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a b s t r a c t 

Chest computed tomography (CT) based analysis and diagnosis of the Coronavirus Disease 2019 (COVID- 

19) plays a key role in combating the outbreak of the pandemic that has rapidly spread worldwide. To 

date, the disease has infected more than 18 million people with over 690k deaths reported. Reverse 

transcription polymerase chain reaction (RT-PCR) is the current gold standard for clinical diagnosis but 

may produce false positives; thus, chest CT based diagnosis is considered more viable. However, accurate 

screening is challenging due to the difficulty in annotation of infected areas, curation of large datasets, 

and the slight discrepancies between COVID-19 and other viral pneumonia. In this study, we propose an 

attention-based end-to-end weakly supervised framework for the rapid diagnosis of COVID-19 and bac- 

terial pneumonia based on multiple instance learning (MIL). We further incorporate unsupervised con- 

trastive learning for improved accuracy with attention applied both in spatial and latent contexts, herein 

we propose Dual Attention Contrastive based MIL (D A -CMIL). D A -CMIL takes as input several patient CT 

slices (considered as bag of instances) and outputs a single label. Attention based pooling is applied to 

implicitly select key slices in the latent space, whereas spatial attention learns slice spatial context for 

interpretable diagnosis. A contrastive loss is applied at the instance level to encode similarity of features 

from the same patient against representative pooled patient features. Empirical results show that our al- 

gorithm achieves an overall accuracy of 98.6% and an AUC of 98.4%. Moreover, ablation studies show the 

benefit of contrastive learning with MIL. 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

The coronavirus disease 2019 (COVID-19), first recognized in 

uhan, China has spread to a global scale infecting millions and 

ausing death to hundreds of thousands. As of August, 2020 in- 

ections surpassed 18 million, with reported deaths reaching over 

90,0 0 0 globally. Caused by severe acute respiratory syndrome 

oronavirus 2 (SARS-CoV-2), COVID-19 is highly contagious with 

ncreasing infections each day. Despite having a relatively lower 

atality rate Mahase (2020) than SARS and Middle East Respiratory 

yndrome (MERS), COVID-19 has already caused more deaths. Con- 

equently, there is an urgent need for rapid diagnosis to improve 

revention while an effective vaccine is being developed. 
∗ Corresponding author. 
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Reverse transcription polymerase chain reaction (RT-PCR) is 

he current gold standard for COVID-19 diagnosis based on vi- 

al nucleic acid (VNA) ( Zu et al., 2020 ). However, low sensitiv- 

ty, high number of false positives and lengthy test to diagnosis 

imes pose a challenge for early identification and treatment of 

atients ( Ai et al., 2020 ). Moreover, potential patients left unat- 

ended increase the risk of spreading the infection. As an easy non 

nvasive imaging alternative, chest computed tomography (CT) is 

iable for fast diagnosis ( Ai et al., 2020 ). It can detect key imag-

ng characteristics manifested in infected areas such as ground 

lass opacity (GGO), multifocal patchy consolidation and/or bilat- 

ral patchy shadows ( Wang et al., 2020a ). However, image charac- 

eristics between COVID-19 and other pneumonia types may pos- 

ess similarities, making accurate diagnosis challenging. Also, auto- 

ated screening sensitivity is limited and not on par with radiolo- 

ist level performance ( Wang et al., 2021b ). Therefore, there is an 

rgent need to improve and/or develop robust screening methods 

ased on chest CT. 

https://doi.org/10.1016/j.media.2021.102105
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2021.102105&domain=pdf
mailto:fireajh@yu.ac.kr
mailto:shpark13135@dgist.ac.kr
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On the other hand, deep learning ( LeCun et al., 2015 ) 

ased solutions have shown success in medical image analy- 

is ( Litjens et al., 2017 ) due to the ability to extract rich fea-

ures from clinical datasets, and include a wide range of applica- 

ion areas such as organ segmentation ( Ronneberger et al., 2015 ) 

nd disease diagnosis, etc. Deep learning has been employed for 

he diagnosis of COVID-19 in chest CT ( Song et al., 2021; Gozes 

t al., 2020a; 2020b ) and community acquired pneumonia (CAP) 

 Kermany et al., 2018 ). For example, Ouyang et al. (2020) pro- 

osed a 3D convolutional neural network (CNN) with online at- 

ention refinement to diagnose COVID-19 from CAP and introduced 

 sampling strategy to mitigate the imbalanced distribution of in- 

ected regions between COVID-19 and CAP. Song et al. (2021) pro- 

osed DeepPneumonia for localization and detection of COVID-19 

neumonia; attention was also applied to detect key regions with 

mpressive results on a large cohort. Despite showing promising 

erformance, most methods are supervised and require consider- 

ble labeling efforts. Notably, even without annotated examples 

f infection areas, some works use existing deep learning mod- 

ls ( Shan et al., 2021 ) to extract infection regions and/or manually 

elect slices in CT that show key characteristics. However, taking 

nto consideration that during the pandemic experts have had lim- 

ted time to perform labeling of CT volumes for supervised meth- 

ds, unsupervised or weakly supervised learning methods that do 

ot heavily rely on extensive data pre-processing and/or strong 

rior knowledge are a preferred option for accurate diagnosis. 

Recently, several works focused on accurate diagnosis under 

eak supervision have been proposed. Notably, we consider ap- 

roaches that use (a) patch-based ( Wang et al., 2021a; Shi et al., 

021b ) (b) slice-based ( Gozes et al., 2020b; 2020a; Hu et al., 2020 ),

nd (c) 3D CT-based ( Han et al., 2020; Wang et al., 2020b ) methods

or diagnostic decisions. The first often uses prior segmented infec- 

ion regions as input to train classifiers in a two-stage setup. The 

econd performs slice-wise inference directly, whereas 3D based 

ethods use the entire 3D CT scans as input with 3D convolutional 

eural networks (CNN). For the patch and slice-based approaches 

o be effective, inf ected regions must be well selected for training. 

lso, 3D CNN models are inherently slow during inference due to 

igger model size and may lack interpretability. 

In this work, we propose a novel end-to-end attention-based 

eakly supervised framework using multiple instance learning 

MIL) ( Carbonneau et al., 2018 ) and self-supervised contrastive 

earning ( Chen et al., 2020a ) of features towards accurate diagno- 

is of COVID-19 from bacterial pneumonia. We refer to this frame- 

ork as D A -CMIL. The goal of D A -CMIL is to assign patients a sin-

le category label i.e. (COVID-19 or bacterial pneunomia) given as 

nput a CT volume of multiple 2D slices. In general, each patient 

T scan is considered as a bag of instances that may be posi- 

ive or negative. Moreover, it would be beneficial to identify which 

lices/instances contribute to the final patient diagnosis with the 

otential to localize infected regions. Herein, we propose an atten- 

ion based permutation-invariant MIL method for the pooling of 

lices to obtain a single representative feature of patients. In ad- 

ition, spatial attention is jointly applied to learn spatial features 

ey for infection area discovery. We incorporate contrastive learn- 

ng at the instance level to encourage instance features from the 

ame patient to be semantically similar to the patient level aggre- 

ated feature in an unsupervised manner. To achieve this, an un- 

upervised contrastive loss is employed alongside patient category 

abels for the supervised loss during training. 

Existing works using MIL applied in different domains often 

ecouple instance and bag level learning into a two-step proce- 

ure i.e. first learn instance level encoders, then learn aggregation 

odels for inference using the trained encoders with MIL pool- 

ng ( Hashimoto et al., 2020; Hou et al., 2016 ). However, due to

he ambiguity of the instance labels and noise, learning a robust 
2 
ncoder can be challenging. Thus, the proposed framework aims 

o address the aforementioned challenges via end-to-end learning; 

nstance selection is implicity achieved via attention based pool- 

ng of CT slices with model optimization focused only on accurate 

atient labels. Moreover, by jointly using a supervised and con- 

trastive loss, our model can avoid overfitting when trained on 

maller datasets and improve feature robustness at the instance 

evel without sacrificing accuracy. We empirically show the ben- 

fit of D A -CMIL on a recently collected dataset, with interpretable 

esults and competitive performance against state-of-the-art meth- 

ds. 

The main contributions of this study include: 

• We propose a novel end-to-end model for weakly supervised 

classification of COVID-19 from bacterial pneumonia. 
• We show that joint contrastive learning of instance features and 

patient level features in the MIL setting is viable. A novel set- 

ting of learning instance level features without inferring labels. 
• Towards interpretability, we show that dual attention, in partic- 

ular spatial attention can be used to assess and visualize model 

decisions. 
• We empirically show that D A -CMIL is robust to different CT 

sizes when instance (i.e. slice/patch) count varies via ablation 

studies. 

The rest of the article is arranged as follows. In Section 2 , we

eview recent works related to computer aided diagnosis with ar- 

ificial intelligence for COVID-19 and relevant methodologies un- 

er weak supervision. We introduce the relavant background and 

etails regarding D A -CMIL in Section 3 . In Section 4 , we provide

escriptions on experimental settings and datasets employed. Ex- 

erimental results are discussed in Sections 5 and 6 . We conclude 

his study in Section 7 . 

. Related works 

This section presents related works in terms of COVID-19 

creening, methods for weak supervision and self-supervised learn- 

ng. 

.1. Deep learning for COVID-19 diagnosis 

The success of deep learning based techniques applied to med- 

cal image analysis have shown promising results for several ap- 

lication areas such as segmentation and disease detection. Sev- 

ral pioneering methods ( Shi et al., 2021a; Gozes et al., 2020a; 

ie et al., 2020; Wang et al., 2021a; Kang et al., 2021b; 2021a )

ave been proposed for the analysis of COVID-19 in both X-ray 

nd CT images. COVID-19 lesion segmentation ( Gozes et al., 2020a; 

ie et al., 2020 ), automated screening ( Wang et al., 2021a; Song 

t al., 2021; Han et al., 2020 ) and severity assessment ( Huang et al.,

020 ) have been key areas of research. Notably, a recent re- 

iew ( Shi et al., 2021a ) shows that automated screening is predom- 

nant and continues to receive much interest. Moreover, given that 

hest CT best shows key image characteristics for COVID-19 diag- 

osis, CT is preferred over X-ray despite being a low cost solution. 

g et al. (2020) recently claimed that consolidative and/or ground 

lass opacities (GGO) on CT are often undetectable in chest radiog- 

aphy and highlighted the pros and cons of each imaging modality. 

Accordingly, Oh et al. (2020) recently proposed a patch-based 

NN for COVID-19 diagnosis applied to chest radiography with lim- 

ted datasets. They show that statistically significant differences in 

atch-wise intensity distributions can serve as biomarkers for diag- 

osis of COVID-19; with existing correlations to current radiologi- 

al findings of chest X-ray. Alom et al. (2020) introduced a multi- 

ask deep model that jointly considers chest CT and X-ray for diag- 

osis. They showed impressive results in both modalities for both 
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etection and localization of infected regions. Song et al. (2021) de- 

eloped DeepPneumonia, a deep learning system with rapid diag- 

osis to aide clinicians. Mei et al. (2020) used deep learning to 

ntegrate chest CT findings with clinical information such as lab- 

ratory tests and exposure history to rapidly diagnose COVID-19 

atients. From a technical standpoint, most methods require pre- 

egmented lesions prior to training, and/or include multi-stages in 

he frameworks. Moreover, patch-based methods may suffer from 

oisy samples in scans, often requiring careful manual selection of 

lices for efficiency. 

.2. Weak supervision and multiple instance learning 

MIL is a form of weakly supervised learning where la- 

els/categories are provided only for a bag of instances i.e. train- 

ng instances arranged in sets and the labels of instances contained 

n the bags are unknown ( Carbonneau et al., 2018 ). In this study,

e consider a patient CT scan as a bag with unlabeled slices (in- 

tances), having only the diagnostic label for training. In general, 

xisting algorithms can be categorized as instance-level ( Hou et al., 

016 ), bag-level ( Hashimoto et al., 2020 ), embedding-based, and 

oint methods that combine several approaches such as attention 

echanisms ( Hashimoto et al., 2020; Ilse et al., 2018; Han et al., 

020 ). In literature, MIL has been applied to several domains in- 

luding object detection ( Zhang et al., 2016a ), image classifica- 

ion ( Yao et al., 2019; Hou et al., 2016; Zhang et al., 2016a ), and

bject tracking ( Hu et al., 2017 ). 

Also, several works have been applied in the medical imag- 

ng domain ( Wang et al., 2020b; Hu et al., 2020; Han et al.,

020; Wang et al., 2020c; Campanella et al., 2019 ). Hashimoto 

t al. (2020) recently introduced a novel CNN for the classifica- 

ion of malignant lymphoma in histopathology slides. Notably, they 

ombined domain adaptation and multi-scale approaches with MIL 

or improved performance. Ilse et al. (2018) proposed attention- 

ased pooling for MIL in an end-to-end framework; impressive re- 

ults are shown across different domain problems including can- 

er region detection in histopathology. Weakly supervised detec- 

ion of COVID-19 infection regions in chest CT is presented by 

u et al. (2020) with multi-scale learning applied for localization. 

ore recently, Wang et al. (2020c) proposed (DeCoVNet), a method 

pplied to 3D CT volumes using 3D CNNs with weak labels. De- 

oVNet takes as input a CT volume and its lung mask for COVID- 

9 classification. Han et al. (2020) proposed AD3DMIL, a 3D MIL 

ethod with attention for COVID-19 screening with a deep in- 

tance generation module based on 3D latent features inspired by 

he pioneering work of Feng and Zhou (2017) . 

.3. Self supervised learning 

Self Supervised Learning (SSL) is a form of unsupervised learn- 

ng where the data provides the supervision, and the network is 

rained to solve auxiliary tasks with a proxy loss. This is highly 

eneficial, especially in medical imaging where supervision is lim- 

ted and the existing difficulty of curating annotations. Auxiliary 

asks include context prediction ( van den Oord et al., 2019 ), au- 

omatic colorization ( Zhang et al., 2016b ), and image inpaint- 

ng ( Pathak et al., 2016 ). Most recently, Chen et al. (2020a) intro-

uced a simple framework for contrastive learning (SimCLR) that 

ses extensive data-augmentation for defining predictive tasks, 

hich achieves comparable performance to state-of-the-art super- 

ised methods. For medical imaging tasks, He et al. (2020) re- 

ently proposed (Self-Trans) a method that combines contrastive 

elf-training with transfer learning for COVID-19 diagnosis. No- 

ably, the authors focus on establishing robust strategies for trans- 

er learning with limited data, and/or when using external datasets 

or COVID-19 Chest CT analysis. 
3 
Inspired by recent works both for MIL and SSL, we propose 

o synergistically integrate contrastive self-supervision with MIL 

n an end-to-end framework. Though previous works such as 

D3DMIL Han et al. (2020) have shown impressive results; the 

odel is based on 3D CNN and considerably has a larger model 

ize. Also, Self-Trans ( He et al., 2020 ) follows a two-step ap- 

roach by first pre-training the network via self-supervision using 

 Chen et al., 2020b ); then performs fine-tuning or transfer learning. 

e believe that joint self supervised training with transfer learning 

s still underexplored. Thus, we aim to extend the current scope of 

he literature regarding COVID-19 via a novel formulation of MIL 

nd self-supervised contrastive learning. 

. Methods 

This sections presents the necessary notations and overall ob- 

ectives of the task of COVID-19 diagnosis, including details of the 

elative modules of the proposed method. 

.1. Preliminaries 

We consider a chest CT dataset D = { S 1 , ..., S n } where the model

eceives a set of m labeled example scans { (S i , Y i ) } m 

i =1 
drawn from

he joint distribution defined by S × Y . S i is a patient CT scan with

nstances (i.e. 2D CT slices or patches) and Y is the label set of 

atient-level labels, wherein Y is { 0 , 1 } for binary classification of 

OVID-19 and other. Also, S i is considered as a bag of instances 

ith S i = { s 1 , s 2 , ..., s N } where N denotes the total number of in-

tances in the bag. It can be assumed that each instance s n has a

abel y n ∈ { 0 , 1 } , however not all instances may be negative or pos-

tive. Moreover, not all slices in a scan may show infection regions 

ital for diagnosis, as others may be noisy artifacts not useful for 

earning. 

Accordingly, MIL must satisfy the following constraints: if a bag 

 i is negative, then it can be assumed that all corresponding in- 

tances should be negative. In the case of positive bags, at least 

ne instance is assumed to be positive. Formally, it follows that 

 = 

{
0 , iff

∑ 

n y n = 0 , 

1 , otherwise . 
(1) 

In this work, this assumption may not hold given that both sets 

f bags (COVID-19 and other pneumonia) considered contain both 

egative and positive instances (lesions). Thus, we consider a re- 

axed version of this constraint wherein an attention mechanism is 

pplied to implicitly weight instances and learn their labels. 

.2. Proposed approach 

We developed a CNN model for patient CT scan level diagno- 

is between COVID-19 and other pneumonia in a single end-to-end 

ramework. Herein, a dual-attention multi-instance learning deep 

odel with unsupervised contrastive learning (D A -CMIL) is pro- 

osed. As presented in Figure 1 , our method takes a CT scan with

nlabeled instances as input and learns key semantic representa- 

ions. It further uses an attention-based pooling method to trans- 

orm patient instances into a single bag representation for final 

rediction (see Section 3.3 ). Unsupervised contrastive learning is 

mployed to encourage instances in a bag to be semantically simi- 

ar to the bag representation during training (see Section 3.4 ). 

In the proposed framework, a backbone CNN model F θ is im- 

lemented as a feature extractor to transform the i -th instance 

rom a CT bag into a low dimension embedding g i j = F θ (s i j ) with

patial dimensions of shape C × H × W , where C, H and W are 

he channel size, height and width, respectively. Following, g i j is 

eed to a spatial attention module A θ,S in order to learn spatial 

epresentative features and output spatial attention maps of size 
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Fig. 1. Overview of the proposed framework. For a given patient CT scan, we sample k instances during training to create a bag as input and feed them through the backbone 

F θ to obtain feature maps. Modules A θ,S and A θ,I learn spatial and instance attention, then perform permutation invariant pooling via A θ,I on feature maps (from A θ,S ) to 

obtain a single patient representative feature. The backbone features are spatially pooled via the 1st 
⊗ 

operator after A θ,S , whereas the instance feature aggregation is 

done with 2nd 
⊗ 

in A θ,I , respectively. Prior to pooling (aggregation of all features via A θ,I ), attention-weighted instance features from A θ,I are employed for unsupervised 

contrastive learning as well as patient level learning to obtain the final predictions and update the model. 
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 × H 

∗ × W 

∗ per instance with C = 1 . The obtained maps high-

ight key regions and are further used to weight all the initial in- 

tances features to obtain a single spatial pooled feature 1 φi j = 

 θ,S (g i j ) , with φ ∈ R 

D , where D is the feature dimension size (see

ection 3.3 ). To aggregate the instance features φn for each CT 

can, we implement a second module A θ,I that performs attention- 

ased permutation invariant pooling to obtain a single bag repre- 

entation z i j = A θ,I (φi j ) , with z ∈ R 

D having the same dimension

or consistency. Following, z n is passed to the patient level classi- 

er H B to obtain predictions for the entire bag ˆ y = H B (z i ) , where ŷ

s the probability of a CT scan being labeled as COVID-19 or other 

neumonia. Formally, we employ the bag loss L B ( ̂  y , y i ) using cross-

ntropy. It follows that 

 B = −
∑ 

y i log ̂  y . (2) 

.3. Dual attention based learning 

In recent works ( Hashimoto et al., 2020; Ilse et al., 2018; Han 

t al., 2020 ) attention has shown to be vital for learning robust 

eatures, especially under the MIL setting. In particular, attention- 

ased pooling ( Ilse et al., 2018 ) is preferred over existing pool- 

ng methods such as max or mean, since they are not differen- 

iable/applicable for end-to-end model updates. In this work, we 

mplemented both spatial ( A θ,S ) and latent embedding ( A θ,I ) based 

ttention pooling via the respective modules. In the spatial mod- 

le, given the input g i j ∈ R 

C×H×W , we employ two convolutional 

ayers each followed by hyperbolic tangent (tanh) and sigmoid 

sigm) non-linearities, respectively. Feature maps g i j are passed to 

ach module successively, then to the final convolutional layer hav- 

ng a single channel output representing the presence of infection. 

n particular, we performed element-wise multiplication between 

he output of each branch of the convolutional layers before pass- 

ng it the final layer to obtain spatial scores φi j ∈ R 

1 ×H×W . Fol- 

owing, the spatial scores are normalized by a softmax operation, 
1 Please note, for efficiency a summation operation between the attention maps 

nd backbone features is achieved via Einstein summation. https://pytorch.org/docs/ 

table/generated/torch.einsum.html 

l

m

p

i

4 
ith the final spatially pooled features obtained by a summed ma- 

rix multiplication across both height and weight dimensions i.e. 
′ 
i j 

= φi j × g i j , where φ′ 
i j 

∈ R 

D , though for consistency we refer to 
′ 
i j 

as φ. It is worth noting that we simply implemented gated spa- 

ial attention ( Dauphin et al., 2017 ) instead of the commonly ap- 

lied global average pooling (GAP) on the initial backbone features 

 n . Moreover, the initial normalized spatial maps can be used to 

isually show the regions the model focuses on to make decisions. 

In order to aggregate the features φn , we employ attention 

ased pooling proposed by Ilse et al. (2018) in the instance at- 

ention module A θ,I . Formally, we consider the same architectural 

esign previously applied for gated spatial attention on the initial 

ackbone features, except all convolutional layers are replaced with 

ully connected layers since attention is applied to instance embed- 

ings. We denote H = { φ1 , φ2 , φ3 , . . . , φN } , with h i ∈ H 

N as a bag

ith N instance features. Then, attention based pooling MIL with 

ating mechanism is defined as 

 = 

N ∑ 

n =1 

a n h n , (3) 

ith, 

 n = 

exp { w 

T ( tanh (V h 

T 
n ) � sigm (U h 

T 
n )) } ∑ N 

j=1 exp { w 

T ( tanh (V h 

T 
j 
) � sigm (U h 

T 
j 
)) } , (4) 

here w ∈ R 

N×1 , V ∈ R 

N×D , and U ∈ R 

N×D are trainable parameters.

anh (·) and sigm (·) are element wise non-linearities, with � rep- 

esenting element-wise multiplication. In addition, a n is consid- 

red as the attention score per instance indicating the relevance 

f a given instance to the overall bag prediction. From a technical 

tandpoint, attention based pooling allows different weights to be 

ssigned to instances alleviating the need for explicit instance se- 

ection. Moreover, the final bag representation will be more infor- 

ative. The synergistic combination of spatial and attention based 

ooling allows for improved training towards learning robust and 

nterpretable features. 

https://pytorch.org/docs/stable/generated/torch.einsum.html


P. Chikontwe, M. Luna, M. Kang et al. Medical Image Analysis 72 (2021) 102105 

Fig. 2. Illustration of contrastive learning applied to the MIL setting during model training (Blue section).(For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article.) 
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Algorithm 1 D A -CMIL Algorithm 

1: input : parameters θF , θA , S , θA , I , θH 

, weight λ, epoch T , tem- 

perature τ
2: Initialize parameters θF , θA , S , θA , I , θH 

3: for t = 1 , 2 , . . . , T do 

4: preprocess CT scans S n and create bags with j slices 

5: obtain features: g i j = F θ (s i j ) 

6: spatial pooling: φi j = A θ,S (g i j ) 

7: obtain attention weights a n with Eq. (4) using A θ,I (φi j ) 

8: combine instance features to get z with Eq. (3) 

9: obtain bag predictions: ˆ y = H B (z i ) 

10: collect z and z ′ : bag and instance features 

11: normalize z and z ′ with l 2 norm. 

12: compute cost in Eq. (6): λL B ( ̂  y , y i ) + (1 − λ) L F (z ′ , z, τ ) 

13: update parameters θF , θA , S , θA , I , θH 

14: endfor 

15: output : θF , θA , S , θA , I , θH 
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.4. Contrastive MIL 

Inspired by recently proposed self-supervised learning meth- 

ds ( Chen et al., 2020a; 2020b ), we integrate an unsupervised con- 

rastive loss with the proposed MIL method for improved learning 

f instance level features. Formally, our model learns representa- 

ions that maximize the agreement between instance features and 

n aggregated bag feature of the same patient via a contrastive 

oss ( Chen et al., 2020a ) in the latent space. Fig. 2 shows the over-

ll concept of the applied technique. 

According to the previously proposed self-supervised frame- 

ork that uses contrastive loss, stochastic data augmentation is 

pplied on 2D data samples to create two correlated views of the 

ame example ( Chen et al., 2020b; 2020a ). Augmentations include 

andom cropping, color distortions and random Gaussian bluring. 

oreover, the contrastive loss is proposed to define contrastive 

redictive tasks on unlabeled samples, wherein positive and nega- 

ive pairs are identified for given samples. To incorporate this idea, 

tochastic data augmentation is omitted in our study since con- 

rastive loss is applied in the latent space. In addition, for any given 

atient CT scan; we infer that each slice can be considered as a 

seudo augmentation of the overall patient characteristics. Thus, 

e consider that stochastic augmentation is implicitly applied (i.e. 

ifferent views of the same patient). 

Let z ′ be the latent instance level feature of patient, and z the 

atient bag-level feature obtained via the proposed modules. Then, 

ollowing l 2 normalization of z ′ and z features, a contrastive loss 

an be defined as 

 F (z ′ , z, τ ) = − 1 

2 N 

2 N ∑ 

i, j=1 

log 
exp ( sim (z ′ 

i 
, z j ) /τ ) ∑ 2 N 

k =1 Q [ k � = i ] exp ( sim (z ′ 
i 
, z k ) /τ ) 

, (5) 

here Q [ k � = i ] ∈ { 0 , 1 } is an indicator function that evaluates to 1 iff

 � = i and τ denotes a temperature parameter. sim (·, ·) is a similar-

ty function i.e. cosine similarity. The loss is computed across all 

atient slice features and respective bag-level features, herein con- 

idered as augmentations per mini-batch. The final loss function of 

he entire framework is defined as: 

 = λL B + (1 − λ) L F , (6) 

here λ is a parameter to weight the contribution of the bag 

nd constrastive losses, respectively. The detailed algorithm is pre- 

ented in Algorithm 1 . 

. Experiments 

We evaluate the proposed method on a recently collected 

ataset and compare diagnostic performance against existing 

ethods similar to ours. We present details on evaluation settings 

nd any pre-processing applied. 
5 
.1. Datasets 

In this study, we collected a chest CT dataset comprised of 173 

amples at Yeungnam University Medical Center (YUMC), in Daegu, 

outh Korea. The dataset includes 75 CT examples for patients with 

OVID-19, and 98 examples from patients with bacterial pneumo- 

ia collected between February and April, 2020. The study was ap- 

roved by the Institutional Review Board (IRB) of Yeungnam Uni- 

ersity Hospital. COVID-19 patients were confirmed by RT-PCR as- 

ay of nasal and pharyngeal swab samples. 

Further, we designed variants of YUMC CT dataset to fairly as- 

ess the performance of our method and others such as 3D based 

pproaches. Namely, based on the original YUMC CT data using 

T slices per patient, we processed a patch-based version of the 

ataset. In the MIL framework, 2D CT slice or patches can be used 

s instances, thus we evaluate our method on both cases. In addi- 

ion, a 3D CT volume dataset is also processed for training/testing 

D based methods under fully-supervised settings. 

For pre-processing, lung regions were segmented for all CT ex- 

mples. To achieve this, we employed a ResNeSt ( Zhang et al., 

020a ) model for segmentation training and inference. The model 

as trained on two public datasets i.e. non-small cell lung can- 

er (NSCLC) ( Aerts et al., 2014 ) and COVID-19 lung infection 

ataset ( Jun et al., 2020 ). Herein, a total of 50,756 lung slices were

sed for training and evaluated on 1,222 independent slices. Fig. 3 

hows examples of CT slices and patches employed. 

.2. Experimental settings 

Accordingly, all the datasets were split into training, validation 

nd testing by patient IDs with ratios 0.5, 0.1, and 0.4, respec- 
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Fig. 3. Pre-processed CT examples. (Red-section) COVID-19 CT slice and patch sam- 

ples. (Green-section) bacterial pneumonia samples. (For interpretation of the refer- 

ences to color in this figure legend, the reader is referred to the web version of this 

article.) 
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ively. The same split was used across all the dataset variants with 

ll versions using only cropped lung regions. CT examples were 

12 × 512 , 128 × 128 and 256 × 256 × 256 in size for the slices, 

atches and 3D CT volume sets, respectively. Each CT slice was re- 

ized from 512 × 512 to 256 × 256 and patch slices were resized 

o 256 from 128. In particular, the slices set consisted of approx- 

mately 14,0 0 0 slices, whereas the patch version yielded 64,0 0 0 

atches that mainly showed ≥ 30% of lung tissue. In the case of 

D CT volumes, all slices belonging to a patient were used to con- 

truct a volume with nearest neighbor sampling applied to obtain 

he desired input sizes. 

The proposed model was implemented in Pytorch. A ResNet-34 

 He et al., 2016 ) finetuned from imageNet pretrained weights was 

sed as the feature extraction module F θ (·) , with a single fully 

onnected (FC) layer employed as the bag classifier H B (·) . The di- 

ension of the features was fixed to 512; this includes the feature 

aps obtained from F θ (·) which had 512 × 8 × 8 , with C = 512 .

ollowing spatial pooling, features were reshaped back to 512. 

During training, data augmentation consisting of random trans- 

ormations such as flipping were applied for both 2D and 3D based 

ethods. All models were trained for 30 epochs except 3D based 

ethods with an initial learning rate of 1 ε − 4 for θF , and 1 ε − 3

or the other modules with Adam optimization and a batch size of 

. On the other hand, 3D CNN based methods used a batch size of 

, learning rate of 1 ε − 4 and were trained for 60 epochs. 

For the proposed method, a bag was constructed with k in- 

tances during training following step 4 of our algorithm, though 

or inference all available instances per patient were used to obtain 

he final prediction. We also evaluated the efficacy of our method 

ased on varying k during training via ablation studies. For sta- 

le training, the learning rate was annealed by a factor of 0.1 at 

pochs 10, 15 and 25, respectively. We empirically set the loss 

yper-parameters λ and τ to 0.5 and 1.0, respectively. 

.3. Comparison methods 

To evaluate the efficacy of the proposed method, we com- 

ared against recent MIL based methods i.e. DeepAttention- 

IL ( Ilse et al., 2018 ), ClassicMIL ( Campanella et al., 2019 ) and

ointMIL ( Chikontwe et al., 2020 ). Also, recent 3D based methods 

eCovNet ( Wang et al., 2020c ) and Zhang3DCNN ( Zhang et al., 

020b ) were included for comparison. For a fair evaluation, the 

ame backbone feature extractor is used in all methods except for 

he 3D methods as we used the publicly available implementa- 

ions. 
6 
In particular, ClassicMIL follows the traditional assumption of 

he MIL setting and focuses on instance level learning wherein 

nly the top instance per bag is considered for the final patient 

evel prediction. DeepAttentionMIL uses attention-based pooling 

or bag level learning. In constrast, JointMIL combines both in- 

tance and bag level learning with bag feature clustering during 

raining. Lastly, DeCoVNet and Zhang3DCNN both use all available 

T slices in a constructed volume under the fully supervised set- 

ing. The later methods serve as an upper-bound over the weakly 

upervised methods evaluated in this study. 

. Results 

We present both quantitative and qualitative results of the pro- 

osed methods. Also, ablation studies on the effect of bag size, at- 

ention modules with/without contrastive learning and the weight- 

ng parameter λ are presented. 

.1. Quantitative results 

Diagnostic performance was evaluated on YUMC CT slice, patch 

nd CT volume based datasets using accuracy, area under the curve 

AUC), f1-score, specificity and sensitivity, respectively. Tables 1 

nd 2 show the performance of the evaluated methods on the 

atasets. 

In Table 1 , D A -CMIL with contrastive loss L F achieves the best 

verall performance of 98.6% accuracy and an AUC of 98.4%. No- 

ably, even when L F was not applied during training, our method 

till reports 93%(+2.9) and 93.4%(+2.5) in terms of accuracy and 

UC over the best weakly supervised method JointMIL. MIL re- 

orts the lowest performance among all methods, which is ex- 

ected since it only considers the top instance among multiple 2D 

lices in bag for inference. Interestingly, our method outperformed 

oth Zhang3DCNN and DeCoVNet which are fully supervised meth- 

ds even without L F used in the training stage. Though both D A - 

MIL and DeepAttentionMIL employ attention based pooling, the 

roposed method shows improved performance via dual-attention 

ooling, validating the architectural design. 

To further validate the proposed method, we applied D A -CMIL 

o randomly cropped patches of the CT samples. As shown in 

able 2 , performance was consistently better than the compared 

ethods. All weakly supervised method showed similar accuracy 

ith considerable margins observed for sensitivity. DeepAttention- 

IL reported the best sensitivity at 96.8% with accuracy consis- 

ent with other methods. However, D A -CMIL showed an improve- 

ent of +11.3% in accuracy over the best compared method with 

n equally larger margin without L F employed. The effect of using 

ttention and contrastive loss was more pronounced in the case of 

atches as not applying L F showed reduced performance (-2.8%). 

Fig. 4 shows the receiver operating characteristic(ROC) curves of 

he compared methods on different datasets. Overall, the proposed 

ethod shows a high TPR and lower FPR across all settings. This 

s further evidenced in the summaries of the confusion matrices of 

he comparison methods as presented in Figs. 5 and 6 . This indi- 

ates D A -CMIL can be viable option for accurate and robust screen- 

ng of COVID-19. 

.2. Effect of the bag size 

To assess the effect of bag size during training on the pro- 

osed method, we performed an ablation study where the bag 

as constructed by varying k i.e. each bag consisted of k max in- 

tances (slices/patches). As shown in Table 3 and Fig. 7 , as the bag

ize increases D A -CMIL performance improves. The best result was 

chieved when k = 32 with a considerable margin across all met- 

ics. We limited evaluation to k = 32 due to computational limita- 
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Table 1 

Evaluation of the proposed methods on YUMC dataset including results of using D A -CMIL 

with/without contrastive loss L F . 

Method Accuracy AUC F1 Specificity Sensitivity 

DeCoVNet Wang et al. (2020c) 0.831 0.825 0.8 0.875 0.774 

MIL Campanella et al. (2019) 0.803 0.796 0.767 0.85 0.742 

DeepAttentionMIL Ilse et al. (2018) 0.859 0.875 0.861 0.75 1 

JointMIL Chikontwe et al. (2020) 0.901 0.909 0.896 0.85 0.968 

Zhang3DCNN Zhang et al. (2020b) 0.93 0.938 0.925 0.875 1 

D A -CMIL (w/o A θ,S,I ) 0.76 0.72 0.62 1.0 0.45 

D A -CMIL (w/o L F ) 0.93 0.934 0.923 0.9 0.968 

D A -CMIL (w/ L F ) 0.986 0.984 0.984 0.975 1 

Table 2 

Evaluation of the proposed methods on YUMC patch dataset. 

Method Accuracy AUC F1 Specificity Sensitivity 

MIL Campanella et al. (2019) 0.845 0.852 0.836 0.8 0.903 

DeepAttentionMIL Ilse et al. (2018) 0.845 0.859 0.845 0.75 0.968 

JointMIL Chikontwe et al. (2020) 0.845 0.837 0.814 0.9 0.774 

D A -CMIL (w/o A θ,S,I ) 0.718 0.728 0.714 0.65 0.806 

D A -CMIL (w/o L F ) 0.873 0.88 0.866 0.825 0.935 

D A -CMIL (w/ L F ) 0.958 0.955 0.951 0.975 0.935 

Fig. 4. The Receiver operating characteristic (ROC) curves of compared methods on the YUMC CT slices and patch datasets. 

Fig. 5. Confusion matrices of compared methods on YUMC CT Slices dataset. CP represent Pneumonia and NCP implies COVID-19, respectively. 

Table 3 

Evaluation of varying bag sizes with the proposed method on YUMC CT slices 

dataset. 

Method Accuracy AUC F1 Specificity Sensitivity 

D A -CMIL (w/ k = 8 ) 0.93 0.934 0.923 0.9 0.968 

D A -CMIL (w/ k = 16 ) 0.944 0.939 0.933 0.975 0.903 

D A -CMIL (w/ k = 24 ) 0.944 0.943 0.935 0.95 0.935 

D A -CMIL (w/ k = 32 ) 0.986 0.988 0.984 0.975 1 
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ions. Moreover, it worth noting that contrastive methods benefit 

rom large batch sizes; as evidenced from the reported results, our 

ndings are consistent with existing observations based on self- 
7 
upervised methods applied to general vision datasets. However, as 

 is increased the relative batch size based on bags should be re- 

uced to compensate for training time and memory requirements. 

n general, results show that our method is not limited/affected 

y the number of instances available per CT scan and can bene- 

t from using more instances for training, though during the infer- 

nce stage all instances are used. 

.3. Effect of the weight parameter λ

D A -CMIL uses contrastive feature learning of multiple instances 

ith a weighting parameter λ to balance the effect of the losses. 

hen λ = 1 . 0 , L (·) has no effect on learning and showed a lower
F 
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Fig. 6. Confusion matrices of compared methods on YUMC CT patch dataset. 

Fig. 7. ROC curves of DA-CMIL on YUMC CT Slide dataset when k is varied during 

training. 

Table 4 

Evaluation on varying λ in the cost function L on 

the YUMC Dataset. 

λ= 0.1 λ= 0.5 λ= 0.9 λ= 1.0 

Accuracy 0.972 0.986 0.986 0.932 

p  

T

λ
e

5

w

t  

m

m

p

i

t

f

l

t

a

t

a

f

o

l

s

T

t

p

5

t

s

a

w

f

a

a

l

m

t

f

s

p

b

b

s

a

i

(  

l

a

i

i

t

c

m

M

t

p

n

r

o

v

6

i

t

a

s

t

w  

a

r

erformance of 93% compared to using L F (·) i.e. when λ < 1 . 0 .

hough similar performance was noted across different values of 

, the most significant is when contrastive loss was not applied 

ntirely as presented in Table 4 . 

.4. Effect of dual-attention modules on learning 

In order to assess the effect of attention in the proposed frame- 

ork, we consider several settings where both contrastive and at- 

ention modules are either employed or not ( Tables 1 and 2 ). For-

ally, when attention is excluded, the framework would require 

odification in two aspects; (1) without spatial attention-based 

ooling of features ( A θ,S ), we default to using global average pool- 

ng (GAP) of instance features for simplicity, and (2) without at- 
8 
ention based bag-level feature aggregation via ( A θ,I ), one may opt 

or using the mean of instance features to obtain the overall bag- 

evel feature z alongside z ′ . Following these modifications, evalua- 

ion can be easily performed. 

Evidently, the best performance was achieved when both L F 

nd A θ,S,I were part of learning. On the other hand, when the at- 

ention modules were excluded, significant reductions in the over- 

ll performance were noted i.e. -20% compared to the best per- 

orming method ( Table 1 ). Similar performance drops were noted 

n the CT patch dataset ( Table 2 ). Using the contrastive feature 

oss alone without any attention modules highlighted worsened re- 

ults without any performance gains over the compared methods. 

his serves to show the benefit of the combination of the proposed 

echniques (i.e. both attention and the feature loss), reporting im- 

roved results via complementary learning. 

.5. Qualitative Results 

In Figs. 8 and 9 , qualitative results are presented based on spa- 

ial attention maps and attention scores, respectively. This demon- 

trates that D A -CMIL is able to find key slices related to infected 

reas with coarse maps ( Fig. 8 ). Interestingly, low attention scores 

ere observed for slices such as noisy slices/artifacts with no in- 

ected areas further indicating the utility of our method. Moreover, 

ttention maps focus on key areas such as ground-glass opacities 

nd consolidations, both consistent with clinical findings. 

In Fig. 9 , we also highlight attention maps when contrastive 

earning is not applied during. In general, results show similar 

aps as with the case when the loss is applied. However, localiza- 

ion of key regions is slightly degraded, especially with huge dif- 

erences in the attention scores, whereas for some CT slices, both 

patial maps and scores had marginal changes. This is largely ex- 

ected since the contrastive loss is aimed at encouraging similarity 

etween representative features of a subject. The benefit of using 

oth losses is better verified via quantitative assessment of clas- 

ification performance. We infer that the proposed mechanism of 

ttention is still relevant in both cases and can be highly beneficial 

n clinical evaluation. 

In addition, according to clinical literature on similar studies 

 Xu et al., 2020; Gozes et al., 2020b; 2020a; Shi et al., 2021b ): Bi-

ateral multi-focal ground-glass opacities (GGO) in the lower lobes 

re the most common initial findings on CT, with other character- 

stics such as pleural thickening less commonly observed in imag- 

ng manifestations depending on the severity stage. This is consis- 

ent with the most of the spatial attention maps being largely fo- 

used in the lower regions. In general, Class Activation Maps (CAM) 

ay not indicate exact lesion locations due to the resolution issue. 

oreover, we wish to note that enforcing the model to produce 

issue-constrained maps is challenging especially in the weakly su- 

ervised setting; without access to the actual lesion locations, it is 

on-trivial for the model. Herein, we are confident in the current 

esults even when the maps are normalized to the tissue region 

nly, it is evident that the high-density regions are clinically rele- 

ant regions corresponding to lesions and/or GGOs. 

. Discussion 

Though RT-PCR is the gold standard for COVID-19 diagnosis, it 

s still hindered by lengthy test times, as it can take days to ob- 

ain the results. Accordingly, CT has been considered as a reason- 

ble alternative for current testing methods as it can produce re- 

ults within minutes. We showed a novel approach to the applica- 

ion of deep CNNs for COVID-19 diagnosis under weak supervision 

ith clinical implications ( Xu et al., 2020 ). It is important to have

 fully automated and interpretable method in actual settings for 

apid evaluation. Moreover, given the subtleties that exist between 
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Fig. 8. Qualitative examples of D A -CMIL spatial attention maps with attention scores on CT samples from a single patient with COVID-19. The top row shows the attention 

value of each slice with the spatial maps normalized to focus on the lung regions only. 

Fig. 9. Examples of D A -CMIL spatial attention maps with attention scores without contrastive learing on CT samples from a single patient with COVID-19. 
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OVID-19 and other pneumonia in terms of imaging characteristics 

hat field experts find hard to differentiate, accurate diagnosis is 

ighly relevant. 

Our method was evaluated on recently curated dataset wherein 

nly patient diagnostic labels are available without lesion infected 

egions of interest as is common in existing methods. To further 

alidate our approach, we qualitatively showed the regions that are 

ocused on by our model via coarse attention maps alongside at- 

ention scores. Our method achieved an AUC of 98.4%, accuracy of 

8.6% and a true positive rate (TPR) of 96.8%. In addition, atten- 

ion maps obtained highlight key infection areas in the majority of 

amples with attention scores corresponding to key slices. 
9 
We also empirically showed the benefit of using an unsuper- 

ised contrastive loss to complement the supervised learning of 

atient labels and may serve as a base for more complex meth- 

ds. Moreover, the proposed method surpassed 3D based methods 

y large margins. We infer this may be due to the limited size of 

he dataset employed as most recent methods applied to 3D CT 

olumes report using large cohorts in literature. In addition, since 

eCoVNet was trained from scratch and has an custom deep archi- 

ecture, performance was subpar. Though ZhangCNN’s performance 

as considerably better than the later, it still did not achieve com- 

arable performance even when the model was trained for more 

pochs. It is also worth noting that models trained with exten- 
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Fig. 10. Illustration of instance (red) and representative (center-blue) features of CT slices of a COVID subject. The aggregated center feature captures the key statistics of the 

most informative slices with similar characteristics and ignores noisy slices. 
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ive augmentation did not achieve any considerable improvements 

cross the evaluation metrics, since COVID-19 and bacterial pneu- 

onia present similar characteristics. 

To further show the benefit of the proposed technique in the 

apturing overall statistics of a single subject, Fig. 10 presents the 

nstance and representative features plotted in 2D space. Notably, 

he aggregated feature (top-left of the figure: blue dot) captures 

eatures of key slices (red) that are well clustered together and ig- 

ores noisy artifacts in other slices. This shows that though no ex- 

licit labels are employed for instance discovery, our model is able 

o effectively learn which slices are useful for patient classification. 

There exist a few limitations with regard to the proposed 

ethod. Though attention maps could show interpretability and 

xplainability for COVID-19 diagnosis, there exist some failure 

ases where the attention map do not correctly indicate an in- 

ected region as shown in Fig. 8 . Second, we found that exten- 

ive data augmentation such as color jittering lead to reduced per- 

ormance and was largely negligible compared to the benefit of 

sing a contrastive loss which showed consistent improvements 

cross all evaluation settings. This motivates us to consider using 

ore complex attention modes for better diagnostic interpretabil- 

ty. Lastly, since no healthy scans were employed in this study; it 

s reasonable to assume this approach would produce unfavorable 

esults when supplied with healthy inputs as it is limited to the 

ub-typing scenario. Nevertheless, we believe our approach can be 

easibly integrated into existing systems that address the later first 

i.e. lesion/healthy slice detection) with accurate sub-typing for di- 

gnosis as the final goal. Along this line of thought, we infer that 

ven without such samples, there is a possibility that healthy scans 

ould be considered noisy artifacts and later ignored similar to ob- 

ervations made via Fig. 10 . Though we leave this for future re- 

earch as well as the viability of unsupervised pre-training using 

he proposed method both in 2D or 3D settings. 

. Conclusion 

In this study, we developed a 2D CNN framework with dual at- 

ention modules and contrastive feature learning under the multi- 
10 
le instance learning (MIL) framework to distinguish COVID-19 and 

 bacterial sub-type of pneumonia in chest CTs. We verified perfor- 

ance on both CT patch and slice based versions of the datasets 

nd report results comparable to state-of-the-art methods. In ad- 

ition, ablation experiments show the benefit of using large bag 

izes during training and the effect of weighting losses correctly 

or stable learning. Through this study, we hope to add valuable 

ontribution to the current literature on weakly supervised meth- 

ds for COVID-19 screening. 
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