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Abstract: Colorectal cancer (CRC) is one of the main
alimentary tract system malignancies affecting people
worldwide. Adenomatous polyps are precursors of CRC,
and therefore, preventing the development of these lesions
may also prevent subsequent malignancy. However, the
adenoma detection rate (ADR), a measure of the ability of a
colonoscopist to identify and remove precancerous color-
ectal polyps, varies significantly among endoscopists. Here,
we attempt to use a convolutional neural network (CNN) to
generate a unique computer-aided diagnosis (CAD) system
by exploring in detail the multiple-scale performance of
deep neural networks. We applied this system to 3,375
hand-labeled images from the screening colonoscopies of
1,197 patients; of whom, 3,045 were assigned to the training
dataset and 330 to the testing dataset. The images were
diagnosed simply as either an adenomatous or non-
adenomatous polyp. When applied to the testing dataset,
our CNN-CAD system achieved a mean average precision of

89.5%. We conclude that the proposed framework could
increase the ADR and decrease the incidence of interval
CRCs, although further validation through large multicenter
trials is required.
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1 Introduction

Colorectal cancer (CRC), also known as colon or bowel
cancer, ranks at top 2 and 3 of the most commonly
diagnosed cancers and high mortality cancers worldwide,
respectively, including an estimated 1.8 million cases with
881,000 deaths reported in 2018 [1]. Previous clinical
observational studies revealed multiple stages of CRC
development [2] and found that most malignancies
originated as adenomatous polyps [3,4]. Therefore, CRC
prevention efforts have been directed at the early detection
and subsequent removal of adenomatous polyps [5–7].

Various screening techniques are available for CRC
detection. Of these, colonoscopy has become the most
widely used [8] and is recommended as the test of choice
in the American College of Gastroenterology CRC
Screening Guidelines [9]. The primary indicator of
colonoscopy quality is the colonoscopist’s adenoma
detection rate (ADR), which reflects the ability to identify
adenomas. The risk of post-colonoscopy CRC is correlated
negatively with an endoscopist’s ADR, as demonstrated in
a large Kaiser Permanente study wherein the risk of
interval CRC decreased by 3–6% with every 1% increase in
ADR [10]. The ADR is affected by both colonoscopist- and
procedure-dependent factors, including the training level,
cecal intubation rate, withdrawal time and bowel pre-
paration quality [11]. Unfortunately, the actual use of ADR
varies widely among colonoscopists who perform the
screening procedures, with reported rates varying from 7
to 53% [12].
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Computer-aided diagnosis (CAD) is a computer-based
technology developed to reduce and streamline the work-
loads of clinicians and has been applied to breast cancer
[13,14], brain tumors [15,16] and pulmonary nodules [17,18].
Moreover, artificial intelligence technology could poten-
tially enable the automated detection of polyps during
colonoscopy. Karkanis et al. [19] first proposed a CAD
model for the detection of adenomatous polyps based on
color and texture analyses. Subsequent studies further
evaluated the usefulness of shape [20,21], spatio-temporal
[22] and edge features [23]. However, these algorithms were
based mainly on traditional machine learning techniques,
which rely heavily on image preprocessing and subsequent
feature extraction by human programmers.

Deep learning is a data-driven machine learning method
and has markedly advanced the computer vision to the state-
of-the-art. Compared with traditional machine learning
strategies, the advantage of deep learning involves the
capacity to learn features automatically from large training
sets without informing the computer about unique features.
Consequently, multiple frameworks that adopt deep con-
volutional neural networks (CNNs) have been used in polyp
detection applications. For example, Li et al. [24] described
the use of a deep learning model for polyp detection,
although their system only achieved a less than ideal
accuracy (86%) and sensitivity (73%). Byrne et al. [25]
applied deep learning to the real-time recognition of
neoplastic polyps from a colonoscopy video and achieved
an accuracy of 83%. Zhang et al. [26] proposed a strategy for
the transfer learning of CNN features from a non-medical to a
medical domain and trained a standard support vector
machine (SVM) classifier to perform polyp detection and
classification. Using fully connected convolution networks,
Brandao et al. [27] detected polyps in a publicly available
colonoscopy dataset and achieved an intersection over union
(IoU) of 47.78%. Although the above-listed algorithms can
detect adenomatous colorectal polyps, they are hindered by
the following major shortcomings. First, the performances
were overfitting because the proposed methods were tuned
to obtain the best possible accurate detection results for the
corresponding publicly available datasets. Second, the
sample sizes were small and did not enable the use of
separate training and testing sets of essential labeled medical
images. Third, these studies paid little attention to the
accurate and objective diagnosis of adenoma which, as we
mentioned above, is more important for CRC prevention.

In this study, we apply an improved algorithm based
on deep neural networks to achieve the segmentation of
specific adenomatous polyps on RGB images obtained via
conventional white-light endoscopy. Our model can auto-
matically extract multiple-scale features from lots of

colonoscopy images, as well as construct hierarchical
residual-like connections within one single residual block
to improve the multiple-scale representation ability at a
more granular level. The major contributions of this
work are as follows: (1) our CAD-CNN system can extract
automatically the colonoscopy image features, rather than
extracting manually with extensive preprocessing; (2) we
improved the Mask R-CNN [28] (particularly the backbone
structure) by constructing hierarchical residual-like con-
nections within one single residual block to improve the
multiple-scale representation ability at a more granular
level; (3) the proposed system is able to detect and segment
adenomatous polyps from colonoscopy images and address
the polyp detection task with a variable scale.

Using our model, we pretrained Mask R-CNN on a
COCO dataset and appropriately fine-tuned the algorithm
using manually labeled images from the videos of actual
endoscopic colonoscopies performed at a single center. We
then assessed the usefulness of our method on an adenoma
dataset that was split into a training and a testing set. We
demonstrated that our method achieved a better result than
other state-of-the-art detection methods, with a mean
average precision (mAP) of 89.5%.

2 Materials and method

2.1 Dataset

For our analysis, we collected a total of 50,230 colonoscopy
images from the reported 1,197 patients who underwent
colonoscopy examinations at the Affiliated Hospital of
Hebei University, China, between June 2016 and March
2019. All colonoscopy reports described the detection of at
least one adenomatous polyp that was confirmed by
histology. All colonoscopy images containing adenomatous
polyps were correctly labeled by colonoscopists. The set of
50,230 colonoscopy images contained 2,128 (4.24%) images
of unique polyps of all sizes and morphologies and 48,120
(95.76%) images without polyps. We selected 3,375 hand-
labeled images from the datasets and divided them into two
sets. (1) The training set comprised 3,045 images, including
1,900 with polyps (62.43%) and 1,145 without polyps
(37.57%). These images were used to optimize the network
parameters. (2) The testing set comprised 330 images,
including 228 with polyps (69.09%) and 102 without polyps
(30.91%). This set was used to estimate the actual learning
ability of the network and determine the potential over-
fitting of the model on the training data.
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2.2 Training architecture and framework

There have been significant advances in extensive com-
puter vision tasks with state-of-the-art performance fol-
lowed by various deep-learning methods based on CNNs
(ConvNets) [29]. While it has been shown that depth
increase would lead to performance improvement, the
state-of-the-art deep learning models beyond 50 layers
could not take advantage of this increase due to the
vanishing gradient problem [30–32]. Therein, the models
underwent performance degradation beyond a moderate
number of layers. Subsequently, residual architecture
(ResNet) [32] introduces short connections to neural
networks, and thereby it was proposed to solve the
vanishing gradient problem while obtaining much deeper
network structures.

Multiple-scale feature methods have been widely
applied not only in conventional feature design but also
in deep learning. To obtain multiple-scale representations,
feature extractors with a wide range of receptive fields are
used. CNNs instinctively learn and get coarse-to-fine
multiple-scale features with a series of convolutional
operators. Because of such an inherent multiple-scale
feature extraction ability, CNNs can effectively solve
extensive computer vision tasks. Due to the short connec-
tions to neural networks, ResNet has a large number of
equivalent feature scales during the feature extraction
procedure. To verify the reliability of the architecture of our
choice, we performed a contrast experiment with some
excellent deep learning algorithms, such as Mask R-CNN,
Unet, DeepLabV3 and FPN. The experimental comparison
results are shown in Table 1.

2.3 Functional architecture of our algorithm

A CNN is a type of feedforward neural network wherein an
artificial neuron can respond to the surrounding units and
process large-scale images. The CNN is a multi-layer
perceptron that contains a convolution layer and a pooling
layer and is inspired by the process of biological investiga-
tion. The operational methods and functions of each
category and level in a CNN are distinct. The CNN has
become a representative deep learning algorithm and a
state-of-the-art method used for image segmentation
protocols, including object recognition, object detection,
semantic segmentation and instance segmentation.

In our study, we constructed an automatic polyp
detection system based on Mask R-CNN, a superior
performing general framework in the field of instance
segmentation. Mask R-CNN is able to realize object detection

in an image and segmentation mask generation toward each
event simultaneously. This framework extends the Faster R-
CNN, which consists of two modules: a deep, fully
convolutional network that generates region proposals and
a Fast R-CNN detector that uses these proposed regions. The
coordination of the whole system is only for object detection.
Unlike Faster R-CNN, Mask R-CNN includes a branch used to
predict the mask of an object in parallel with the existing
branch for object recognition with a bounding-box. This
framework can be trained easily, and it runs at a speed of
5 fps, thus increasing the overhead of Faster R-CNN only
slightly.

Figure 1 illustrates the functional architecture of Mask
R-CNN in our algorithm. Note that we have applied a two-
stage Mask R-CNN procedure, respectively, shown in the
left and right dashed boxes. The first stage aims to propose
candidate bounding boxes of objects, and the second one
aims to predict the class and box offset as well as a binary
mask for each region of interest (RoI).

2.4 Improved bottleneck structure

The first stage of our algorithm based on Mask R-CNN
mainly includes extracting features and proposing

Table 1: Test results and comparison with other deep-learning
architectures

Deep-learning
architectures

Backbone mAP50% mAP70% mAP75%

Mask R-CNN ResNet-50 86.89 78.44 76.85
ResNet-101 87.98 77.30 72.18
Res2Net-50 88.30 79.80 78.10
Res2Net-101 89.50 78.40 73.50
VGG16 87.50 83.40 82.00
SE-ResNet50 87.90 81.30 79.60

U-Net ResNet-50 70.40 67.70 66.00
ResNet-101 76.50 66.30 64.90
Res2Net-50 71.60 68.85 67.12
Res2Net-101 77.72 67.36 65.94
VGG16 70.50 67.20 66.10
SE-ResNet50 72.90 71.30 70.20

DeepLabV3 ResNet-50 68.20 65.90 64.50
ResNet-101 67.80 65.10 63.60
Res2Net-50 69.43 67.09 65.66
Res2Net-101 69.70 66.08 64.55
VGG16 68.90 65.67 64.60
SE-ResNet50 69.30 65.60 63.90

FPN ResNet-50 65.70 64.10 62.70
ResNet-101 70.30 66.80 65.10
Res2Net-50 66.82 65.19 63.77
Res2Net-101 71.35 67.80 66.08
VGG16 66.50 61.80 59.30
SE-ResNet50 66.10 61.30 59.10
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candidate object regions. Extraction of features over an
entire image is obtained by the backbone CNNs, which
extract feature maps from the input images with convolu-
tion. So, designing a more efficient network architecture is
important to improve the performance of CNNs. Advances
in the convolutional backbone architecture are able to
enhance the ability of multiple-scale representation.

As a basic building block, the bottleneck blocks extract
features from the colonoscopy images and update the
weights in training. The bottleneck block employed in the
main-network is demonstrated in Figure 2a. And there are
many CNN architectures such as ResNet [32], ResNeXt [33]
and DLA [34] that use the bottleneck structure. The block
includes three convolution kernels: the first 1 × 1 convolution
kernel is used to decrease the input channels in order to
decrease the amount of calculations required, the 3 × 3
convolution kernel is employed to extract features for the
network and then the final 1 × 1 kernel increases the
channels. For our approach, we have adopted Res2Net [35],
which is a modified version of ResNet as the bottleneck
block. As shown in Figure 2b, instead of extracting
features using a group of 3 × 3 filters as in the bottleneck
block, the Res2Net uses some smaller filter groups to replace
the 3 × 3 filters of n channels, and then a hierarchical
residual-like style will connect the different filter groups.
Note that n = s × w without loss of generality.

Note that Ki( ) represents a 3 × 3 convolutional operator.
Specifically, the Res2Net module first divides the input
feature maps into s groups such as x1, x2,…,xs. Then x1 directs
the output to y1, which is not involved in convolution
operation to reduce calculation. But for the groups x2,…,xs,
features will be extracted using K(i2 ≤ i ≤ s). When extracting
features, a few things to note are the previous group’s output
features (yi,2 ≤ i ≤ s), the next group of filters (i + 1) and input
features xi + 1 (2 ≤ i ≤ s). It will take some time to realize this
process. Thus, yi is given by the following equation:
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Finally, all groups’ feature maps are connected and sent
to another group of 1 × 1 filters. In the process, the input
features are transformed to output features, and because
the combination effects result in many equivalent feature
scales, the equivalent receptive field increases whenever
it passes a 3 × 3 filter.

2.5 Region proposal network

After obtaining the feature map of the input image from
Res2net, the candidate object bounding boxes need to be

Figure 1: The functional architecture of Mask R-CNN.

Figure 2: (a) The bottleneck block and (b) the Res2Net module.
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proposed further. A Region Proposal Network (RPN) is first
proposed in the faster region-based convolution neural
network (Faster R-CNN). This algorithm proposed a network
to generate the RoI, which indicates the region with
fractures.

Figure 3 demonstrates the procedure of the RPN. A
feature map with a size of W × H, where W and H are the
width and height of the feature map, is selected as the input
of the region candidate network. Whereafter, by using a 3 ×
3 sliding window on the feature map, an output feature
map of 256 channels is generated. The size of the output
feature map is identical with the input feature map, which
is 256 × (W × H). It can be approximately assumed that the
output feature map has W × H feature vectors, each of
which has 256 dimensions. Then each feature vector is fully
connected twice, one gets two scores (foreground and
background) and the other gets four coordinates (x, y, w
and h; the four coordinates represent the coordinate offset
from the original image). After that, 1 × 1 convolution is
performed twice for the entire feature map. We then get
feature maps with the sizes of 2 × W × H and 4 × W × H,
respectively. That is to say, there are W × H results, and
each result contains two scores and four coordinates and
maps into the original image. Every spatial pixel in the
feature map corresponds to k boxes in the original map, so
there are W × H × k boxes in the original map. We set the
top left corner or the center of the box as an anchor. The
process of region selection is actually to determine whether
these boxes are objects and their offsets. By creating
anchors on every spatial pixel in the feature map with three
scales and three aspect ratios (0.5, 1 and 2), the network
will generate W × H × 9 anchors. These anchors are fed to

calculate the IoU with the ground-truths and assigned as a
positive sample if the IoU is over its thresholds and negative
otherwise.

2.6 RoIAlign

In the second stage, the Mask R-CNN was used to propose a
RoIAlign that would remove the harsh quantization of
RoIPooling by properly aligning the extracted features. This
proposed change was simple because the RoIAlign layer
does not quantitate the RoI boundaries or bins. The Mask R-
CNN approach uses bilinear interpolation to compute the
exact values of input features at four regularly sampled
locations in each RoI bin. The input features can then be
calculated using equations (2), (3) and (4):
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The bilinear interpolation procedures are shown in
Figure 4a. The dashed grid in Figure 4b represents a
feature map. In this example, the solid lines represent an
RoI with 2 × 2 bins, and the dots represent the four
sampling points in each bin. RoIAlign computes the
value of each sampling point via bilinear interpolation
from the nearby grid points on the feature map. None of
the coordinates involved in the RoI, its bins or the
sampling points are subjected to quantization.

Mask R-CNN also outputs a binary mask for each RoI
that parallels the predicted class and box offset. This
feature differs from those of most recent systems,
wherein classification depends on mask predictions.
Rather, Mask R-CNN is similar to Fast R-CNN and thus
applies the bounding-box classification and regression
in parallel through a process that largely simplified the
multi-stage pipeline of the original R-CNN.

3 Results and discussion

In the training process, we defined a multi-task loss as
follows:

= + +L L LLoss .cls box mask (5)Figure 3: Schematic of the RPN.
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The classification loss Lcls represents the logarithmic
loss between two classes (object and non-object), and
the bounding-box loss Lbox is defined over a multiple
of true bounding-box regression targets for class =u v,
( )v v v v, , ,x y w h , and a predicted multiple = ( )t t t t t, , ,u

x
u

y
u

w
u

h
u

for class u. The mask branch has a Km2-dimensional
output for each RoI, which encodes K binary masks of
resolution m × m, one for each of the K classes. We then
applied a per-pixel sigmoid to the Mask R-CNN and
defined Lmask as the average binary cross-entropy loss.
For an RoI associated with ground-truth class k, Lmask is
only defined on the k-th mask on account of other mask
outputs not contributing to the loss.

Our deep-learning classification model with an initial
learning rate of 0.001 and 0.9 learning momentum was

trained using 30 epochs on the augmented training set. The
values of the loss function of the training sets when training
a Res2Net model with 101 layers are shown in Figure 5a.
The changes in the different curves demonstrate that with
increased training, the loss value decreases; moreover, the
rate of this decrease becomes smaller and gradually
converges to a fixed value. This phenomenon demonstrates
that our Mask R-CNN-based model is a good predictor of
polyps.

The results of testing are shown in two representative
colonoscopy polyp images in Figure 6. In order to make
sure of the accuracy of the results, we developed a unified
labeling standard with the direction of the attending
gastroenterologist (Figure 6a and b). Figure 6c and d
presents the results of Mask R-CNN detection. Notably, in

Figure 4: Schematic of the RoIAlign layer. (a) Bilinear interpolation and (b) the overall structure of RoIAlign.
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Figure 5: Training loss and the mAP during the epoch. (a) Training loss per iteration for a 101 layer Res2Net model on training sets. (b)
Curves of the mAP during validation with the testing of training epoch.
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addition to detecting and providing the probability of a
polyp, Mask R-CNN could also determine the location and
shape of a polyp.

To further verify the performance of our polyp
detection system, we generated the mAP as an evalua-
tion metric using the following equation:

∫= ( )P R RmAP d ,
0

1

(6)

where P and R, respectively, denote precision and recall,
as calculated in equations (7) and (8):
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+
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N N
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+

=
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N N

N
N
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TP FN

TP
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Note that the various Ns denote the numbers of true
negatives, true positives, false negatives and false
positives, as indicated by the subscripts.

The coincidence of the prediction frame and the real
target can be clearly seen through IoU, which can directly
reflect the performance of the training model. We then
estimate the performance of our algorithm using three
distinct IoU thresholds, 0.5, 0.7 and 0.75. As shown in
Figure 5b, our method achieved mAP50, mAP70 and
mAP75 of 89.5%, 78.4% and 73.5%, respectively, when
applied to the testing set.

In test procedures, AP50, AP70 and AP75 in COCO style
have been adopted to evaluate the results. We compared
some of the state-of-the-art methods with our network on
the same adenomatous polyp dataset, and Table 1 presents
the results of different methods, including Mask R-CNN, U-
Net, DeepLabV3 and FPN with different variations of
backbone, such as ResNet, Res2Net, VGG and SE-ResNet.
The boldface entries in the third and fourth rows of Table 1
show the two most accurate models using Mask R-CNN
with the backbones of Res2Net-50 and Res2Net-101,
respectively. It can be seen that the improved framework
with the backbone of Res2Net and 101 layers is relatively
higher in the average precision and reaches 89.5% AP50,

which outperforms other methods. The superior perfor-
mance of the Res2Net deep-neural network architecture
with 101 layers was confirmed by our ablation test results in
our classification work.

4 Conclusion

In this work, we proposed and explored an automated
CNN-based CAD system based on state-of-the-art, deep-
neural network architecture for CRC diagnosis. This system
was used to identify adenomatous colorectal polyps as
reflected in colonoscopy images. We evaluated our system
with 330 images for the trial detection of colorectal
adenoma as outlined by the US multi-society task force
guidelines for CRC risk assessment and surveillance. The
performance of the proposed method, when applied to the
testing data set, was evaluated using the mAP at multiple
IoU values which yielded good results. The results show
that deep learning methods are available in CAD systems
for the detection and diagnosis of colorectal polyps. Our
experiments have received the approval of colonoscopists
at the Affiliated Hospital of Hebei University. Despite the
good results, larger multicenter trials are needed further to
validate the ability of our proposed framework, to increase
the ADR and reduce the incidence of interval CRC. Given
the current complementary nature of a good classification
algorithm and high-quality data, we aim to verify the
system further by exploring a better backbone structure and
collect a larger set of higher-quality colorectal polyp data in
the future.
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