shown for
illustration only and do not exactly match the stimuli in the experiment, which were color-calibrated and shown on a gray background.

of samples used by the observer. In our experiment,
values of

√
2σr would indicate observer performance in

terms of discrimination thresholds. In the first variant
of the model, ns represented a fixed maximum number
of samples the observer is able to use. In the second
variant of the model, instead of estimating a fixed value
for ns, we modeled the number of samples used as ns =
nek, where 0 < k < 1, so that ns always depends on the
number of stimulus elements. These two models will be
referred to as the simple model and the power model,
respectively. Both models have three free parameters
(σ i

2 and σ o
2 in both models plus ns in the simple model

and k in the power model). The model was fit for each
observer individually by maximizing the log-likelihood
of the parameter values given the data. One set of
parameters was estimated for all conditions (a single
model was fit to all noise conditions and stimulus sizes).
For illustration in Figure 4, the power model was also
fit to the averaged discrimination thresholds.

Experiment 1: Effects of external
noise and spatial properties

Methods

Experiment 1 focused on estimating the number of
stimulus elements observers use to judge the ensemble
hue. We employed a factorial design in which the
number of elements (1, 4, 16, 64) and amount of
external noise in the hue of elements (no noise, low
noise, high noise) served as independent variables
(Figure 3). In a separate condition, we varied the
distance between elements for the 16-element stimulus
(abutting or separate elements). Also, the one element
stimulus was only tested with the no-noise condition
to avoid redundancy. This resulted in 13 experimental

blocks, which were repeated twice in a random order
for a total of 26 experimental blocks per observer.

Before the main experiment, the observers completed
a practice run with a subset of nine experimental
conditions, with a small number of repetitions. A short
demo introducing the different stimuli and the task was
shown before practice. A practice run was conducted at
the beginning of each measurement session. Practice
runs consisted of five repetitions for nine levels of the
comparison stimulus for each of the nine experimental
conditions included, resulting in 405 practice trials.
In the main experiment, a single trial block contained
10 repetitions for the nine comparison levels for a
given condition. Each block was run twice for the 13
conditions, resulting in a total of 2,340 trials for the
main experiment. Experiment 1 took approximately
two hours to finish, which observers completed in one
or two sessions.

Results and discussion

The main results for all eight observers who
participated in Experiment 1 are shown in Figure 4
with measured discrimination thresholds indicated by
the symbols and dashed lines and our model fit by solid
lines. The results for the separated 16-element condition
are shown next to the data from the abutting 16-element
condition (16S and 16A) on the right of each panel.
Figure 4 shows three main results: (1) The task was
more difficult with more external noise, (2) performance
improved as the number of elements increased, and
(3) the improvement in performance with increasing
number of elements was more pronounced at higher
noise levels. To evaluate the robustness of these effects,
we ran Bayesian repeated-measures ANOVAs with
noise and set size as factors for set sizes 4, 16, and 64.
There was strong evidence for the effect of noise (BF10
= 4 × 106) and set size (BF10 = 630) when considered



Journal of Vision (2020) 20(5):1, 1–14 Virtanen, Olkkonen, & Saarela 6

Figure 4. Discrimination thresholds for Experiment 1. The top left panel shows the average data over eight observers; the other panels
show individual observer data. The x-axes indicate different set size conditions and the y-axes the discrimination thresholds in degrees
of CIELAB hue angle. Different colors indicate different noise conditions: no noise (NO) in red, low noise (LO) in green, and high noise
(HI) in blue. Symbols and dashed lines show the estimated discrimination thresholds from the data with error bars showing ±1 SEM.
Solid lines show the model fits. The comparison between the 16-element condition with abutting (16A) and separated (16S) elements
is shown on the right of each panel.

separately, but the strongest evidence was shown for the
effect of both noise and set size together, along with
their interaction (BF10 = 1.3 × 1020).

Our two variants of the noise models (the simple
model and the power model) both fit the data well. The
power model, however, did offer a slightly better fit for
seven out of eight observers, evaluated by log-likelihood
values. Thus, only the model fits of the power model
are shown in Figure 4. With the power model, the
exponent for the number of available elements to
get the observer’s effective sample size varied from
0.64 to 0.89 across observers. This means that the
effective sampling ranged from a minimum of 2–3 in
the 4-element condition to a maximum of 14–41 in the
64-element condition. The model also fit the averaged
data well, giving an estimate of 0.83 for the exponent

parameter, near the higher end of the estimates for
individual observers.

It was recently suggested that hue averaging can
be accounted for by a limited random subsampling
mechanism using just two elements for averaging
(Maule & Franklin, 2016). In contrast, not only did
averaging performance increase from 16-element
stimuli to 64-element stimuli in Experiment 1, but our
modeling results pointed to a much higher estimate of
maximum effective sampling size. Also, a slightly better
fit was achieved when the number of samples observers
utilized was allowed to vary with the number of
elements available: The more elements in the stimulus,
the more the observers can use. This is similar to what
Dakin (2001) found with orientation and in line with a
meta-analysis over several ensemble perception studies
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by Whitney and Leib (2018) suggesting a sampling rate
of roughly the square root of displayed items.

To explore the effects of the spatial separation
of elements, the abutting and separated versions of
the 16-element condition were compared in all three
external noise conditions. As illustrated on the right
of each panel in Figure 4, performance was roughly
the same whether the elements were abutting or not.
A Bayesian ANOVA testing the effect of element
separation was weakly in favor of no effect of separation
(BF10 = 0.623).

Not finding a difference in performance between
abutting and separated elements was somewhat
surprising. First, based on previous research, we would
expect that such contextual changes might affect both
color appearance (Brown & MacLeod, 1997; Faul
et al., 2008) and color discrimination (Krauskopf
& Gegenfurtner, 1992). Kuriki (2004) also reported
that observers perceived reddish colors from a mosaic
with abutting squares of greenish colors. Second, the
ensembles with abutting elements appear more like
textures (or even objects), whereas the ensembles with
separated elements appear more like the kinds of
arrays commonly used in ensemble perception studies.
That element separation does not matter suggests
that “objecthood”—to the extent that our stimulus
conditions manipulated it—may not be relevant for
ensemble perception of hue.

Experiment 2: Spatial properties

Methods

We found in Experiment 1 that performance improves
with the number of elements. However, we kept the
element size and spacing constant in Experiment 1,
which led to stimulus size increasing with the number
of elements. We designed Experiment 2 to directly test
the role of the number of elements in relation to other
spatial factors. Figure 5 shows the different conditions,
which varied in terms of the number of elements,
element size, and element spacing.

The different stimulus conditions were designed to
delineate between the effects of the number of elements,
total signal area, and total stimulus coverage of the
visual field. The stimuli consisted of either 1-degree or
2-degree elements, so we measured the discrimination
thresholds for these with no external noise to see
if they are comparable (these are identical to the
no-noise, one element, and four element conditions in
Experiment 1). The four main stimulus conditions were
(from left to right in Figure 5) a 16-element stimulus
with abutting 1-degree elements, a 16-element stimulus
with 1-degree elements separated by a 11

3 -degree gap, a
16-element stimulus with abutting 2-degree elements,

Figure 5. Experimental conditions for Experiment 2. The
experiment included six different types of stimuli. The one
element stimuli were only tested in the no-noise condition and
acted mainly as a control. The other four stimuli were designed
to share some of the aspects named in the figure while differing
in others: number of elements, signal surface area, and overall
surface area. They were presented only in the high-noise
condition. Please note that these stimulus examples are shown
only for illustration and do not exactly match the stimuli in the
experiment. The experimental stimuli were carefully
color-calibrated and shown on a gray background.

and a 64-element stimulus with abutting 1-degree
elements. Of these, the first two and the last two had the
same signal surface area, the first three had the same
number of elements, and the last three had the same
overall coverage of the visual field. In each of these
main conditions, stimulus hues were drawn from the
high-noise distribution of Experiment 1.

Similarly to Experiment 1, Experiment 2 consisted of
a practice session and the main experiment, preceded by
a short demo. The practice included all six experimental
conditions (see Figure 5) with seven repetitions for each
of the nine comparison levels, resulting in 378 trials.
In the main experiment, the six experimental blocks
were repeated twice in random order, resulting in 12
blocks. With each block having 10 repetitions for nine
comparison levels, there were in total 1,080 trials per
observer. The whole experiment took approximately
one hour to finish, and all observers completed it in one
session.

Results and discussion

Figure 6 shows the results for Experiment 2. First,
element size had little effect on performance, as shown
by the similarity of the two leftmost data points; a
Bayesian planned comparison t test was somewhat in
favor of no difference (BF10 = 0.46). This is in line
with the results from Experiment 1 where thresholds in
the no-noise condition were little affected by stimulus
size. The single elements thus seemed to provide equal
information of hue. Next, we compared stimulus arrays
with different element sizes. Despite different spatial
manipulations, observers demonstrated equal average
performance in all 16-element conditions. The only
consistent effect on performance was due to the number
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Figure 6. Discrimination thresholds in Experiment 2. Averages
over eight observers are shown with thick closed circles; the
unsaturated circles show the data for individual observers. The
different experimental conditions are shown on the x-axis and
indicated with insets above the data points, while the y-axis
shows the discrimination thresholds (SDs, measured in hue
angle). Error bars show ±1 SEM. Colors are as in Figure 4 (red =
no noise, blue = high noise).

of elements in the stimulus, with a significantly lower
discrimination threshold average in the 64-element
condition. A Bayesian one-way ANOVA with the three
16-element conditions and the 64-element condition
as levels showed an overall difference (BF10 = 16.04).
Planned comparisons showed moderate to strong
evidence for the difference between the 64-element
condition and all 16-element conditions (all BF10 >
9.90) and some evidence for no difference between the
16-element conditions (all BF10 = 0.36–0.38).

These results show, first, that the effects we saw in
Experiment 1 were due to the number of elements and
not differences in other spatial properties—namely,
area—of the stimulus. Second, and more surprisingly,
they suggest that the mechanism underlying ensemble
perception for hue is insensitive to salient differences
in the stimuli, such as the distance between individual
elements and the size of the stimulus array, at least
within the limits of the stimuli used here.

Experiment 3: Effect of distribution
shape

Methods

In the third experiment, we asked whether changes
in the shape of the noise distribution produce changes

to observers’ spontaneous integration strategy. For the
purpose of spontaneity, we avoided any mention of
“mean” or “average” in observer instructions. Instead,
observers were asked to answer according to what they
perceived as “yellower” or “bluer” and were told that
there was not necessarily a correct answer.

In this experiment, instead of performance, we were
mainly interested in perceptual bias. Three different
set size conditions (4, 16, and 64) were selected with
two levels of noise (low and high). Each of these six
experimental conditions was tested both with a skewed
distribution and with a baseline condition with no
skew. In the skewed noise conditions, element hues
for the standard stimulus were drawn from a strongly
skewed (skew ≈±.96, switched between observers)
normal distribution with a standard deviation closely
matching the von Mises κ values of 40 and 15 from
other experiments (SDs were approximately 9.12 and
14.79 degrees of hue angle for low and high noise,
respectively). The variances of the normal distribution
were sufficiently small not to wrap around the hue
circle. Hence, a normal distribution is practically
identical to the von Mises distribution in this case. For
observers who had already completed Experiment 1,
baseline measures of response bias were taken from the
corresponding measures (but with abutting elements).
For other observers, a separate baseline measurement
was conducted.

The comparison stimuli were similar to Experiments 1
and 2 except for having no added external noise; in
other words, all the elements were of the same hue.
The reason for this was that applying the same skewed
distribution to both the standard and comparison
stimulus would prevent detecting any perceptual bias, as
any perceptual bias would apply equally to both stimuli.
Also, using a normal distribution in the comparison
stimuli might have prevented observers from learning
the distribution characteristics of the standard stimulus.
Because the comparison stimuli were of uniform
hue, both the standard and comparison stimuli were
presented with separated elements (separation of 1

3
element size) to avoid having observers compare stimuli
with very different edge information. In contrast, for
baseline measurements, the comparison stimulus hues
were drawn from the same distribution as the standard
stimulus hues, similarly to Experiment 1.

The experiment consisted of a practice run and the
main experiment preceded by a short demo. Practice
runs had seven repetitions for nine comparison levels
for all of the six experimental conditions, resulting in
378 trials total. For the main experiment, there were
12 blocks in total as the six experiment blocks were all
presented twice. The observers first completed all six
experimental blocks in a random order, after which they
completed the same six blocks again, also in a random
order. This was done to enable us to gauge possible
learning effects. Each block had 10 repetitions for nine
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Figure 7. Perceptual biases in Experiment 3. The top left panel shows data averaged over eight observers, while the other panels show
individual observer data. X-axes indicate different set size and noise conditions and y-axes indicate bias (point of subjective equality
minus the standard stimulus mean, measured in degrees of hue angle). The solid line at the zero mark on the y-axis indicates the
distribution mean and the dashed line the mode for the low-noise condition (high-noise mode is located at 13.54 on the y-axis, out of
graph range). Gray squares indicate the baseline biases (with no skew) while green and blue dots indicate biases with skewed low and
high noise, respectively. Error bars show ±1 SEM. Note that although different observers were assigned with either a positively or a
negatively skewed noise distribution, the results are flipped to always have the distribution mode in the positive direction.

comparison levels, resulting in a total of 1,080 trials.
The main experiment took observers approximately one
hour. The additional baseline measurements shared all
the aforementioned details and similarly took observers
approximately one hour. Furthermore, because of a
programming error, the experiment procedure only
repeated the experimental blocks for the low-noise
conditions four times each for the first four observers.
After remedying the issue, three of the four observers
returned for an additional measurement of the missing
high-noise condition, which included 540 trials, but
observer O3 only completed the low-noise condition.

Results and discussion

The results of Experiment 3 are visualized in
Figure 7. The results were flipped for observers
who had a positively skewed distribution in their
measurements. This was done to always have the skewed
distribution mode in the positive direction for the sake
of comparison and statistical testing. Also note that
only the mode for the low-noise distribution is visible in
Figure 7, located at 8.36 on the y-axis. The mode for the
high-noise condition is located at 13.54 on the y-axis
and thus out of the graph range.
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Only observer O10 showed consistent biases away
from the mean in responses overall, and observer O1
only showed biases with larger set sizes. Other PSEs
were located close to the distribution mean. A three-way
repeated-measures Bayesian ANOVA with distribution
skew, number of elements, and external noise as factors
confirmed that responses were not significantly biased
toward the mode (no model showed more evidence for
the alternative hypothesis, and the models with all three
factors and second/third-order interaction showed
more evidence for the null, with BF10 below 0.07). The
results show little difference from a simple averaging
strategy where all elements are weighted equally.

Only two of our eight observers showed any sign
of adjusting their strategy from simple averaging
into discarding or downweighting outliers and/or
upweighting most numerous hues, all of which would
shift the observer’s PSE from the distribution mean
toward the mode. In these two cases, the most bias was
seen with higher noise and larger set sizes, which is not
surprising considering that these cases included more
information about the shape of the distribution while
also having a larger possibility for significant outliers.
Arguably, as the measured biases were still far from the
distribution modes, the results could be explained as
these observers simply discarding only the most extreme
outliers. Considering that six of the eight observers
were effectively unbiased, discarding outliers does not
seem to be a general strategy in this task.

General discussion

Our results show that observers are effective in
averaging hue information when the number of
elements in a hue ensemble increases. We estimated
the sample size used in averaging to be the number
of displayed items to the power of 0.83, or roughly
half of 64 elements. The advantages of averaging are
especially visible with high external uncertainty about
the element hues, but a simple noise model accounts for
performance with all noise levels on a single-observer
basis. Importantly, the improvement in performance is
driven by the number of elements and not by stimulus
or signal area. Finally, even with a strongly skewed hue
distribution, most observers seem to spontaneously
favor a simple averaging strategy.

Our main findings from Experiment 1 point toward
much more effective sampling in hue integration than
has previously been reported by Maule and Franklin
(2016). This discrepancy, however, might be more
superficial than it initially seems and is probably mostly
explained by differences in the stimuli between the
two studies. Instead of having genuine stochastic
variation, the hues in the Maule and Franklin study
were selected from a set of predefined hues separated

by a number of steps in just noticeable hue differences.
Further, their 16-element stimulus had only four of
these distinct and discriminable hues, each repeated
four times. Thus, if considering the number of distinct
hues in the stimulus, the sampling rate estimated by
Maule and Franklin is consistent with our modeling
results, which would indicate roughly two samples for
the four-element stimulus, as well as previous estimates
from other feature dimensions when only a small
number of items were available to the observer (Allik
et al., 2013; Haberman & Whitney, 2009; Sweeny &
Whitney, 2014). It is also possible that the small number
of distinct hues in Maule and Franklin’s study may
have encouraged a more cognitive strategy: Tokita
et al. (2016) proposed that observers employ different
strategies when estimating summary statistics from
small sets and similar strategies with larger sets.

We tested hue integration on a restricted range of
hues, but considering that hue averaging is relatively
accurate in several different hue categories (Kimura,
2018), we believe the present results generalize to
other hue ranges, as long as the hue variation in the
stimulus remains moderate. For large hue variations,
rapid averaging of hue becomes inefficient (Maule &
Franklin, 2015).

The estimated number of elements utilized by our
observers clearly surpasses the commonly held limits of
attentional (Scimeca & Franconeri, 2015) and working
memory resources (Luck & Vogel, 2013), assuming each
element was attended serially. Therefore, our results
support a more global mechanism with distributed
attention in averaging hue, which has been suggested in
some form in ensemble perception of other stimulus
types (e.g., Alvarez & Oliva, 2008; Chong & Treisman,
2003; Corbett & Oriet, 2011; Im & Halberda, 2013).
We cannot directly rule out an alternative strategy,
such as smart subsampling (i.e., directing sampling
to the most meaningful targets), which would reduce
the required number of samples and allow for focal
attention (see Lau & Brady, 2018). However, smart
subsampling would presumably affect the high-noise
condition—where the hues are more variable—more
than the conditions with low or no noise, whereas
our noise model accounts for the data from all noise
conditions with a single set of parameters. We thus
consider smart subsampling an unlikely strategy for our
observers.

Experiment 2 confirmed that the improvement
in hue averaging was driven by the number of hue
elements and not by stimulus area, signal area, or
total stimulus border length. Furthermore, whether
the elements abutted or not did not have a significant
effect on the efficiency of hue averaging. This result
held both with a small (Experiment 1) and a much
larger gap size (Experiment 2). We find the lack of
an effect surprising, because the gap manipulation
dramatically altered the appearance of the stimulus:
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The stimulus with abutting elements appeared like a
surface with a chromatic texture, whereas the stimulus
with separate elements appeared like a typical ensemble
stimulus array. One might assume that a unitary or
objectlike stimulus is processed differently from an
array, perhaps such that integration is more efficient
(and discrimination performance better), but this was
not the case. It is conceivable that the lack of effect of
the gap manipulation was due to the simplicity of the
stimuli: They consisted of simple flat shapes and thus
were rather impoverished compared to, say, natural
stimuli. Further, they did not contain variation in
lightness or saturation, which may be more influential
modulators for ensemble processing. The hue array was
also the only item on the display. This may have led the
observers to treat the stimulus with separated elements
as a kind of texture, causing them to integrate hue over
space regardless of spatial layout.

Experiments 1 and 2 showed that observers are
efficient at integrating information over large hue
ensembles for Gaussian distributions. In Experiment 3,
we asked whether observers were sensitive to higher-
order statistics of the hue ensemble by modifying
the skewness, in addition to the standard deviation,
of the hue distribution. It turned out that observers
spontaneously opted for a simple averaging strategy,
largely ignoring higher-level statistical information
in the hue distribution. This may seem at odds with
previous studies characterizing the integration of
color information from non-Gaussian ensembles
(Chetverikov et al., 2017; De Gardelle & Summerfield,
2011). Chetverikov et al. (2017) found that reaction
times for finding a target in a search array differed
as a function of how far the target color was from a
previously learned distractor color distribution mean
and that this pattern differed for Gaussian versus
uniform distractor distributions. However, their task
was intended to tap into implicit representations
of color distributions and did not require that
the observers form explicit estimates based on
perceived hue. In contrast, we set out to examine
whether observers would spontaneously form skewed
representations in an explicit discrimination task (in
other words, is the ensemble percept rich enough to
support such inferences).

A more explicit higher-level representation of
color distributions was implicated by De Gardelle
and Summerfield (2011): They found that both the
mean and variance of stimulus sets independently
affected speed and accuracy in a color averaging task.
Importantly, their observers downweighted or ignored
items that were further from the decision criterion (i.e.,
the threshold between red and blue categories) and
what they regarded as outliers (but see Van Den Berg &
Ma, 2012).

This discrepancy between the present results with
previous work may be due to an important difference

in task structure. Our task had a comparison (decision
criterion) varying from trial to trial and always
presented after the standard stimulus. De Gardelle and
Summerfield employed the category limit as a stable
criterion over the whole experiment, making it more
plausible for observers to cognitively focus on a certain,
more limited color (or shape) area. This could have led
observers to apply an explicit strategy of relying on
the items nearest to the category boundary as a way to
limit the cognitive demands of the task. Even in light
of the results in Experiment 3, we do not argue that
observers could not take the shape of the distribution
into account if needed. We deliberately tested for a
spontaneous strategy when making hue estimates and
provided no feedback during the experiment. Had
we measured performance and provided feedback,
observers may well have learned to take the shape
of the distribution into account. In the case of the
two observers who showed a difference in mean
estimates with skewed noise distributions, we cannot
say whether they were discarding outliers, estimating
distribution shape, or employing an altogether different
strategy.

We chose to use simple two-dimensional stimuli in
the interest of experimental control to characterize
the principles of ensemble perception of hue. A
logical next step is to extend these investigations to
three-dimensional objects to address the important
question of whether hue ensembles are processed
similarly for objects as compared to non-objectlike
stimuli or scenes. It is also important to note that, for the
sake of simplicity, we varied our stimuli only in terms
of hue while keeping saturation and lightness constant,
but it is clear that natural stimuli contain variation
in all three dimensions of color. A three-dimensional
stimulus space introduces additional complexity into
characterizing summary representations compared to
many other stimulus types in the ensemble perception
literature. For instance, in a task to match a uniform
color to a 20 × 20 color mosaic (randomized from
nine preset colors) by method of adjustment, Kuriki
(2004) found that as the variation of colors in an
ensemble increased, observers’ estimates drifted away
from the colorimetric mean toward the most saturated
color when all the elements were roughly within the
same color category. Similar dependencies of ensemble
estimates on color saturation were shown by Kimura
(2018) and Sunaga and Yamashita (2007). Along
with studying color ensemble percepts for natural
shapes in future studies, it is important to investigate
how ensemble encoding depends on all three color
dimensions.

In conclusion, we found observers to be more
effective at averaging hue distributions than previously
thought. Surprisingly, spatial properties of the stimulus
such as element size, array size, or element spacing
did not affect averaging. Our results suggest that the
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hue of an object with varying surface reflectance is
not determined from singular sample locations but
averaged over larger areas, even when the stimulus is not
spatially continuous. Furthermore, at least with simple
two-dimensional arrays, observers seem not to be
spontaneously sensitive to higher-order statistics when
encoding ensembles with non-normal distributions.
These results shed light on the discrimination and
identification of multicolored stimuli and offer a firm
basis to investigate spatial integration of color in more
realistic scenes.

Keywords: color, spatial integration, ensemble
perception, modeling
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