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Abstract: Rheumatic heart disease (RHD) is one of the most common causes of cardiovascular
complications in developing countries. It is a heart valve disease that typically affects children.
Impaired heart valves stop functioning properly, resulting in a turbulent blood flow within the
heart known as a murmur. This murmur can be detected by cardiac auscultation. However, the
specificity and sensitivity of manual auscultation were reported to be low. The other alternative is
echocardiography, which is costly and requires a highly qualified physician. Given the disease’s
current high prevalence rate (the latest reported rate in the study area (Ethiopia) was 5.65%), there
is a pressing need for early detection of the disease through mass screening programs. This paper
proposes an automated RHD screening approach using machine learning that can be used by
non-medically trained persons outside of a clinical setting. Heart sound data was collected from
124 persons with RHD (PwRHD) and 46 healthy controls (HC) in Ethiopia with an additional 81 HC
records from an open-access dataset. Thirty-one distinct features were extracted to correctly represent
RHD. A support vector machine (SVM) classifier was evaluated using two nested cross-validation
approaches to quantitatively assess the generalization of the system to previously unseen subjects.
For regular nested 10-fold cross-validation, an f1-score of 96.0 ± 0.9%, recall 95.8 ± 1.5%, precision
96.2 ± 0.6% and a specificity of 96.0 ± 0.6% were achieved. In the imbalanced nested cross-validation
at a prevalence rate of 5%, it achieved an f1-score of 72.2 ± 0.8%, recall 92.3 ± 0.4%, precision
59.2 ± 3.6%, and a specificity of 94.8 ± 0.6%. In screening tasks where the prevalence of the disease
is small, recall is more important than precision. The findings are encouraging, and the proposed
screening tool can be inexpensive, easy to deploy, and has an excellent detection rate. As a result, it
has the potential for mass screening and early detection of RHD in developing countries.

Keywords: phonocardiogram; nested cross-validation; acoustic features; rheumatic heart disease;
screening; support vector machines

1. Introduction

Rheumatic heart disease (RHD) remains a number one cause of preventable cardio-
vascular diseases (CVDS) [1]. It is also the major cause of heart disease for children and
teenagers in low and middle-income countries and several marginalized groups in devel-
oped countries, causing a major health challenge for them [2]. RHD is a manifestation of
poverty, overcrowded housing, and poor hygiene [3]. Worldwide, over three-quarters of
children aged under 15 years old live in the endemic regions where RHD causes a serious
health problem [4].

In terms of its pathologic pathway, RHD is a sequel to acute rheumatic fever (ARF).
ARF itself is an autoimmune response for a group A streptococcal (GAS) bacterial infection.
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The repeated GAS infections lead to considerable valve damage, which will lead to RHD [5].
GAS mainly affects school-going children. The popular belief in the past was that there
is a considerable latency time between the first ARF and RHD. However, current studies
have demonstrated that RHD manifests itself as early as one year from the first episode of
ARF [6]. The shorter latency was more prevalent in African countries where the disease
burden is high with significant mortality and morbidity at adolescent age [7].

RHD often presents as moderate to severe valve damage, heart failure, pulmonary
hypertension, atrial fibrillation, stroke, and ineffective endocarditis [8]. In the regions
where RHD is endemic, late interventions, which include open-heart surgery and valve
replacement, are not readily available due to the cost and unavailability of heart surgeons.
Primordial prevention is perhaps the best solution. However, effective implementation
in developing countries is hampered by significant barriers. The major barriers include
low health literacy, higher poverty rates, harmful health-related cultural and social norms,
and disparities in language and education. Primordial preventative measures against GAS
infection are also inextricably linked to the developmental stages of the countries involved.
Secondary prophylaxis, which requires long-term benzathine penicillin G(BPG) injections,
is also not reliable due to the hesitation and low adherence of the subjects. However,
currently, it is the only working therapeutic solution in RHD endemic nations [9].

When the heart valves are affected by RHD, they will start to leak as they lose their
mechanical flexibility to properly open and close. As the disease progresses, it causes the
valves to be stiff, eroded, fibrocystic, and the tissues to become loose and flappy [5]. This
creates a turbulent blood flow inside the heart chambers which is called a heart murmur.
This can be detected by analyzing the heart sound from a phonocardiogram (PCG). The
heart sound normally has four fundamental components: the first heart sound (S1), systole,
the second heart sound (S2), and diastole. At normal conditions, the systole and diastole
intervals are silent, but when RHD occurs, there will be a murmur that can be detected
on a phonocardiogram. For optimal listening and recording, the phonocardiogram must
be recorded while there is complete silence in the room. Figure 1 shows a graphical
representation of heart sounds from a PCG of healthy control (HC) and a person with
RHD (PwRHD).

Sensors 2021, 21, x FOR PEER REVIEW 2 of 18 
 

 

In terms of its pathologic pathway, RHD is a sequel to acute rheumatic fever (ARF). 
ARF itself is an autoimmune response for a group A streptococcal (GAS) bacterial infec-
tion. The repeated GAS infections lead to considerable valve damage, which will lead to 
RHD [5]. GAS mainly affects school-going children. The popular belief in the past was 
that there is a considerable latency time between the first ARF and RHD. However, cur-
rent studies have demonstrated that RHD manifests itself as early as one year from the 
first episode of ARF [6]. The shorter latency was more prevalent in African countries 
where the disease burden is high with significant mortality and morbidity at adolescent 
age [7]. 

RHD often presents as moderate to severe valve damage, heart failure, pulmonary 
hypertension, atrial fibrillation, stroke, and ineffective endocarditis [8]. In the regions 
where RHD is endemic, late interventions, which include open-heart surgery and valve 
replacement, are not readily available due to the cost and unavailability of heart surgeons. 
Primordial prevention is perhaps the best solution. However, effective implementation in 
developing countries is hampered by significant barriers. The major barriers include low 
health literacy, higher poverty rates, harmful health-related cultural and social norms, and 
disparities in language and education. Primordial preventative measures against GAS in-
fection are also inextricably linked to the developmental stages of the countries involved. 
Secondary prophylaxis, which requires long-term benzathine penicillin G(BPG) injec-
tions, is also not reliable due to the hesitation and low adherence of the subjects. However, 
currently, it is the only working therapeutic solution in RHD endemic nations [9]. 

When the heart valves are affected by RHD, they will start to leak as they lose their 
mechanical flexibility to properly open and close. As the disease progresses, it causes the 
valves to be stiff, eroded, fibrocystic, and the tissues to become loose and flappy [5]. This 
creates a turbulent blood flow inside the heart chambers which is called a heart murmur. 
This can be detected by analyzing the heart sound from a phonocardiogram (PCG). The 
heart sound normally has four fundamental components: the first heart sound (S1), sys-
tole, the second heart sound (S2), and diastole. At normal conditions, the systole and di-
astole intervals are silent, but when RHD occurs, there will be a murmur that can be de-
tected on a phonocardiogram. For optimal listening and recording, the phonocardiogram 
must be recorded while there is complete silence in the room. Figure 1 shows a graphical 
representation of heart sounds from a PCG of healthy control (HC) and a person with 
RHD (PwRHD). 

 
(a) 

 
(b) 
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Figure 1. Graphical visualization of heart sound from: (a) recording from a HC with manual labeling
of the fundamental heart sounds, and (b) recording from a PwRHD with audible murmur.

Instead of manual auscultation, the World Heart Federation (WHF) has adopted
echocardiographic imaging as a standard diagnostic mechanism for RHD and produced a
guideline [10]. This guideline classified an echocardiogram from RHD endemic regions
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as normal (no RHD), definite RHD, or borderline RHD. Mild pathological aortic or mitral
regurgitation, or morphological alterations of the mitral valve alone, are instances of
borderline RHD. Borderline cases are usually difficult to detect using manual auscultation.
Records show that there is a hesitancy and debate by physicians regarding the requirement
of the follow-up and treatment (secondary prophylaxis) of borderline RHD cases [11].

Over the years, the lack of a reliable estimate of the burden of RHD on a global,
national, and local scale has been a major obstacle to the implementation of evidence-
based, cost-effective RHD prevention methods [12]. J.J. Noubiap et al. [13] undertook
a systematic literature review of publications from 1996 to 2017 to establish a current
estimate of the global burden of RHD from RHD prevalence studies which were conducted
by echocardiographic screening and were population based. For those that employed WHF
criteria, World Health Organization (WHO) criteria, and other criteria, the average RHD
prevalence was estimated to be 26.1 cases per 1000, 11.3 cases per 1000, and 5.2 cases per
1000, respectively. According to these findings, they indicated that RHD prevalence has
remained high. Its prevalence was shown to be highest in Sub-Saharan countries.

For instance, several studies have found a consistent trend of high prevalence rates of
RHD in different parts of Ethiopia [14–18]. The recent reported RHD prevalence in Ethiopia
was reported by Gemechu T. et al. [19]. They conducted a population-based study based on
echocardiographic screening using WHF criteria on participants aged 6 to 25 years. They
reported a prevalence of 37.5 cases per 1000 for definite RHD. The prevalence increased
to 56.7 cases per 1000 when borderline cases were included. The highest prevalence of
60 cases per 1000 for definite RHD was reported in the 16 to 20 age group. This indicates
that the prevalence rate of RHD in Ethiopia is significantly higher than the world average
(26.1 cases per 1000).

Developing countries have been focusing on therapeutic interventions in light of these
high prevalence rates. However, secondary prevention strategies heavily rely on appro-
priate case detection. Recently, the advent of echocardiography has opened a new era of
transthoracic imaging for successful visualization and quantification of valve damage [20].
However, its cost and requirement of highly trained physicians hindered its application
for community-level case detection and screening applications. Therefore, an alternative,
cheaper, and robust strategy in the detection of RHD is highly sought.

Godown J. et al. [21] had compared the performance of low-cost handheld echocardio-
graphy and auscultation in RHD detection in Uganda. The process involved experienced
cardiologists performing auscultation and reading the echocardiography images. A group
of 1317 subjects (54% female) underwent echocardiographic screening using a low-cost
device and auscultation. There was a 3.4% prevalence rate for RHD and a 9.6% prevalence
rate when borderline RHD cases were included. Standard portable echocardiography using
the WHF criteria was used to create the ground truth. The auscultation process achieved
a sensitivity of 22.2% and specificity of 91.2%, while the low-cost handheld echocardiog-
raphy achieved a sensitivity of 97.8% and specificity of 87.3% for definite RHD. Thus, it
can be observed that the manual auscultation performance was significantly low for RHD
detection. However, both techniques still required the involvement of expert cardiologists
for screening tasks, which makes the process less favorable in developing countries.

More recently, Gardezi S.K.M. et al. [22] also quantified a result with a similar trend.
They reported a sensitivity of 32% and specificity of 67% when auscultation was used to
detect mild murmur. For significant murmur, the sensitivity increased to 44%, and the
specificity was reported at 69%. In this study, auscultation was also performed by general
practitioners and cardiologists.

Ploutz M. et al. [23] considered the involvement of non-expert nurses in echocardiog-
raphy screening tasks. The nurses were trained on handheld echocardiography for RHD
screening and were asked to screen 956 students for RHD. In the study, 913 of the partici-
pants were HC, and 43 were PwRHD (32 borderline and 11 definite RHD). Their findings
were compared with findings from experts. A sensitivity of 74.4% and a specificity of
78.8% for both definite and borderline RHD were reported. Sensitivity improved to 90.9%



Sensors 2021, 21, 6558 4 of 17

for definite RHD. They concluded that the reported results are a reasonable performance
involving nurses in the screening programs.

The process of manual cardiac auscultation has been reported to have low sensitivity
and specificity in the detection of RHD [21,24]. This is mainly because there is a limited
auditory sensitivity for heart sounds due to insufficient training, the presence of noise, and
inaccurate conduction [25]. Complementing these limitations with a computer-assisted
system from an electronic heart sound record would have a significant advantage for mass
screening applications. In the past, multiple studies have been conducted in automatic heart
sound analysis. Montinari M. R. et al. [26] have investigated the progress of auscultation in
the last 200 years. They reported that the skill for manual auscultation has diminished over
the years and concluded that there should be a more balanced approach that integrates the
exiting clinical method with a digital system to improve accuracy.

The pioneer reported work that employed computers for cardiac murmur detection
was conducted by Gerbarg et al. [27] in the early 1960s. They used threshold-based
techniques to locate potential segments with a murmur that are caused by mitral valve
insufficiency due to RHD. They have not found any conclusive results but indicated the
potential of the computing system for heart sound analysis. Computer-based heart sound
analysis has garnered substantial interest in recent years as a result of the introduction of
electronic stethoscopes with recording capability.

Automatic heart sound classification algorithms usually localize the fundamental
heart sounds (FHS) (S1, S2, systole, and diastole) before classification [28–31]. In most
cases, the incorrect localization of the FHS was partially blamed for the poor classification
performance. Based on this, researchers proposed a classification approach without the
requirement of segmentation [32–36]. This paper proposes a classification system for heart
sounds that does not require segmentation.

Feature extraction for the heart sound classification task was another domain that was
heavily explored. The frequently used features for heart sound classification were time
domain features [37,38]; frequency domain features [39–41]; spectrogram features [42–45];
a combination of time, frequency and perceptual features [46–53]. A combination of
perceptual and wavelet features has also been used [28,54]. There is a significant overlap in
the set of features used in the literature.

Careena P. et al. [38] extracted variance, standard deviation, entropy, peak amplitude,
RMS, crest factor, impulse factor, shape factor, energy, and clearance factor as time–domain
features to classify heart sounds. They argued that time–domain features are analytically
straightforward to compute. Their algorithm was evaluated on a public dataset and resulted
in good classification performance. A. M. Alqudah et al. [41] used instantaneous frequency
features, where the instantaneous frequency of a nonstationary signal was defined as a
time-varying parameter that is related to the mean of the frequencies in the signal as it
develops. It was computed as the first conditional spectral moment of the power spectrum.
They extracted eight different frequency domain features to capture the instantaneous
frequency properties of heart sound signals.

M. Deng et al. [45] capitalized on the Mel Frequency Cepstral Coefficients (MFCC),
which features excellent performance in many sound perceptions, and they tried to improve
the MFCC features to elaborate the dynamic characteristics among consecutive heart
sound signals. They argued that, due to the higher sensitivity of the human ear to the
dynamic characteristics of acoustic signals, the dynamic information contained in the heart
sounds spectrum also offers a wealth of information that can be used to further improve
classification accuracy. The first and second derivatives of the MFCC coefficients were
also included as features to reflect the dynamic information in the heart sound signal. N.
K Sawant et al. [53] proposed time domain features that include zero-crossing rate, the
energy of the raw signal and entropy; frequency domain features that include spectral
centroid, spectral spread, spectral flux, and spectral entropy; and perceptual features that
incorporate the first seven MFCC coefficients.
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Springer et al. [28] proposed an automated detection of a specific heart murmur caused
by RHD. They developed an SVM-based classification algorithm, which was tested on an
in-house dataset and collected from PwRHD and control groups in South Africa. They used
undecimated wavelet transform (UWT) and MFCCs in their feature extraction stage. They
claimed that UWT was selected over the other wavelet transforms as it provides a wavelet
decomposition at discrete decomposition levels, leading to a reduction in the feature space,
while not halving the number of samples in the signal at each decomposition level. They
used the level 4 Daubechies 5 (db5) wavelet and extracted detail coefficients from level 2,
level 3, and level 4. To reduce the feature space, they used the median of a specified window.
Their experiment enrolled 109 people. Sixty-nine were HC and the remaining 40 were
PwRHD (15 were definite RHD and 25 were borderline RHD). They used an SVM classifier
using wavelet and MFCC features where the classification performance was evaluated
across 10 iterations of 10-fold cross-validation. They reported accuracy of 74.5 ± 2.1% and
an f1-score of 69.9 ± 2.8%. They claimed that the reported low performance was caused by
the low-quality dataset they utilized.

After that, Asmare M. H. et al. [44,52] also proposed heart sound classification to
detect murmur from RHD. They extracted 26 features from the entire heart sound signal to
properly deal with systolic as well as diastolic murmurs caused by RHD [52]. Their features
consisted of the time domain, frequency domain, and perceptual domain features. They
reported a classification accuracy of 97.1%, a sensitivity of 98%, specificity of 95.3%, and
precision of 97.6%. However, their results were based on data collected from a cardiology
clinic, where there were more pathological cases than normal, which do not reflect the
actual prevalence rate of RHD in the community.

This paper proposes a new and robust RHD screening tool from phonocardiogram
recordings. The original contributions of this manuscript are the development of an exten-
sive RHD heart sound dataset, development of a screening tool that can be implemented in
an imbalanced dataset with better RHD detection capability, detection of murmur without
the need for heart sound segmentation, and a proposal of a unique set of features which
appropriately model heart murmur.

The rest of the manuscript is structured as follows. The materials and methods are
addressed in Section 2. Section 3 presents the results. Section 4 provides a discussion of the
findings, and finally, Section 5 presents the concluding remarks.

2. Materials and Methods

The overall methodology of this paper contains four principal components as shown
in Figure 2: (1) An extensive dataset was created by combining in-house collected data
with data from a freely available public database. (2) Each record was bandpass filtered
and normalized. A single 30-s record was extracted from each subject and each record
was downsampled to 2 kHz. (3) Thirty-one features were extracted from the preprocessed
record. (4) The features were used to train an SVM classifier and data partitioning was
performed along with hyperparameter optimization. A detailed description of each block
is discussed in the following sub-sections.
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2.1. Heart Sound Dataset

There was no publicly available heart sound dataset specifically for RHD. Hence, we
collected new and extensive heart sound data from PwRHD and HCs as explained below.
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2.1.1. RHD Dataset

This data was collected at Tikur Anbessa Referral Teaching Hospital (TASH), one of
the biggest hospitals in Ethiopia. The duration of the data collection was from August 2018
to July 2019. Thinklabs One™ electronic stethoscope [55] was used for the data collection
(Figure 3a). The stethoscope had a flat response from 20 Hz to 2 kHz. The sampling rate
of the device was 44.1 kHz. The stethoscope can be directly connected to a computer or
a mobile phone for recording, and it had an earphone integration to listen to the heart
sound directly.
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Before data collection, each volunteering subject was checked by a cardiologist using
transthoracic echocardiography to confirm the presence or absence of RHD (Figure 3b). The
heart sound data was then recorded in a real-world clinical environment (Figure 3c). The
real-world environment had people talking, instrument noise, movement artifacts, mobile
phone interference, and other commonly observed physiological noises. Such noises were
not eliminated to provide a more realistic screening setting. The recording was performed
on both children and adults. The recording was conducted while the subject was lying
supine and in the left lateral decubitus position as shown in Figure 3. A total of 170 subjects
had participated in the data collection process. One hundred twenty-four subjects had
RHD, and 46 subjects were labeled as healthy control. The summary of the collected data
is shown in Table 1. Only a single 30 s record from each subject was used in the analysis.
Additional information about the dataset can be found in [52].

Table 1. Summary of the Ethiopian heart sound dataset collected from 170 subjects (~670 min of
recordings), TASH, Addis Ababa, Ethiopia (row 1 and 2), and additional HC data from Physionet
heart sound dataset (row 3–4), consisting of 81 normal subjects (~45 min of recordings).

No. Dataset No. of
Records Female/Male Age (Years) Average Recording

Duration

1 Eth_PwRHD 124 74/50 22.9 ± 8.9 3.59 min

2 Eth_HC 46 15/31 14.4 ± 9.4 4.88 min

3 Physionet_cHC 3 * n.a. 29 ± 8 47 ± 25 s

4 Physionet_fHC 78 n.a. 56 ± 16 33 ± 5 s
* n.a., not available.
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2.1.2. Additional Heart Sound Dataset

Considering the latest incidence rate of RHD in Ethiopia (5.65%) [19], a screening
tool deployed in the community will be exposed to more HC than PwRHD. However, the
collected dataset had more heart sound data from PwRHD than from HC subjects.

To counter this inconsistency, additional records of HC were added from an open
heart sound dataset [56,57], as shown in Table 1. This dataset contained 3126 heart sound
recordings in total, collected from several subjects with a murmur or healthy controls. The
data was compiled from several databases and labeled with the letters A through F. The
given data had been contaminated by a variety of noise sources and that even in some of
the recordings, it was impossible to distinguish between what was normal and what was
abnormal in the data [57]. Each record was downsampled to 2 kHz and presented as a wav
file. For the screening experiment, this study employed records from the healthy control
group that were longer than 30 s and had just only one record per individual. Eighty-one
records from 81 subjects satisfied these criteria.

2.2. Preprocessing

Each record was filtered with an antialiasing bandpass filter with a frequency band
from 20 Hz to 1 kHz. All data were then downsampled to 2 kHz. Each recording was
carefully labeled as RHD and Normal. Each recording was then divided into a 30-s
duration, and one record from one subject was considered. The z-score of each signal was
then computed to make a zero mean and unity standard deviation.

2.3. Feature Extraction

In machine learning, features greatly determine the performance of an algorithm. In
this study, a unique set of features composed of time domain, frequency domain, perceptual
domain, and acoustic domain were incorporated to improve the detection accuracy. A total
of 31 features (acoustic domain (4), frequency domain (5), time domain (9), and perceptual
domain (13)) were used to model the heart sound. Acoustic domain features have never
been utilized in heart sound analysis systems before.

Time domain features include low and high-order statistics along with the energy
content of the data in time domain representation. The frequency domain features contain
features that indicate the energy content in the frequency domain as well as different
sets of frequency values. The perceptual features model the physiological mechanisms
of hearing, while the acoustic features relate the physical behavior of sound with the
subjective response of sound [58]. Table 2 shows an overview of the complete set of
extracted features. The features were computed using MATLAB2020a’s signal processing
audio processing toolbox.

Table 2. Summary of features used in this study, grouped into four major parts as time domain,
frequency domain, perceptual domain, and acoustic domain.

No. Feature Group Number of Features List of Features

1 Acoustic domain 4

Acoustic Roughness
Acoustic Loudness
Acoustic Sharpness

Acoustic Fluctuation

2 Frequency domain 5

Spectral entropy
Dominant frequency value

Dominant frequency magnitude
Dominant frequency ratio

Bandwidth

3 Time domain 9

Median
Mean absolute deviation

The first quartile
The third quartile

Interquartile range
Skewness
Kurtosis

Shannon’s energy
Zero Crossing rate

4 Perceptual domain 13 MFCC1 to MFCC13
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2.4. Classification

To classify the features as RHD or HC, a support vector machine (SVM) with radial
basis function (RBF) kernel was used [59]. To quantitatively assess the generalization to
previously unseen subjects, this paper proposes two nested cross-validation approaches. A
brief description of SVM and nested cross-validation is presented below.

2.4.1. SVMs

SVMs are powerful classifiers that can handle non-linear and non-separable classifica-
tion tasks efficiently [60]. An SVM first maps the input data into a high-dimensional feature
space and then searches for a separating hyperplane in this space that maximizes the sepa-
ration between two classes. The primary idea is to select the optimal hyperplanes between
distinct classes of data points [61]. For a given training data (xi, yi) where i = 1 . . . N,
SVM’s optimization problem is formulated as Equation (1).

min
ω,ζ,b

J(ω, ζ) =
1
2

ωTω + C
N

∑
i=1

ζi, (1)

such that
yi

(
ωT ϕ(xi) + b

)
≥ 1− ζi, i = 1, . . . , N (2)

ζi ≥ 0, i = 1, . . . , N (3)

where C is an empirically chosen positive regularization constant, ω is the weight vector
for training parameters, ζi is a positive slack variable that specifies the distance of xi to the
decision boundary, and ϕ is a nonlinear mapping function used to map input data point xi
into a higher dimensional space.

SVMs can be solved using Lagrange multipliers α ≥ 0 for Equation (4). The solution
for the Lagrange multipliers is obtained by solving a quadratic programming problem. The
SVM decision function can be expressed as Equation (4):

g(x) = ∑
xi∈SV

αiyiK(x, xi) + b (4)

where K(x, xi) is the kernel function and defined as Equation (5):

K(x, xi) = ϕ(x)T ϕ(xi) (5)

In this paper, the Gaussian radial basis function was used. It is defined as (6):

K(x, xi) = e−γ‖x−xi‖2
(6)

and the SVM classifier was implemented using Scikit-learn version 0.21.3 [62] and Python
version 3.6.8.

2.4.2. Nested Cross-Validation Approach

To quantitatively assess the generalization to previously unseen subjects, this paper
proposes two nested cross-validation approaches. In general, nested cross-validation
partitions the dataset into an inner and outer cross-validation loop. In the inner loop, the
hyperparameters are adjusted to optimize a model selection criterion. In the outer loop, the
generalization of the optimized model to previously unseen subjects is assessed through a
model evaluation criterion. This conservative protocol ensures complete separation among
model selection and model evaluation.

The first nested cross-validation approach was termed stratified nested cross-validation.
Stratified cross-validation preserves the proportion of classes across partitioning and thus
forces each partition to be representative of the dataset. In the machine learning literature,
stratification is used to reduce the internal variability of prediction error estimates [63]. For
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the second approach, the prevalence of RHD was set at 5%, while the proposed dataset con-
tained a roughly equal number of PwRHD and HCs, at 124 and 127, respectively. However,
in reality, the screening tool will be exposed to a larger proportion of HCs than present in
the dataset. Given that hyperparameter optimization is sensitive to how the data is parti-
tioned, the stratified nested cross-validation may result in sub-optimal hyperparameter
choices [64]. Therefore, the model was additionally evaluated through a second nested
cross-validation approach, termed imbalanced nested cross-validation, where the folds
were partitioned according to a certain RHD prevalence. This approach is visualized in
Figure 4. The imbalanced partitioning aims to mirror the clinically relevant use case where
the RHD screening tool could be optimized for an a priori known RHD prevalence and
then tasked to assess RHD in previously unseen subjects.
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Figure 4. A visual overview of the imbalanced nested cross-validation approach. The nested
approach used an outer loop to run a model evaluation criterion and an inner loop to optimize a
model selection criterion. The outer and inner datasets were partitioned according to a leave-one
RHD subject out approach. Given n PwRHD, the proposed partitioning results in n outer folds and
n− 1 inner folds. For each outer fold, the number of HCs to reach a certain desired RHD prevalence
were randomly pooled from the outer dataset, i.e., 20 HCs to evaluate for the desired RHD prevalence
of 5%. Similarly, for each inner fold, the number of HCs were randomly pooled from the inner dataset
to optimize the hyperparameters for a certain desired RHD prevalence. This conservative approach
ensured complete separation between model selection and model evaluation.

Due to the repeated random sampling, the performance estimates were stochastic.
Therefore, each experiment was repeated five times, resulting in five independent nested
cross-validation experiments to assess the performance. For both cross-validation ap-
proaches, the model selection criterion optimized two hyperparameters; the flexibility of
the decision boundary (complexity parameter), and the RBF kernel coefficient, denoted as
C and γ, respectively. The hyperparameter grids were defined as: C = (0.01, 0.1, 1, 10, 100),
and γ = (1, 0.1, 0.01, 0.001, 0.0001). The optimization aimed to maximize the f1-score across
the inner testing partitions. The f1-score is defined as in Equation (9). The other objective
metrics for performance evaluation were precision Equation (7), recall Equation (8), and
specificity Equation (10).

precision =
Tp

Tp + Fp
(7)

recall =
Tp

Tp + FN
(8)

f 1− score = 2 ∗ precision ∗ recall
precision + recall

(9)

speci f icity =
TN

TN + Fp
(10)

where TP = number of true positives, FP = number of false positives, FN = number of false
negatives, and TN = number of true negatives.
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3. Results

The proposed method was quantitively evaluated for RHD prevalence rates of 2.5%,
5%, 10%, 20%, and 10-fold stratified cross-validation. The results indicated that the f1-score
improved as the prevalence rate increased. More specifically, the f1-score ranged from
59.0 ± 1.5% to 81.1 ± 1.5% for prevalence rates of 2.5% and 20%, respectively. A similar
pattern was observed for the precision, which ranged from 44.2 ± 2.7% to 71.4 ± 2.0% for
prevalence rates of 2.5% and 20%, respectively. However, the recall was consistently high in-
dependent of RHD prevalence. The other parameter which was consistently high through-
out the different prevalence rates was specificity with a maximum value of 96.0 ± 0.6
achieved at 10-fold cross-validation. The highest f1-score of 96.0 ± 0.9% was also ob-
served for the stratified 10-fold cross-validation experiment, where the prevalence of RHD
and HCs were roughly equal across the partitions. All the results of this experiment are
summarized in Table 3.

Table 3. Results (mean ± standard deviation %) of the imbalanced nested cross-validation at four
different prevalence rates and stratified nested 10-fold Cross-validation using the complete feature set.

Parameter 2.5% 5% 10% 20% Stratified 10-Fold

f1-score 59.0 ± 1.7 72.2 ± 0.8 80.1 ± 1.5 81.1 ± 1.5 96.0 ± 0.9
Recall 89.0 ± 1.2 92.3 ± 0.4 95.6 ± 1.0 93.9 ± 1.2 95.8 ± 1.5

Precision 44.2 ± 2.7 59.2 ± 3.6 68.9 ± 3.3 71.4 ± 2.0 96.2 ± 0.6
specificity 95.2 ± 0.5 94.8 ± 0.6 92.6 ± 0.8 86.9 ± 1.8 96.0 ± 0.6

The second experiment was conducted to perform an objective comparison of different
features used in six state-of-the-art heart sound classification algorithms. Features were
extracted exactly as they are used in their respective papers. Then, the performance was
evaluated in our RHD dataset. The f1-score, recall, precision, and specificity were computed
for the 5% prevalence rate using nested cross-validation and for stratified-10-fold cross-
validation. The result of this experiment is shown in Table 4. The utilization of the time
domain feature alone, as proposed by Careena P. et al. [38], resulted in the lowest score.
Using frequency domain [41] feature alone also had a lower classification performance.
Compared to the time or frequency domain features, perceptual domain features alone [45]
performed well. When perceptual features were combined with wavelet features [28], the
classification performance was improved further. The best results were achieved by the
different combinations of time, frequency, and perceptual features [52,53].

Table 4. Results (mean ± standard deviation %) of stratified nested 10-fold cross-validation and imbalanced nested
cross-validation at 5% RHD prevalence rate using six sets of state-of-the-art features when evaluated on our RHD dataset.

Authors Features (Numbers) Evaluation f1-Score Recall Precision Specificity

Springer et al. [28] Combination of undecimated wavelet
transform (360) and MFCC (13)

10-fold CV 90.3 ± 2.0 86.3 ± 3.1 94.7 ± 0.9 94.6 ± 0.9
nested CV at 5% 63.3 ± 2.4 72.4 ± 1.4 56.2 ± 3.0 94.3 ± 0.2

Careena P. et al. [38] Time domain features (10) 10-fold CV 83.2 ± 0.8 82.0 ± 1.6 84.6 ± 1.7 84.4 ± 2.5
nested CV at 5% 0.40 ± 1.6 67.9 ± 2.4 28.3 ± 1.5 90.4 ± 0.5

A. M. Alqudah
et al. [41]

Frequency domain features (8) 10-fold CV 86.6 ± 1.2 89.7 ± 2.4 83.9 ± 3.6 82.1 ± 5.0
nested CV at 5% 37.5 ± 1.0 85.8 ± 1.7 24.0 ± 0.9 82.9 ± 0.6

M. Deng et al. [45] perceptual features (MFCC and its first and
second derivatives) (26)

10-fold CV 89.4 ± 1.5 90.4 ± 1.9 88.5 ± 1.6 87.5 ± 1.9
nested CV at 5% 44.6 ± 1.0 90.6 ± 1.5 29.6 ± 0.7 86.1 ± 0.2

Asmare et al. [52]
Combination of time (6), frequency (3) and

perceptual features (13)
10-fold CV 93.9 ± 0.4 94.1 ± 1.1 93.7 ± 0.8 93.3 ± 0.9

nested CV at 5% 66.8 ± 2.9 91.5 ± 1.9 52.6 ± 3.3 93.5 ± 0.7
N. K Sawant

et al. [53]
Combination of time (3), frequency (4), and

perceptual features (13)
10-fold CV 91.7 ± 1.3 90.8 ± 1.5 92.6 ± 1.2 92.6 ± 1.0

nested CV at 5% 62.4 ± 2.2 94.7 ± 1.6 46.6 ± 2.3 91.7 ± 0.7

This paper Combination of time (9), frequency (4),
perceptual (13) and acoustic features (4)

10-fold CV 96.0 ± 0.9 95.8 ± 1.5 96.2 ± 0.6 96.0 ± 0.6
nested CV at 5% 72.2 ± 0.8 92.3 ± 0.4 59.2 ± 3.6 94.8 ± 0.6

The final experiment was conducted with only the proposed time, frequency, and
perceptual features, but without the acoustic features. This experiment aimed to assess the
effect of the additional acoustic features on the classification performance which are new for
the heart sound analysis. The same partitioning and evaluation procedure was followed to
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showcase the performance across different prevalence rates. More specifically, prevalence
rates of 2.5%, 5%, 10%, and 20%. The f1-score was the lowest, at 2.5% (58.4 ± 1.4%), and
increased as the prevalence rate increased. The highest score was 95.2 ± 0.8% under
stratified 10-fold cross-validation. The recall increased from 85.5 ± 1.0% to 87.6 ± 2.6%
when the prevalence rate increased from 2.5% to 5%. However, it dropped back at 10%
and 20% with a value of 84.8 ± 2.0% and 83.9 ± 1.9%, respectively. The maximum recall
of 96.1 ± 1.2% was recorded at stratified 10-fold cross-validation. Precision uniformly
increased with increasing prevalence rate. Specificity was consistently high for all the
prevalence rates, with its maximum being 95.2 ± 0.6% recorded at a 2.5% prevalence rate.
The results of this experiment are summarized in Table 5.

Table 5. Results (mean ± standard deviation %) of the imbalanced nested cross-validation at four
different prevalence rates and stratified nested 10-fold cross-validation using only the time, frequency,
and MFCC features.

Parameter 2.5% 5% 10% 20% Stratified 10-Fold

f1-score 58.4 ± 1.4 68.7 ± 3.0 70.4 ± 2.1 73.8 ± 2.4 95.2 ± 0.8
Recall 85.5 ± 1.0 87.6 ± 2.6 84.8 ± 2.0 83.9 ± 1.9 96.1 ± 1.2

Precision 44.4 ± 2.5 56.5 ± 3.4 60.2 ± 2.2 65.9 ± 3.4 94.3 ± 0.7
specificity 95.2 ± 0.6 94.3 ± 0.5 92.1 ± 0.7 89.0 ± 1.5 93.7 ± 0.6

4. Discussion

Classification of heart sound records from a phonocardiogram is challenging because
the record is usually mixed with noise. This paper presented a screening tool to detect
RHD for a possible community-level screening program. Extensive heart sound data from
PwRHD and HC was collected for this purpose. The proposed approach was quantitively
evaluated according to two nested cross-validation approaches to demonstrate the per-
formance of the system against imbalanced data (Table 3). Table 4 includes a comparison
of the proposed system with six sets of features utilized in state-of-the-art classification
methods. An additional experiment was also conducted to demonstrate the effect of the
proposed acoustics features on the classification performance (Table 5).

In the regular stratified nested 10-fold cross-validation, the model had an excellent
detection performance with an f1-score of 96.0 ± 0.9%, a recall value of 95.8 ± 1.5%, a
precision of 96.2 ± 0.6% and sensitivity of 96.0 ± 0.6%. In this stratified evaluation, the
balanced class distribution of the dataset, i.e., 124 PwRHD and 127 HCs, was preserved
across the hyperparameter and model evaluation partitions. In practice, however, such a
balance in the data is not available.

As a detection tool, the system should be robust against a severe data imbalance
common in a real-life scenario. In the Ethiopian context, the most recently reported
population-wise prevalence rate of RHD was 5.67% [19]. To optimize and evaluate the
model at prevalence rates that differ from the class distribution of the dataset, a second
nested cross-validation approach, termed imbalanced nested cross-validation, was used.
This approach partitioned model optimization and evaluation folds according to a certain
a priori known RHD prevalence rate. An assessment of the influence of the prevalence
rate on the hyperparameters optimization is provided in Appendix A (Figure A1). As
the prevalence rate increases, the complexity parameter C decreases, whereas the kernel
width increases. For low prevalence rates, the optimization proposes a higher cost of
misclassification (a bigger C) and a smoother decision boundary (a smaller γ).

For a 5% prevalence rate of RHD, the model resulted in an f1-score of 72.2 ± 0.8%,
a recall of 92.3 ± 0.4%, a precision of 59.2 ± 3.6% and a specificity of 94.8 ± 0.6%. In a
detection tool, a high recall value is a vital requirement. That requirement has been fulfilled
by our proposed method. A precision value of 59.2± 3.6% is relatively low, but this may be
because the quality of the added open access data is low. The specificity at 5% prevalence
was high 94.8 ± 0.6%, but the experiment always considered 1 PwRHD for 20 HC across
all folds of the experiment; hence, the number of false positives will be a maximum of 1.
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To further see the robustness of the model against restricted positive ratios, it was
tested again for a prevalence of 2.5% of RHD. For this experiment, the system managed
to detect most RHD cases with a recall value of 89.0 ± 1.2%. The precision was low at
44.2 ± 2.7%. To achieve the 2.5% prevalence rate, this experiment considered 1 PwRHD
for 40 HC across all folds of the experiment. The proportion of samples in the evaluation
partitions from the (lower quality) open-access dataset is even higher at a smaller prevalence
rate. At a 2.5% prevalence rate, the number of HCs in the training partitions reduces as
more HCs are preserved for evaluation. This increases the class imbalance in the training
partitions and may in turn affect the capacity of the classifier to model the HCs.

During the systolic and diastolic stages of the heart cycle, RHD causes transient, non-
stationary, high-frequency murmurs with low amplitude. It is critical to accurately describe
abnormal cardiac murmurs to successfully detect them. As shown in Table 4, the use of
purely temporal or spectral representations of the PCG as classification features is inadequate
since they are limited in either temporal localization or frequency information which only
achieved an f1-score of 83.2± 0.8% and 86.6± 1.2% for the stratified 10-fold cross-validation
respectively. The modeling of heart sounds using MFCC to acquire perceptual information
resulted in a reasonably good performance with an f1-score of 89.4 ± 1.5%. Improved
results were obtained by combining time, frequency, and perceptual domain features with
the highest f1-score in the group being 93.9 ± 0.4%. However, employing a unique and
enhanced combination of time, frequency, perceptual and acoustic features had the best
classification performance with an f1-score of 96.0 ± 0.9%. In all the evaluations metrics
using the stratified 10-fold cross-validation, the performance of this article was better.

Further comparison was performed to observe the performance of each feature set us-
ing the 5% prevalence rate of the study area. In this case, the biggest f1-score of 72.2 ± 0.8%
was achieved by our paper. However, the highest recall of 94.7 ± 1.6% was recorded by N.
K Sawant et al. [53], but the corresponding precision and f1-score were low. Concerning the
most important metrics in a hugely unbalanced dataset, the proposed approach performed
best. This is because the proposed set of features comprise not only a combination of time,
frequency, and perceptual features, but also acoustic features that model the sensations
produced by sounds using distinct elements of sound pitch and intensity.

To see the effect of the proposed set of acoustic features, the proposed method was
re-evaluated without these new sets of acoustic features (Table 5). It can be seen that there
was a consistent performance improvement at all prevalence rates and stratified 10-fold
cross-validation. A maximum of 10.7% increment of recall value was observed at a 10%
prevalence rate. A 2.1% decrement of specificity at a 20% prevalence rate was also observed.
In several cases, the two experiments produced almost identical results. Generally, acoustics
features, which are common in audio and speech processing, can be also effectively utilized
for heart sound processing. The observed higher performance of our approach indicates the
proposed new and more elaborate set of features that incorporated attributes derived from
time, frequency, perceptual, and acoustics domains have managed to effectively delineate
murmur from normal heart sounds.

In the literature, automatic classification algorithms specifically developed for RHD
detection were rare. Springer D. B. [28] reported an accuracy of 74.5 ± 2.1%, an f1-score
of 69.9 ± 2.8%, a sensitivity of 74.8 ± 3.9%, and specificity of 74.1 ± 1.9%. Their data had
over 36.7% prevalence rate of RHD. Even if our proposed approach and Springer D. B
used different sets of datasets, both addressed the issue of RHD detection. It can be seen
that our proposed method has a significantly improved recall value of 92.3 ± 0.4% and
a better f1-score of 72.2 ± 0.8% at a lower prevalence rate of 5%. Springer D. B. revealed
that an avoidable noise source had harmed the quality of their heart sound recordings
gathered from RHD and normal participants. Conversely, their data, unlike ours, included
recordings from borderline RHD cases where phonocardiogram may fail to detect.

Godown et al. [21] reported a sensitivity of 22.2% and a specificity of 91.2% of manual
auscultation methods performed by experts at a prevalence rate of 3.4% definite RHD. To
have a reasonable comparison, we ran our proposed algorithm at a 3.4% prevalence rate
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and an f1-score of 64.2± 3.7%: a recall value of 85.16± 1.7%, a precision of 51.6 ± 3.5% and
a specificity of 95.2 ± 0.7% were achieved. When compared to manual auscultation, our
suggested technique has a higher RHD sensitivity of 85.16± 1.7% and a better specificity of
95.2 ± 0.7%. Conversely, the reported sensitivity of 97.8% from low-cost handheld echocar-
diography was better to our proposed method. However, this high sensitivity was achieved
by involving expert cardiologists that are not readily available in developing countries.

Our proposed method has a comparable result of detecting RHD when it was com-
pared with non-experts who utilized low-cost handheld echocardiography for the detection
of RHD. Ploutz M. et al. [23] reported sensitivity for definite RHD detection to be 90.9%. Our
reported sensitivity was 89.0 ± 1.2% at the lowest 2.5% prevalence rate. Which is relatively
identical to the performance of non-experts using low-cost handheld echocardiography.
This indicates that there is a potential for automatic classifiers based on phonocardiogram
to be utilized in RHD detection tasks in areas where advanced imaging devices such as
echocardiography and expert cardiologists are not readily available.

5. Conclusions

RHD is a neglected disease that requires substantial effort to eradicate in developing
nations where it is endemic. Transthoracic echocardiogram imaging is the primary method
for RHD diagnosis and detection. which necessitates expert knowledge and is extremely
expensive. Such privileges are not commonly available in countries where RHD is most
prevalent. The effectiveness of the other cheapest alternative, namely cardiac auscultation,
on the other hand, has declined over time and is difficult to master. Cheaper handheld
echocardiograms have also been proposed. However, these devices still require specialized
skills to perform RHD screening.

Task-shifting non-medical professionals to perform duties typically performed by
physicians is one potential solution to limiting healthcare access. Screening for RHD
qualifies as a task that can be easily transferred to a non-medically trained professional.
As a consequence, in areas where RHD is prevalent, an automated heart sound analysis
system could be important. This paper has demonstrated the capability of detecting RHD
using such automated systems. It has shown better performance in objective metrics. The
model has demonstrated a commendable RHD detection performance indicated by a recall
value consistently higher than 90% at different prevalence rates. In the experiments, there
were few missed RHD, which is important for a quick screening tool.

The results showed that the proposed method has a great potential to be utilized to detect
RHD in children and young people with an f1-score of 72.2 ± 0.8%, a recall of 92.3 ± 0.4,
a precision of 59.2 ± 3.6% and a specificity of 94.8 ± 0.6%. Furthermore, recall value of
89.0 ± 1.2%. was observed at low prevalence rates of RHD 2.5%. When compared to other
state-of-the-art articles, our results consistently outperformed them because we were able to
effectively predict murmur due mainly to RHD utilizing the proposed unique set of features.

However, for this paper, three main limitations are present. The model’s precision
at low prevalence rates is the first and most obvious limitation; this can be improved
by collecting more data and retraining the system. The second limitation is analogous
to the procedure for obtaining imbalanced nested cross-validation. To mirror low RHD
prevalence rates in the model optimization and evaluation partitions, HC subjects were
randomly pooled from the inner and outer datasets. This results in overlap of HCs across
partitions and thus reduced variety of that class. The third limitation is on the data, RHD
records were obtained from patients seeking treatment in cardiac clinics who may have
advanced stages of RHD.

In conclusion, the first significant contribution of this paper is the presentation of a
carefully collected and standardized rheumatic heart disease heart sound data set. This
has never been executed before. Second, it proposed a unique set of features capable
of modeling heart sounds for improved detection capability. Third, rigorous evaluation
of RHD detection at various prevalence rates, with the most critical parameter, recall,
continuously above 90%, is critical for a screening tool.
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Deploying such a system at school-level screening programs will have potentially
important results mainly because it will enable mass screening and early detection. Further-
more, younger subjects with an early-stage diagnosis are the most to gain from secondary
prophylaxis [65]. Finally, a non-medically trained person at school or in the community
may use such a low-cost diagnostic method to screen those at high RHD risk and refer
children with RHD for further confirmation with echocardiographic imaging and addi-
tional consultation with a medical doctor for further treatment. This effectively shifts the
routine screening process away from the medical facility and physicians and toward the
community and non-medically trained individuals. As a result, medical practitioners will
be able to focus on their primary function, which is to treat patients.

Author Contributions: Conceptualization, M.H.A., B.F., F.W., L.J. and B.V.; methodology, M.H.A.,
B.F., F.W., L.J. and B.V.; software, M.H.A. and B.F.; validation, M.H.A., B.F., F.W., L.J. and B.V.; formal
analysis, M.H.A.; investigation, M.H.A.; resources, M.H.A., F.W., L.J. and B.V.; data curation, M.H.A.;
writing—original draft preparation, M.H.A.; writing—review and editing, M.H.A., B.F., F.W., L.J. and
B.V.; visualization, M.H.A. and B.F.; supervision, F.W., L.J. and B.V. All authors have read and agreed
to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: The study was conducted according to the guidelines of
the Declaration of Helsinki and approved by the Ethics Committee of the Department of Internal
Medicine, College of Health Sciences, Addis Ababa University (No: 014/2018).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the
study. Written informed consent was obtained from the patient(s) to publish this paper.

Data Availability Statement: Part of the data presented in this study are openly available in the
Physionet repository. The ETH-RHD data that support the findings of this study are available on
request from the corresponding author, M.H.A. The data are not publicly available due to intellectual
property restrictions.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Figure A1 shows an overview of the optimal hyperparameter values for the complex-
ity parameter C and the kernel width (γ). For each imbalanced nested cross-validation
experiment, the model selection criterion within the inner loop is composed of n−1, i.e., 123,
PwRHD partitions. It can be observed that as the imbalance decreases, i.e., the prevalence
rate increases, the complexity parameter C decreases (Figure A1a), and the kernel width γ

increases (Figure A1b). For low prevalence rates, the optimization thus proposes a higher
cost of misclassification (larger C), with a smoother decision boundary (lower γ).
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