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Abstract: Potentially toxic elements (PTEs) pollution in the agricultural soil of China, especially in
developed regions such as the Yangtze River Delta (YRD) in eastern China, has received increasing
attention. However, there are few studies on the long-term assessment of soil pollution by PTEs over
large regions. Therefore, in this study, a meta-analysis was conducted to evaluate the current state
and temporal trend of PTEs pollution in the agricultural land of the Yangtze River Delta. Based on a
review of 118 studies published between 1993 and 2020, the average concentrations of Cd, Hg, As,
Pb, Cr, Cu, Zn, and Ni were found to be 0.25 mg kg−1, 0.14 mg kg−1, 8.14 mg kg−1, 32.32 mg kg−1,
68.84 mg kg−1, 32.58 mg kg−1, 92.35 mg kg−1, and 29.30 mg kg−1, respectively. Among these
elements, only Cd and Hg showed significant accumulation compared with their background values.
The eastern Yangtze River Delta showed a relatively high ecological risk due to intensive industrial
activities. The contents of Cd, Pb, and Zn in soil showed an increasing trend from 1993 to 2000 and
then showed a decreasing trend. The results obtained from this study will provide guidance for the
prevention and control of soil pollution in the Yangtze River Delta.

Keywords: potentially toxic elements; agricultural soil; Yangtze River Delta; meta-analysis; spatial
distribution; temporal trend

1. Introduction

Agricultural soil is the basis of human production and social development [1]. Com-
pared with the world average, China faces severe pressure on per capita farmland re-
sources [2]. As of late, however, the shortage of land resources in China has been ex-
acerbated as a result of pollution by potentially toxic elements (PTEs), which is caused
primarily by industrial production and rapid urbanisation [3–5]. Therefore, it is of great
significance to assess the soil environmental quality for the rational use of land resources
and the protection of public health.

The results of a national survey conducted between 2005 and 2013 showed that
approximately 16.1% of the collected soil samples exceeded the safety limits countrywide,
thus facing severe problems of PTEs pollution, especially in developed areas, such as the
Yangtze River Delta (YRD) region [6,7]. Although the general state of national soil pollution
can be ascertained from this survey, it does not provide a comprehensive understanding of
the elemental distribution and concentrations. In addition to this national investigation,
various studies have been conducted regarding specific contamination situations in many
fields of interest [8–12]. However, most of this research focuses only on local regions, which
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provide an insufficient representation of the overall status of large regions. Thus, it would
be valuable to establish a method to evaluate large-scale PTEs pollution in soil.

The temporal trend of soil pollution research is significant for regional soil environ-
mental risk management [13,14]. However, currently, there is a lack of large-scale and
long-term soil pollution field monitoring networks. Pollution situations at varying times
can be obtained via a retrospective analysis of previously published studies [15–18]. Using
this long-term trend information, researchers can reasonably predict the development trend
of regional soil PTEs pollution and provide a decision basis for soil pollution prevention
and control [19–21]

A meta-analysis is an effective strategy used to synthesise the results of multiple
studies in order to obtain the overall trend of the target subject [22]. This method has been
widely applied in evidence-based medicine and has been certified to be useful with ecologi-
cal data. For example, researchers [23] compared 193 studies to evaluate the temporal yield
stability of different cropping systems using a meta-analysis. Guo et al. [24] discovered the
effect of land-use changes on soil carbon stocks by reviewing 74 publications. Nevertheless,
few studies have conducted a large-scale and long-term analysis of PTEs pollution in
agricultural soil using a meta-analysis [25,26].

As one of the most economically active regions in China, the YRD creates nearly a
quarter of China’s Gross economic product with less than 4% of its land area. The YRD
is densely populated (with a population of 227 million), and a large number of chemical,
pharmaceutical, printing and dyeing plants, etc. located here. Human activities have
a huge impact on the soil environment, therefore, soil PTEs pollution in the YRD has
attracted increasing attention [27–29]. Therefore, this study conducted a meta-analysis
based on 118 published papers from 1993 to 2020 to evaluate the status and temporal
trends of PTEs pollution in its agricultural soil. The main objectives of this study were to
(1) assess the overall pollution status of eight PTEs (Cr, Pb, Hg, As, Cd, Zn, Cu, and Ni)
in the agricultural soil of the YRD; (2) explore the spatial pattern of PTEs pollution in the
agricultural soil of the YRD; and (3) investigate the temporal trends of metal contents and
identify potential drivers.

2. Materials and methods
2.1. Literature Collection and Data Extraction

Peer-reviewed 118 publications between 1993 and 2020 were collected using the
keywords ‘potentially toxic elements’ OR individual elements (Cd, Cr, Hg, Pb, As, Cu,
Zn, and Ni) AND ‘farmland soil’ OR ‘agricultural soil’ AND ‘Yangtze River Delta’ OR
individual provinces (Zhejiang, Shanghai, Jiangsu, and Anhui) in the Web of Science and
China National Knowledge Infrastructure databases. These primary studies were further
screened according to the following criteria: (1) only field experiments monitoring surface
(0–20 cm) soil in the YRD farmland region were collected; (2) selected studies should record
the number of sampling sites and the size of the research area; (3) to ensure the quality of
documents, the preparation, and analysis of soil samples should refer to the standards of
China environmental protection industry [30,31]; and (4) the mean, standard deviation, and
range could be extracted directly from the graphs, tables, and text, or could be calculated
from the primary studies.

The extraction values of each study contained (1) the basic information (title, published
year, author, keyword, and journal); (2) the location (name and administrative code of
province, city, and country); (3) emission source (according to the description of the
environment around the study area and the main anthropogenic emissions mentioned in
the article), wherein the areas were divided into ‘normal group’ (rural farmland) and “HS
group” (mining and smelting areas or industrial areas) for further subgroup analysis; and
(4) the summary statistics of the contaminations (mean, standard deviation, maximum and
minimum element contents for Cd, Cr, Hg, Pb, As, Cu, Zn, and Ni). The extracted data are
presented in Supplementary 2.
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2.2. Heterogeneity Test and Sensitivity Analysis

Due to the varying experimental regions and analysis methods, there was bias and
heterogeneity in the primary extracted data. To ensure that the results were statistically
significant, the data were tested and classified before analysis and calculation. The I2

statistic was calculated to assess heterogeneity [32] because it represents the percentage
of individual heterogeneity in the total heterogeneity according to the values of Q and
df. df represents the degree of freedom (k–1), and Q follows the chi-square test. An I2

less than 50% showed that multiple similar studies had homogeneity, and the fixed effect
model was chosen to calculate the fitting effect value [33]. An I2 more than 50% showed
heterogeneity, and thus, further sensitivity analyses, removal of outliers, or subgroup
analyses were required. In this study, Cook’s distance method was chosen to find and
remove outliers [34].

2.3. Chemical Analysis

The literatures selected in this study were monitored according to the national stan-
dard method of China for soil heavy metal content [30]. According to the standard, the total
concentration of Cd, Zn, Ni, Cu, and Pb of the soil samples should be acid-digested with
HCl-HNO3-HF-HClO4 and then analysed by atomic absorption spectrometer. Different
studies may use different proportions of these acids and few studies used HCl-HNO3-H2O2
in the digestion procedure. The total Hg and As determination recommended for using
cold atomic fluorescence spectrophotometry with digesting by H2SO4-HNO3-KMnO4
in the standard, or digested by HCl-HNO3 with bathing in the hot water can also be
recognised [31].

2.4. Calculation of Weighted Mean Concentration

Weight is a very important indicator in the process of meta-analysis, as it is used to
calculate the average value. All the studies selected for analysis herein were conducted
with field experiments, and several important indicators could be used as reference values
for weight calculations, including research area and the number of sampling sites, which
determine the degree of representativeness of the study for the whole region, and the
variation of the measured value, which determines the reliability of the study. Therefore,
the weight value calculation in this study can be obtained using the following:

Wi = Ai ×
Ni
Sdi

, (1)

where Wi is the weight related to each individual observation, and Ai, Ni, and Sdi are the
size of the research area, the number of soil samples, and the standard deviation of the
PTEs in each study, respectively.

The fitting effect value referred to is

C = Ci ×
Wi

∑n
i=1 Wi

, (2)

where C is the weighted mean, and Ci and Wi represent the calculated mean concentration
of the PTEs reported and weight in each study, respectively.

To solve the problem of several studies having high weights that affect the fitting
mean, the natural logarithm of the weight in every study was calculated using Equation (3),
and the weighted mean was recalculated with W∗

i as follows:

W∗
i = lg(Ai × Ni/Sdi), (3)

C∗ = Ci × W∗
i / ∑n

i=1 W∗
i , (4)

where W∗
i and C∗ are the logarithmically transformed weight and recalculated weighted

mean, respectively, and Ai, Ni, Sdi, and Ci have the same meaning as in Equations (1) and (2).
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2.5. Potential Ecological Risk Evaluation

The effect of PTEs pollution on the biological population and potential ecological risk
is described using the potential ecological risk index (RI) [35], which can be calculated
using the following:

Ei
r = ∑n

i=1 Ti
r ×

Ci
Si

, (5)

RI = ∑n
i=1 Ei

r, (6)

where Ei
r represents the potential ecological index for a single element, Ti

r is a fixed value
that represents the toxin response (Cd = 30, Cr = 2, Hg = 40, Pb = 5, As =10, Cu = 5, Zn = 1,
and Ni = 5), and Ci and Si are the calculated mean concentrations of PTEs reported and the
threshold, respectively.

2.6. Data Analysis

Data extraction and conversion were conducted using Microsoft Excel 2019 (v.2019,
Microsoft Corporation, Redmond, WA, USA). The spatial distribution of the PTEs contents
in the YRD was determined using ArcGIS (v10.3, ESRI Inc., Redlands, CA, USA). A meta-
analysis was performed using R (v.3.5.3, AT&T, Murray, NJ, USA) with the meta and
metafor packages [36].

3. Results
3.1. Publication Bias and Outlier Analysis

In the data analysis influenced by extreme values, the distribution of the eight elements’
concentrations represented various degrees of skewness (Figure S1, Supplementary 1).
Thus, Cook’s distance method was used for outlier diagnosis. Meanwhile, we noticed that
agricultural areas at higher risk of pollution are more likely to attract researcher attention,
such as mining and smelting areas and industrial production areas, which might introduce
extreme values. Therefore, a subgroup analysis was performed to identify publication bias,
wherein the data were divided into ‘HS’ and ‘Normal’ groups according to their emission
source. Figure 1 shows the comparison of the weighted average calculated by the four
datasets, which were ‘all data’ (all data collected from the literature), ‘removed outliers’
(all data excluding outliers), ‘normal group’ (rural farmland), and ‘HS group’ (mining
and smelting or industrial areas). We found that the mean values of the HS group were
obviously higher than those of the normal group, especially for Cd, Hg, and Cu, which
proved the existence of publication bias. However, there were no remarkable differences
between the contents of removed outliers and normal group, suggesting that publication
bias had no significant impact on the overall results. Therefore, the data with the outliers
removed were used in the subsequent analyses.

3.2. Overall Status of Soil PTEs Content in the YRD

The overall regional PTEs contents in the YRD agricultural soil are summarised in
Table 1. The sampling number showed that more attention was paid to Pb (175) and Cd
(153), and less to Zn (104) and Ni (49). The regional mean concentrations of Cd, Hg, As,
Pb, Cr, Cu, Zn, and Ni were 0.25 mg kg−1, 0.14 mg kg−1, 8.14 mg kg−1, 32.32 mg kg−1,
68.84 mg kg−1, 32.58 mg kg−1, 92.35 mg kg−1, and 29.30 mg kg−1, respectively. Compared
with the national standard, the proportion of samples that exceeded the screening value
(GB 15618-2018) [6] was the highest for Cd, wherein approximately 26.14% of the samples
were contaminated by Cd, followed by Zn (6.94%) and Pb (3.43%). There were no samples
with excessive Cr or Ni concentrations. Nevertheless, in general, the weighted mean
concentration of the eight PTEs was within the safe range, exhibiting varying degrees of
accumulation compared with the background values.
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Table 1. Regional mean values (mg kg−1) of eight elements in agricultural soil in the Yangtze River Delta (YRD).

Element Cd Hg As Pb Cr Cu Zn Ni

Numbers of sites 153 121 127 175 137 120 104 49
Number of sampling points 27,210 255,447 29,290 31,432 22,183 20,888 20,104 10,549

Weighted mean values a 0.25 0.14 8.14 32.32 68.84 32.58 92.35 29.30
Number of outliers 2 1 1 0 2 0 1 0

Background values b 0.10 0.07 11.20 26.00 61.00 22.60 74.20 26.90
Standard values c 0.30 0.50 30.00 80.00 250.00 150.00 200.00 60.00

Percentage of exceedances d 26.14% 1.65% 1.57% 3.43% 0 0.83% 6.94% 0
a Regional weighted mean values were calculated using the database without outliers. b Background values [37]. c Standard values were
derived from national specification (GB 15618-2018) elements screening value (paddy fields with pH ≤ 5.5). d Percentage of sites exceeding
the standard values (GB 15618-2018).

3.3. Spatial Distribution Pattern of Soil PTEs in the YRD

The article numbers were counted and illustrated by points that differ in size based
on county-level division (Figure 2). We found that more researchers were concerned about
the soil environment in regions along the eastern seaboard, such as Shanghai, Ningbo
(Zhejiang), and Suzhou (Jiangsu), and what they have in common are frequent industrial
activities and high population density. In addition to the overall pollution situation analy-
sis of the YRD, the spatial distribution was analysed by the administrative division. The
specific calculated mean concentrations of eight elements in the soil were performed in
Table S1. Figure 3 shows the results of the average concentration calculated by provinces in
the YRD, including Shanghai, Jiangsu, Zhejiang, and Anhui, as compared with the back-
ground values. There was no obvious PTEs accumulation in any province’s agricultural
soil, with the exception of Cd and Hg. The Cd concentration in Anhui was significantly
higher than its background value, as was the Hg content in Jiangsu. Moreover, a subgroup
analysis based on the city level was conducted, wherein darker colours represent higher
concentrations (Figure 4).

The Cd concentrations in Chizhou (Anhui), Nanjing (Jiangsu), and Ningbo (Zhejiang)
were higher than those of other cities, while the Hg and Pb concentrations were higher
in Nanjing (Jiangsu) and Wuhu (Anhui). Note that the Pb, Cr, Cu, and Zn contents in
Tongling (Anhui) were the highest in the entire YRD. The main reason contributing to this
is that Tongling is famous as an important mining region in China which may lead to clear
accumulation of soil potentially toxic elements.
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3.4. Ecological Risk Assessment of PTEs in the YRD

The ecological risks of each province and the entire YRD were assessed using Hakan-
son’s ecological risk index [32] (Table 2). Hakanson gave the corresponding risk index
classification standard (RI < 150 is low, 150 ≤ RI < 300 is moderate, 300 ≤ RI < 600 is con-
siderable, and RI ≥ 600 is very high). The ecological risk level of PTEs in the agricultural
soil of the entire YRD was moderate, wherein the risk was predominantly contributed
by Hg and Cd, while other PTEs s did not pose significant ecological risks. The PTEs
pollution status of the four provinces showed a trend of Jiangsu > Anhui > Zhejiang >
Shanghai, and the risk levels of them were considerable, considerable, moderate, and low.
The major pollutant PTEs was Hg in the agricultural soil of Jiangsu, and Cd in that of
Anhui. Ecological risk assessments and mapping were conducted for 25 cities in the YRD
(Table 2, Figure 5). In terms of cities, no city among them reached a ‘very high’ ecological
risk level, 10 cities were of moderate risk, 10 were of low risk, and five were of considerable
risk, and the main contaminations in considerable risk cities were Cd and Hg. The results
revealed that Tongling (Anhui), Nanjing (Jiangsu), Taizhou (Jiangsu), Suzhou (Jiangsu),
and Chizhou (Anhui) are facing a serious pollution risk, wherein Tongling, Chizhou, and
Taizhou were mainly contaminated by Cd, while Nanjing, and Suzhou were primarily
contaminated by Hg.
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Table 2. The regional ecological risk index (RI) of eight elements in agricultural soil in the Yangtze River Delta (YRD).

Region City Cd Hg As Pb Cr Cu Zn Ni Total

Entire YRD 77.3 88.6 7.3 6.2 2.2 7.2 1.2 5.4 195.5
Shanghai 36.9 43.2 10.3 6.6 2.9 6.1 1.2 4.3 111.6
Jiangsu 97.1 264.9 9.1 7.0 1.6 7.0 1.3 4.5 392.6

Nanjing 170.7 269.0 11.8 7.2 2.0 7.9 1.5 5.2 475.3
Wuxi 49.2 121.4 12.0 9.1 1.5 7.2 1.3 0.0 201.8

Changzhou 62.0 0.0 11.2 8.3 1.4 7.9 1.5 4.3 96.6
Suzhou 55.7 297.3 9.7 7.4 1.7 7.2 1.4 4.5 384.9

Nantong 23.2 115.7 8.0 6.9 1.1 4.3 0.0 0.0 159.2
Yancheng 36.5 52.0 7.7 3.4 1.6 3.8 1.4 3.5 109.8
Yangzhou 44.0 138.7 10.5 5.7 1.9 5.8 1.1 4.6 212.3
Zhenjiang 42.0 0.0 0.0 5.7 1.5 6.0 0.0 5.3 60.5
Taizhou 206.7 164.0 7.8 6.9 1.5 5.6 0.0 3.6 396.1

Zhejiang 45.7 128.7 7.6 6.1 2.1 4.9 1.1 5.4 201.6
Hangzhou 39.7 62.7 8.7 4.5 1.4 5.0 0.5 3.4 12.9

Ningbo 55.7 135.6 5.6 7.3 2.3 6.1 1.0 5.7 219.4
Jiaxing 35.0 156.5 9.5 6.5 2.1 4.7 1.0 6.9 222.0

Huzhou 44.0 159.8 9.0 5.0 2.1 3.9 1.1 6.6 231.6
Shaoxing 0.0 103.5 7.8 5.7 1.9 5.3 1.1 4.5 129.8

Jinhua 0.0 56.2 9.6 8.0 0.0 6.5 1.2 0.0 81.6
Taizhou 28.7 148.2 7.8 5.1 1.7 4.6 0.0 4.8 200.9

Anhui 181.9 111.3 10.6 9.5 2.6 6.2 1.6 4.6 328.4
Hefei 120.0 46.7 4.9 5.8 0.8 4.7 1.4 3.1 187.3
Wuhu 13.0 154.7 11.3 11.4 2.6 4.7 1.9 5.4 205.0

Maanshan 0.0 16.7 0.0 0.0 0.0 0.0 0.0 0.0 16.7
Tongling 420.0 108.4 17.2 32.1 6.4 34.4 3.8 0.0 513.9
Anqing 0.0 0.0 11.6 0.0 0.0 0.0 0.0 0.0 11.6

Chuzhou 0.0 185.3 7.1 8.8 2.7 4.0 1.0 4.2 213.1
Chizhou 236.7 107.5 10.5 10.4 0.0 4.3 0.0 0.0 369.3

Xuancheng 62.0 0.0 0.0 7.4 0.0 0.0 0.0 0.0 69.4

The national eight elements background values were adopted in the RI calculation of the entire YRD, and the regional background values
were used for the provinces and cities.

3.5. Temporal Trend Analysis of PTEs in Agricultural Soil of the YRD

To further understand the change mechanism and trend of PTEs pollution in the
agricultural soil of the YRD, the literature databases were grouped and calculated for a
single year from 1993 to 2020. All the data extracted from the literature and weighted mean
values of a single year are shown in Figure 6, wherein the temporal variation is represented
by a polynomial regression curve. With the change of time, the contents of eight PTEs in
the soil have different trends. Compared with other elements, the fluctuations of Cu and
Cr contents were slight. The contents of Cd, Pb, and Zn in the agricultural soil showed an
overall increasing trend from 1993 to 2000 and then showed a decreasing trend. The Hg, As,
and Ni concentrations in the agricultural soil of the YRD showed continuous decreasing
trends of different rates for different periods.
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4. Discussion
4.1. PTEs Pollution Characteristics in the YRD

The weighted mean value calculated by the meta-analysis showed that soil PTEs
pollution in the YRD was generally slight. However, Cd and Hg presented a relatively
stronger risk of pollution due to their higher accumulation and toxicity levels, especially
in some cities in eastern YRD, such as Suzhou (Jiangsu), Nanjing (Jiangsu), and Ningbo
(Zhejiang). Previous studies found that human activities, such as industry, agriculture,
and transportation, have significant impacts on the soil environment, playing a critical
role in the processes of accumulation, spatial distribution, and migration of PTEs in the
soil [42,43]. In industrial production processes, wastewater, waste gas, and waste residue
directly or indirectly pollute the soil environment [44,45]. In Suzhou, the atmospheric
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deposition was proved the most important source of soil Hg [46]. The main anthropogenic
source of atmospheric mercury involves coal-fired power plants and industrial furnaces
in the YRD [47]. As one of the world’s largest industrial cities, Suzhou has numerous
industrial boiler equipment and large coal-fired power plants, which could be the cause of
its serious soil Hg pollution. Researchers analysed the source in an abnormally high soil
heavy metals agricultural area in Nanjing and found that the annual input flux of Cd in the
soil through atmospheric deposition reached 7.00 g hm−2, which may be mainly related to
chemical activities such as coking in industrial parks near the study area. At the same time,
agricultural fertilisation is also an important source; the annual input flux of Cd in the soil
via agricultural fertilisation reached as high as 8.94 g hm−2 [48]. In addition, PTEs with
high availability are released into the environment directly during the process of metal
mining, especially for copper mines [49,50]. For this reason, strong risk of PTE pollution
was present in Tongling, which was engaged in frequent copper mining for decades.

4.2. Temporal Variation of Soil PTEs Content in YRD

As previously mentioned, the concentration of PTEs, such as Cd, Pb, and Zn, first
increased and then decreased with an inflection point around 2000. According to the
mass balance theory, when the input is greater than the output, PTEs accumulate in the
soil; otherwise, the opposite occurs [51]. Numerous studies have shown that fertiliser
and pesticide applications are directly related to PTEs accumulation, such as Cd, Pb, and
Zn, in agricultural soil [52–55]. To relieve environmental pressure, regulations have been
implemented to limit the use of fertilisers and pesticides, including prohibiting pesticides
containing Hg, As, and Pb in Chinese agriculture since 2002 [56]. Meanwhile, industrial
emissions were also an important source of soil PTEs pollution. Since the 1990s, with
the Chinese economy reforming and opening-up, the industry in the YRD region entered
a stage of accelerated development. Therefore, the PTEs concentration in agricultural
soil in the YRD was higher in the early 21st century. Recently, to establish a sustainable
economic development model, the Chinese government adopted a series of policy reforms
and control measures to alleviate soil PTEs pollution [57].

The output of PTEs in agricultural soil main through crop removal, leaching, and
surface runoff [58], and the proportion of their output contribution varies in different
regions. In Zhejiang, researchers proved that the annual flux of Cd output from farmland
through crop harvest and leaching were 1.26 g hm-2 and 1.80 g hm-2, contributing 34.52%
and 49.32% of the total output flux, respectively [59]. However, researches usually proved
the leaching losses and crop uptake were usually relatively small compared with the total
fluxes of PTEs input into the agricultural soil [60,61]. Therefore, the decrease of PTEs
contents in the soil is more likely be the result of the anthropogenic intervention that
is the remediation and treatment of contaminated soil. Phytoextraction of Zn and Cd
contaminated soil by hyperaccumulator, e.g., Sedum plumbizincicola, has been shown to
be effective in the YRD [62]. However, as soil PTEs pollution is highly hazardous, long-term,
and irreversible, soil pollution prevention and control should be an ongoing effort.

4.3. Comparison with Previous Studies

Comparisons between the agricultural soil PTEs content in the YRD and other regions
in China, including the Pearl River Delta (PRD), Huabei Plain, and other provinces [63–69],
are summarised in Table 3. The results of this study were highly consistent with the field
monitoring results of the YRD farmland soil by Shao et al. [26], especially for Cd, Pb, and
Ni. However, the concentrations of Cu and Zn in this study were slightly higher than those
found by Shao et al. This discrepancy is probably due to the existence of publication bias,
as the concentrations in the ‘normal group’ of Cu (28.69 mg kg−1) and Zn (90.61 mg kg−1)
were closer to the field measured results in the YRD. Meanwhile, our results were consistent
with the national field monitoring results of Song et al. [70], indicating that PTE pollution
in the YRD was at the national average level. The results of this study were also compared
with those of the Hunan Province, whose PTE pollution situation has attracted widespread
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attention as a result of public events, including ‘cadmium rice’ [71,72]. Apparently, the
concentrations of PTEs in the soil of the YRD were lower than those in the Hunan Province,
especially for Cd, As, and Zn (Table 3). In addition, as an economically developed region,
the PRD showed more serious soil PTE contamination than the YRD. However, compared
with southern China (YRD, PRD, and Fujian), the soil in northern China (Heilongjiang
and Hebei) had less PTE pollution [53]. In summary, the results of the meta-analysis were
confirmed to be reliable, revealing that the PTE pollution level of agricultural soil in the
YRD was close to the national average level. However, PTE pollution in the agricultural
soil of the YRD should not be underestimated, especially for Cd and Hg, even though
the pollution levels in the YRD were relatively low compared with other regions such as
Hunan Province and the PRD.

Table 3. Average contents of soil potentially toxic elements (PTEs) in the soil of various Chinese regions (mg kg−1).

Region Cd Hg As Pb Cr Cu Zn Ni Field
Sampling/Review Reference

YRD, China 0.25 0.14 8.14 32.32 68.84 32.58 92.35 29.30 Review (118 articles) This study
YRD, China 0.23 37.63 25.82 88.38 29.21 240 soil samples [26]
Pearl River

Delta, China 0.58 40.00 71.40 33.00 84.70 21.10 38 soil samples [63]

Heilongjiang,
China 0.10 0.05 8.53 21.29 59.45 26.04 450 soil samples [65]

Hebei,
China 0.15 0.08 6.16 18.80 57.77 21.22 69.96 25.04 100 soil samples [66]

Shanxi,
China 0.61 10.72 76.69 30.19 87.69 43.87 126 soil samples [64]

Fujian,
China 0.26 22.60 91.94 49.01 27.92 27.46 272 soil samples [67]

Hunan,
China 0.85 0.25 21.05 56.06 74.96 38.85 147.28 26.83 Review [68]

China 0.25 0.16 9.50 34.90 65.30 30.70 85.30 30.70 138 soil samples [69]

5. Conclusions

This paper reviewed 118 studies about agricultural soil PTEs contamination published
between 1993 and 2020 in China. Overall, the concentration of PTEs did not exceed the
national standard but was close to the national average level. With the exceptions of Cd
and Hg, the PTEs did not show significant accumulation in the soil as compared with the
background value. The eastern YRD showed a higher risk of pollution due to the industrial
agglomeration effect, wherein some cities, such as Tongling (Anhui), had a higher risk of
PTEs pollution due to robust mining activities. At the beginning of the 21st century, the
PTEs content in soil was relatively higher and then experienced a decreasing trend. The
available data provide a reference for the prevention, treatment, and remediation of soil
pollution by PTEs in the YRD, by the environmental agencies.

Supplementary Materials: The following are available online at https://www.mdpi.com/1660-460
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