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Abstract. Thrombospondin (TSP) is a multidomain 
adhesive protein postulated to play an important role in 
the biological activity of the extracellular matrix. To 
test this hypothesis, TSP-containing fibrin and collagen 
matrices were evaluated for their capacity to support 
angiogenesis and cell growth from explants of rat 
aorta. This serum-free model allowed us to study the 
angiogenic effect of TSP without the interference of at- 
tachment and growth factors present in serum. TSP 
promoted dose-dependent growth of microvessels and 
fibroblast-like cells. The number of microvessels in 
TSP-containing collagen and fibrin gels increased by 
136 and 94%, respectively. The TSP effect was due in 
part to cell proliferation since a 97% increase in 
[3H]thymidine incorporation by the aortic culture was 
observed. The effect was TSP-specific because TSP 

preparations adsorbed with anti-TSP antibody showed 
no activity. TSP did not promote angiogenesis directly 
since no TSP-dependent growth of isolated endothelial 
cells could be demonstrated. Rather TSP directly 
stimulated the growth of aortic culture-derived 
myofibroblasts which in turn promoted microvessel 
formation when cocultured with the aortic explants. 
Angiogenesis was also stimulated by myofibroblast- 
conditioned medium. Partial characterization of the 
conditioned medium suggests that the angiogenic activ- 
ity is due to heparin-binding protein(s) with molecular 
weight >30 kD. These results indicate that matrix- 
bound TSP can indirectly promote microvessel forma- 
tion through growth-promoting effects on myofibro- 
blasts and that TSP may be an important stimulator of 
angiogenesis and wound healing in vivo. 

T 
HROMBOSPONDIN (TSP) 1 is a 450,000 dalton glyco- 
protein secreted by platelets in response to such physi- 
ological activators as thrombin and collagen (11). TSP 

comprises 3 % of the total platelet protein and 25 % of the 
total platelet secreted protein (43). TSP is also synthesized 
and secreted by fibroblasts (9), smooth muscle cells (29), en- 
dothelial cells (15), and tumor cells (28, 30, 45). In most tis- 
sues examined thus far, TSP has been found in the extracellu- 
lar matrix (48). The structure of TSP is conserved among 
various animal species since antibody against the human pro- 
tein cross-reacts with TSP from mouse, rat, pig, cow, sheep, 
dog, and turkey (36). Like fibronectin, TSP is composed of 
linear polypeptide domains that specifically interact with a 
number of macromolecules such as heparin (50), fibrinogen 
(43), collagen (19), and plasminogen (4). 

Although the precise biological role of TSP has yet to be 
fully established, it is generally accepted that TSP plays a 
major role in cell adhesion and cell-cell interactions. For ex- 
ample, TSP was found to promote the cell-substratum adhe- 
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sion of a variety of cells, including platelets, melanoma cells, 
smooth muscle cells, endothelial ceils, fibroblasts, and epi- 
thelial cells (42). In addition, cells with very specialized 
functions such as keratinocytes (44) and osteoblasts (31) at- 
tach to TSP. Finally, TSP promotes the irreversible aggrega- 
tion of platelets (41). 

Recently, TSP has been implicated in the mechanisms of 
cellular proliferation. For example, it has been shown that 
(a) TSP potentiates the mitogenic activity of epidermal 
growth factor on smooth muscle cells (13), (b) platelet- 
derived-growth factor induces smooth muscle cell TSP syn- 
thesis (12), (c) TSP stimulates activation of smooth muscle 
cell $6 kinase, a protein kinase involved in the transition of 
cells from the quiescent to the proliferative state (37), (d) 
anti-TSP antibodies inhibit the growth in culture of smooth 
muscle cells (14, 15), and (e) TSP promotes the proliferation 
of human fibroblasts in culture (27). In addition, Murphy- 
Ullrich and Hook (21) observed that TSP inhibited focal 
adhesion plaque formation by bovine aortic endothelial cells. 
These authors suggested that TSP by destabilizing cell ma- 
trix contacts facilitates mitosis and migration during wound 
healing and angiogenesis. 

Since a considerable amount of evidence as summarized 
above suggests that TSP promotes cellular proliferation, it 
seemed reasonable to postulate that TSP incorporated in the 
extracellular matrix might play a role in angiogenesis. To test 
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this hypothesis, we used the serum-free rat aorta model 
which allows study of angiogenesis without the confounding 
effects of serum factors (23) which like TSP might affect en- 
dothelial cell behavior. We report here that matrix-bound 
TSP promotes rat aortic angiogenesis by stimulating growth 
of myofibroblasts. These ceils in turn stimulate microvessel 
formation by secreting soluble heparin-binding angiogenic 
factor(s). 

Materials and Methods 

Materials 

All reagents, unless specified otherwise, were purchased from Sigma 
Chem. Co. (St. Louis, MO). Tissue culture supplies were purchased from 
ICN Flow (Irvine, CA). MCDB 131 serum-free medium was purchased 
from Clonetics (San Diego, CA). Reagents for SDS-PAGE were obtained 
from Bio-Rad Labs. (Richmond, CA). CN-activated Sepharose was pur- 
chased from Pharmaeia LKB Biotechnology Inc. (Piscataway, N J). Intersti- 
tial collagen was prepared from rat tails according to Elsdale and Bard (6). 
Purified bovine basic fibroblast growth factor 0aFGF) was obtained from 
R&D Systems (Minneapolis, MN). 

TSP Purification 
TSP was purified from Ca +2 ionophore A23187-activated platelets (43). 
Purified TSP preparations contained no detectable levels of fibronectin, 
vitronectin, yon Willebrand factor, and less than 0.1% fibrinogen as previ- 
ously described (42). 

Angiogenesis Assay 
Rings of rat aortas were embedded in gels of fibrin or interstitial collagen 
and grown in serum-free MCDB 131 medium as previously described (23). 
TSP was added to the gel at a final concentration of 0.5-60 t~g,/rnl. Fibrin 
gels were prepared from a 3-mg/rnl solution of fibrinogen chromatographed 
on gelatin agarose to remove contaminating fibronectin, and lysine agarose 
to remove contaminating plasminogen (23). For fibrin gel cultures, epsilon 
aminocaproic acid (300 #g/ml) was added to the medium to prevent 
fibrinolysis by the aortic explant. Gels of interstitial collagen were prepared 
from a l-mg/ml solution of rat tail collagen (23). The culture medium was 
changed every other day. Developing microvessels were viewed and counted 
under an inverted light microscope according to published criteria (23). The 
length of the microvessels in the living cultures was measured by digitizing 
morphometry with a Bioquant IV image analysis system (24). 

Cell Culture 
Bovine aortic endothelial cells (BAE) were a gift from Denis Gospo- 
darowicz, University of California, San Francisco. Rat aortic endothelial 
cells (RAE) were isolated from aortic rings by a nonenzymatic methokl (16) 
which has recently been modified in our laboratory to avoid contamination 
by fibroblasts and other nonendothelial cells (manuscript submitted for pub- 
lication). Briefly, aortic rings were cultured on a 35-mm plastic dish to ob- 
tain endothelial outgrowths. After mechanically removing any contaminat- 
ing nonendothelial spindle-shaped cells, the endothelial outgrowths were 
segregated in cloning rings, trypsinized, and subeultured in MCDB 131 
medium supplemented with 10% FBS, 100 #/ml endothelial cell growth 
supplement (ECGS, Collaborative Biomedical Products, Bedford, MA), 
and 200/~g/ml beparin. Both BAE cells and RAE cells immunostained for 
the endothelial marker factor VIII-related antigen (FVIII-RAg) and took up 
1-1'-dioctadecyl-3,3,3',3',-tetramethyl indocarboxyanine perchlorate (DiI-Ac- 
LDL) (Biomedical Technologies Inc., Stonghton, MA). Myofibroblasts 
were isolated nonenzymatically from the primary outgrowths of serum-free 
collagen gel cultures of rat aorta. Fragments of the aortic outgrowths were 
detached from the collagen gel with a 22 gauge needle and isolated under 
a dissecting microscope with a pulled glass pipette. They were then washed 
in medium, transferred to collagen-coated 18-ram dishes (Nunc, Interlab, 
Thousand Oaks, CA), and grown in MCDB 131 medium supplemented with 
10% FBS and 50/~g/ml gantamicin. As cultures were passed at a split ratio 
of 1:3, cells were characterized by immunohistochemistry and electron mi- 
croscopy. After repeat passages the cultures were composed almost exclu- 

sively of myofibroblasts. At this stage the myofibroblasts were cloned and 
further characterized immunohistochemically. BAE cells and rat aorta- 
derived myofibroblasts were cultured either in DMEM containing 10% 
FBS, 100 U/ml penicillin, 100 tzg/ml streptomycin, and 50/~g/ml gentami- 
cin sulfate or in MCDB 131 medium supplemented with 10% FBS and 
50 #g/ml gentamicin sulfate. 

Effect of Myofibroblasts on Angiogenesis 
The effect of myofibroblasts on angiogenesis was studied either by incor- 
porating these cells in collagen gel cultures of rat aorta or by evaluating the 
stimulatory activity of their conditioned medium. For the coculture experi- 
ment, myofibroblasts were trypsinized, mixed with MCDB 131 containing 
10% FBS to neutralize the trypsin, centrifuged, and resuspended in serum- 
free medium. They were then washed extensively in serum-free medium to 
remove any residual serum, centrifuged, and resuspended in the collagen 
solution at increasing densities. Then, aortic rings were embedded in myo- 
fibroblast-containing collagen gels and cultured under serum-free condi- 
tions in MCDB 131 growth medium. For the conditioned medium experi- 
ment, serum-free MCDB 131 medium was conditioned by a 24-h incubation 
with exponentially growing subconfluent cultures of myofibroblasts. Colla- 
gen gel cultures of rat aorta were fed on alternate days with a 1:1 mixture 
of fresh MDCB 131 and conditioned medium. For partial characterization 
of myofibroblast angiogenic activity, conditioned medium was filtered 
through Amicon centricon concentrators (Amicon, Beverly, MA) having 
molecular weight exclusion limits of I00,000, 30,000, and 10,000. 

Filtrate fractions were assayed for their angiogenic activity in the rat aor- 
tic model as described above. Conditioned media was also applied to a 3-mi 
heparin-agarose column (Sigma Chem. Co.) equilibrated in Tris-buffered 
saline and the flow-through fraction assayed for angiogenic activity. 

Immunohistochemical Studies 
For immunohistochemistry, cell cultures were fixed in buffered formalin, 
rinsed in PBS, permeabilized in Triton X-100, blocked with nonimmune se- 
rum, reacted with anti-FVIII-RAg rabbit polyclonal antibody (1:250, Dako) 
or anti-alpha-smooth muscle actin mouse monoclonal antibody (1:2,000, 
Sigma Chem. Co.), rinsed in PBS, incubated with the appropriate bi- 
otinylated secondary antibody, rinsed in PBS, and reacted with the avidin- 
biotin-peroxidase complex (Vector, Burlingame, CA). After washing with 
PBS, the cells were incubated with a diaminobenzidine solution containing 
H202, rinsed in distilled water, and counterstained with Harris' hematoxy- 
lin. Collagen gel cultures of rat aorta were fixed in buffered formalin, em- 
bedded in paraffin, and serially sectioned. Histologic sections were 
deparaffinized and processed for immunohistochemical studies as described 
above. 

Transmission Electron Microscopy 
For ultrastructural studies, myofibroblast cultures and collagen cultures of 
rat aorta were fixed in 1% glutaraldehyde 4% formaldehyde in phosphate 
buffer, pH 7.4, and embedded in EPON. Thin sections were.stained with 
uranyl acetate and lead citrate and examined with a Zeiss 10A transmission 
electron microscope. 

Cell Proliferation Assays 
The effect of TSP on endothelial and myoflbroblast cell proliferationwas 
studied by the MTT assay for cell proliferation according to the procedure 
provided by Chemicon (Temecula, CA) and as reported (18). The principle 
of the assay is that MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-dipbenyl tetrazo- 
lium bromide), a non-toxic pale yellow substrate, is taken up by living cells 
to yield a dark blue formazin product. The process requires active mito- 
chondria so dead cells will not form formazan. After 4 h of incorporation 
as little as 200 cells can be detected. The formazan color at 570 run is 
directly proportional to the number of cells and the assay can be performed 
in a microtiter dish and quantitated with a microplate reader. A calibration 
curve relating absorbance to cell number was determined for each cell line 
studied. For this assay, cells were maintained in MCDB 131 medium sup- 
plemented with 1% FBS for several days and then harvested with EDTA. 
Approximately 10,000-30,000 cells suspended in 300 /zl of serum-free 
MCDB 131 medium were plated per well of a 96 well microtiter plate and 
allowed to attach overnight. The medium was then changed to serum-free 
MCDB 131 medium containing no TSP or 30 ~g/ml TSP. Enough replicate 
wells were plated so that cells could be counted on days 0, 2, and 4 and 
that the average value of triplicate cultures could be determined per time 
point. The culture medium was changed every other day. 
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The MTT assay was also used to determine if TSP affected the capacity 
of endothelial cells to respond to exogenous growth factors. For this experi- 
ment, RAE cells were cultured on TSP-collagen-coated microtiter plates in 
serum-free MCDB 131 with or without bFGE For coating, each well was 
filled with 50/~1 of MCDB 131 containing 50/~g/ml TSP and 50 #g/ml colla- 
gen and kept at room temperature for 20-30 min. Then the solution was 
aspirated and the plates were incubated for 30 min at 37"C to induce colla- 
gen fibrillogenesis on the bottom of the wells. After rinsing with MCDB 
131 medium, each well received 10,000 RAE cells suspended in 100 ttl of 
serum-free MCDB 131 with or without 10 ng/ml bFGF. In a separate ex- 
perimental group designed to test the effect of soluble TSP according to a 
previously published protocol (3), RAE cells were seeded on uncoated 
wells and fed with MCDB 131 medium supplemented with I% FBS and 
10 ng/rnl bFGF with or without 50 #g/ml TSP. 

The effect of TSP on DNA synthesis by endothelial cells was studied by 
incubating serum-free cultures of BAE cells with 1 #Ci/ml [3H]thymidine 
for 5 h. Cultures were prepared by seeding 4-well Nunc culture dishes with 
24,000 cells per well. After labeling, the cultures were rinsed with PBS, 
dissolved in tissue solubilizer, added to a scintillation fluid, and measured 
for radioactivity in a scintillation counter. The effect of TSP on growth of 
microvessels in matrix culture of rat aorta was monitored by the uptake of 
[3Hlthymidine. DNA synthesis by aortic outgrowths containing either 30 
#g/ml BSA or increasing concentrations of TSP in the gel was determined 
by a 5-h pulse with 5 t~Ci/ml of [3H]thymidine. The cultures were then 
rinsed in PBS, dissolved in tissue solubilizer, sonicated, added to a scintilla- 
tion fluid, and counted for radioactivity. 

Western Immunoblotting 

Rabbit anti-TSP antibody was characterized by Western immunoblotting 
using Pharmacia's Phast gel electrophoresis system. Approximately 100 ng 
of TSP was separated under reducing conditions on an 8-25 % polyacryl- 
amide gradient SDS gel. The gel-separated TSP was electrophoretically 
transferred onto nitrocellulose paper and silver stained or immunostained. 
For immunostaining, the paper was blocked with 1% BSA in PBS, contain- 
ing 0.05% Tween 20 (PBS-T) and treated with either 5 #g/ml of purified 
rabbit anti-TSP or rabbit IgG for 1 h, washed with PBS-T, and developed 
according to the instructions provided with the VECTASTAIN ABC im- 
munoperoxidase system (Vector). 

Statistical Analysis 

Data were analyzed statistically by Student's t test or analysis of variance 
followed by Schefft's test of significance. Statistical significance was set at 
p < 0.05. 

Results 

Effect of TSP on Angiogenesis 

The angiogenesis assay used in this study is based on the ob- 
servation that rings of rat aorta form microvessels when cul- 
tured in three-dimensional gels of fibrin or collagen (22, 23). 
In this system microvessels develop in serum-free medium 
and do not require addition of exogenous growth factors 
(23). Since TSP binds fibrin (20) and collagen (19), the aor- 
tic ring model is ideal to evaluate the effect of matrix-bound 
TSP on angiogenesis. Addition of TSP to fibrin and collagen 
gel cultures of rat aorta stimulated angiogenesis. Angiogene- 
sis occurring in the presence of TSP was characteristically 
preceded by a marked increase in the outgrowth of fibroblast- 
like cells. Fig. 1 shows micrographs of aortic rings after 
8 d of growth in fibrin gels containing either no TSP or 50 
~g/ml TSP. Fig. 2 shows the same experiment performed in 
a collagen gel. Both TSP- and non-TSP-containing cultures 
developed microvessels that proliferated, branched, and 
anastomosed with each other forming a network around the 
aortic explant. However, TSP-treated cultures displayed a 
marked increase over control cultures in the number, length, 
and branching of the microvessels as well as in the number 
of fibroblast-like cells. All microvessels were positive for 
FVIII-RAg as previously reported (23, 25). The fibroblast- 
like outgrowth was negative for FVIII-RAg and included 
15-20% alpha-smooth muscle actin-positive cells. Alpha- 
smooth muscle actin positive cells were also seen around 
microvessels (25). The expression of alpha-smooth muscle 
actin by these ceils was low during early stages of angiogene- 
sis and increased over time as the outgrowth matured and 
differentiated. 

The potentiating effect of TSP on angiogenesis was dose- 
dependent in both fibrin and collagen gels with little or no 
stimulation at concentrations at or below 5/~g/ml and maxi- 
mal stimulation at concentrations of 50-60/~g/ml. The time 

Figure 1. Serum-free cultures 
of rat aorta in fibrin gel (A and 
C) and fibrin gel sup- 
plemented with 50 #g/ml TSP 
(B and D). Aortic tings ex- 
posed to TSP (B and D) gave 
rise to a denser vascular out- 
growth containing more mi- 
crovessels and fibroblast-like 
cells than aortic tings not 
treated with TSP. Arrows and 
arrowheads indicate micro- 
vessels and fibroblast-like 
cells, respectively. Magnifica- 
tions: A and B, ×25; C and 
D, ×140. 
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Figure 2. Serum-free cultures of rat aorta in control collagen gel (A) and collagen gel supplemented with 60 #g/ml TSP (B). TSP stimulated 
growth of microvessels and fibroblast-like cells. The aortic explants are marked by asterisks. Arrowheads indicate microvessels. Magnifica- 
tion: x45. 

course for TSP stimulation of angiogenesis revealed that TSP 
began to promote microvessel formation on day 5 of culture. 
On day 9, a 94% increase in microvessel formation was ob- 
served in TSP-containing fibrin gels as compared to un- 
treated controls (Fig. 3). In collagen gel cultures the TSP 
effect was even more pronounced with a 137% stimulation 
on day 9 (Fig. 3). Fibrin and TSP had an additive effect on 
angiogenesis, and, in the presence of both molecules, 
microvessel formation continued to increase over time so 
that after the ninth day of culture there were too many 
microvessels and fibroblast-like cells to accurately quanti- 
tate. In addition to promoting vascular proliferation, TSP 
stimulated the elongation of the newly formed microves- 
sels. The effect of TSP on microvascular length was dose- 
dependent and saturable (Fig. 4). Increased cellular prolifer- 
ation induced by TSP was further demonstrated by showing 
that TSP-treated cultures incorporated '~97 % more thymi- 

dine than controls when pulsed with [3H]thymidine after 
8 d of culture (Fig. 5). These experiments provide quantita- 
tive evidence that TSP promotes microvessel formation and 
proliferation of fibroblast-like cells in serum-free fibrin and 
collagen gel culture of rat aorta. 

Specificity of the Angiogenesis-promoting Activity 
of TSP 
The TSP used in these studies was electrophoretically pure 
as judged by silver-stained SDS-gels (Fig. 6). TSP, reduced 
by beta-mercaptoethanol, analyzed as a major band of 
180,000 daltons. Previously, we demonstrated that our TSP 
preparations contained no detectable laminin, fibronectin, 
vitronectin, or yon Willebrand factor (42). However, the 
possibility could not entirely be ruled out that our TSP con- 
tained trace amounts of growth factors that could contribute 
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Figure 3. Effect of matrix- 
bound TSP on the growth 
curve of microvessels in fibrin 
(left) and collagen (right) gel 
cultures of rat aorta. TSP 
caused dose-dependent stimu- 
lation of angiogenesis. 50 
#g/ml TSP induced a 94% in- 
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Figure 5. Effect of TSP on DNA synthesis in fibrin gel cultures of 
rat aorta. 8-d-old cultures were incubated with 5 /~Ci/ml 
[3H]thymidine for 5 h and measured for incorporation of radioac- 
tivity. 50 #g/ml TSP stimulated DNA synthesis as compared to 
buffer control (C) and 50/~g/ml BSA (p < 0.01). Each data point 
represents the mean of triplicate cultures + SEM. 

to its observed angiogenic activity. To address this question, 
TSP was adsorbed with a monospecific rabbit anti-TSP anti- 
body (Fig. 6) and tested for angiogenic activity. When 80% 
of the TSP was removed from a 50-#1 solution of TSP, the 
angiogenic effect was abolished (Fig. 7). These experiments 
suggest that TSP and not some contaminant promotes angio- 
genesis in our assay system. 

Effect of  TSP on Endothelial Cell Proliferation 

To investigate the mechanism of the angiogenesis-promoting 
activity of TSP, the effect of TSP on the growth of endothelial 
cells in culture was determined. We initially found that 30 
#g/ml of TSP, which was the same concentration that 
promoted angiogenesis in the rat aorta model, had no 
stimulatory effect on the growth of BAE cells as measured 
by DNA synthesis (Fig. 8) and by cell counts (Fig. 9). Indeed 
previous studies have shown that soluble TSP inhibits the re- 
sponse of endothelial cells to bFGF (3). However, there are 
no reports on the effect of matrix-bound TSP on endothelial 
proliferation. Since rat aortic angiogenesis is in part medi- 
ated by endogenous bFGF (46), we decided to test the effect 
of collagen-bound TSP on the proliferative response of RAE 
ceils to this growth factor. RAE cells grown on TSP-collagen 
substrate were unable to grow. However, they responded to 
bFGF which produced a threefold increase in endothelial 

Figure 6. Western blot analysis of anti-TSP antibody. TSP was ana- 
lyzed on an 8-25% polyacrylamide gradient SDS gel. (Lane 1) 
silver-stained TSP; (lane 2) anti-TSP-stained TSP; (lane 3) nonim- 
mune IgG-stained TSP. 
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Figure 8. Effect of TSP on DNA synthesis by endothelial cells. Bo- 
vine aortic endothelial cells (BAE) were grown in serum-free 
medium containing increasing concentrations of TSP and labeled 
with 1 #Ci/ml[3I-I]thymidine for 5 h. TSP had no stimulatory 
effect on endothelial proliferation. Each data point represents the 
mean of four replicate cultures ± SEM. 

cell number at day 4 (Fig. 10). Conversely, soluble TSP 
added to the medium of RAE cells cultured on uncoated 
dishes abrogated the stimulatory effect of bFGF (data not 
shown) as previously reported by others (3). These results 
indicate that TSP does not stimulate angiogenesis directly by 
promoting the growth of endothelial cells. They also show 
that matrix-bound TSP, unlike soluble TSP, does not affect 
the proliferative response of endothelial cells to bFGE Since 
TSP does not stimulate endothelial cell proliferation directly, 
its angiogenic effect must be mediated by some other compo- 
nent in the system. 

Isolation and Characterization of Myofibroblasts from 
Rat Aorta Cultures 

The formation of microvessels from the aortic explants was 
always preceded by an outgrowth of fibroblast-like cells 
(Figs. 1 and 2). Immunohistochemical analysis showed that 
this outgrowth contained alpha-smooth muscle actin-posi- 
rive cells. Rat aorta culture-derived nonendothelial cells 
were isolated, subcultured, cloned, and characterized im- 
munohistochemicaily as myofibroblasts, based on a positive 
reaction for alpha-smooth muscle actin and negative FVIll- 
RAg stain. The rat aorta culture-derived myofibroblasts 
were able to modulate the alpha-smooth muscle actin, ex- 
pressing this antigen in larger amounts in postconfluent cul- 

tures (Fig. 11). UltrastructuraUy, myofibroblasts showed 
peripherally condensed myofilaments, abundant rough endo- 
plasmic reticulum, pinocytotic vesicles, and were sur- 
rounded by abundant extracellular matrix (Fig. 12). 

Effect of TSP on Proliferation of Rat Aorta 
Culture-derieed Myofibroblasts 

To investigate~if the increased growth of fibroblast-like cells 
in collagen gel culture of rat aorta was due to TSP, we tested 
the effect of TSP on the proliferation of myofibroblasts. After 
4 d, myofibroblasts grown in serum-free MCDB 131 me- 
dium containing 30 /~g/ml TSP approximately doubled in 
number whereas those grown in the absence of TSP showed 
no growth (Fig. 9). These results indicate that TSP has a di- 
rect proliferative effect on rat aorta-derived myofibroblasts. 

Effect of Rat Aorta Culture-derived Myofibroblasts 
on Angiogenesis 

To investigate if the angiogenic response of the rat aorta to 
TSP was mediated by accessory nonendothelial cells which 
were sensitive to TSP stimulation, aortic explants were cul- 
tured under serum-free conditions in collagen gels contain- 
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TSP stimulated the proliferation of myofibroblasts but had no effect 
on BAE cells. Each data point is the mean of 3 cultures. Error bars 
represent the SD. 

ing increasing concentrations of exogenously added myo- 
fibroblasts. Myofibroblasts stimulated angiogenesis by 100- 
115 % as compared to controls containing no exogenous cells 
(Fig. 13). An even greater stimulation (167 %) was obtained 
with myofibroblast cell clones. In addition, microvessels 
formed in the myofibroblast-containing gels were more sta- 
ble and survived longer than control microvessels, which 
tended to regress at a faster rate. The angiogenic stimulation 
by myofibroblasts was dose-dependent with maximum effect 
obtained at 50,000 cells/ml of collagen. Therefore, myo- 
fibroblasts can directly promote angiogenesis. To determine 
whether the angiogenic activity of the myofibroblasts was 
mediated by soluble factor(s), we evaluated the effect of myo- 
fibroblast-conditioned medium on angiogenesis. After 7 d, 
collagen gel cultures of rat aorta treated with myofibroblast- 
conditioned medium showed a 105% stimulation of angio- 
genesis as compared to untreated controls. Taken together 
these results suggest that matrix-bound TSP promotes angio- 
genesis indirectly by stimulating the proliferation of myo- 
fibroblasts, which in turn secrete angiogenic factor(s). 

Partial Characterization of  Rat Aorta Culture-derived 
Myofibroblast Conditioned Medium 

The stimulatory activity of medium conditioned by myofi- 
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Figure 10. Effect of bFGF (10 ng/ml) on the proliferation of RAE 
cells cultured on collagen-TSP substrate in serum-free medium. 
bFGF promoted a threefold increase in the number of RAE cells 
on day 4 (p = 0.0007). RAE cells cultured on collagen-TSP in the 
absence of bFGF were unable to grow. 

broblasts isolated from the aortic cultures was retained by a 
heparin-agarose affinity chromatography column (Fig. 14) 
and was destroyed by proteolysis with trypsin. The activity 
was due to a protein >30 kD since the flow-through fractions 
of l0 kD and 30 kD Amicon filters were ineffective whereas 
fractions of larger molecular weight retained partial activity. 

Figure 11. Light micrograph of myofibroblast cell culture immuno- 
stained by the ABC method for alpha-smooth muscle actin. Note 
the positive staining of the actin cytoskeleton. Magnification: 
x470. 
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Figure 12. Electron micro- 
graph of cultured myofibro- 
blasts. Note the abundant pe- 
ripheral microfilaments (*) 
and pinocytotic vesicles (ar- 
row and inset). Magnification: 
×19,200; inset, ×43,000. 

Discussion 

The experiments presented in this study provide evidence 
that TSP incorporated in a fibrin or collagen gel promotes 
angiogenesis from explants of rat aorta. TSP appears to 
stimulate angiogenesis indirectly through its growth-promoting 
effect on myofibroblasts derived from the aortic wall. TSP 
promoted the growth of fibroblast-like cells from the aortic 
explants before any microvessels had developed. Some of 

these cells stained for alpha-smooth muscle actin and, when 
isolated, showed morphological features of myofibroblasts. 
Consistent with the observations that expression of TSP is 
enhanced by fibroblasts and smooth muscle cell mitogens 
(10, 12), that antibodies against TSP inhibit growth of rat 
aortic smooth muscle ceils (14), and that TSP stimulates the 
growth of fibroblasts (27), we find that TSP promotes the 
growth of myofibroblasts isolated from rat aortic cultures. 
These cells in turn stimulate angiogenesis by secreting 
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Figure 13. Effect of myofibro- 
blasts (left) and myofibroblast- 
conditioned medium (right) 
on rat aortic angiogenesis in 
collagen gel culture. Myofibro- 
blasts (MF) stimulated anglo- 
genesis by 115 % as compared 
to the control (C) containing 
no exogenous cells (day 13, p 
= 0.015; N = 3). Myofihro- 
blast-conditioned medium (M/z 
CM) stimulated the anglo- 
genie response by 105 % (day 
7, p = 0.007; N = 5). Error 
bars indicate SEM. 
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Figure 14. Maximum number of microvessels formed in control 
cultures and in cultures treated with rat aortic myofibroblast-condi- 
tioned medium (MF-CM) before (A) and after (B) adsorption on a 
heparin affinity chromatography column. Error bars indicate SEM, 
n = 3 .  

growth factor(s) as previously described (32, 33). Myo- 
fibroblasts may promote angiogenesis also by producing ex- 
tracellular matrix molecules required by the endothelial 
cells (32). 

Our data also indicate that matrix-bound TSP acts as a per- 
missive substrate allowing endothelial cells to proliferate in 
response to growth factors such as bFGF. This is in contrast 
to soluble TSP, which has anti-proliferative effects on en- 
dothelial cells (3, 8, 38). In fact, RAE cells cultured on a col- 
lagen matrix containing TSP increased threefold after 4 d of 
treatment with bFGE The same cells were unable to respond 
to bFGF when grown on uncoated plastic in the presence of 
soluble TSP, as previously reported (3). These results are 
consistent with the data of Morandi et al. (17) who showed 
that endothelial cells in culture require TSP as an attachment 
factor. 

The growth-promoting effects of TSP do not appear to be 
due to growth factor contaminants since anti-TSP adsorbed 
preparations had no effect on angiogenesis. In addition, the 
fact that our TSP had no effect on endothelial cell prolifera- 
tion rules out contamination by angiogenic cytokines such as 
bFGF, which directly stimulate endothelial cell growth. 
Moreover, bFGF is already present in the system as an en- 
dogenous component released by injured aortic endothelial 
and smooth muscle cells (46). It is also unlikely that the TSP 
effect was due to contamination with transforming growth 

factor beta-1 since this cytokine has anti-proliferative and 
anti-migratory effects on endothelial cells in vitro (51) and 
inhibits rat aortic angiogenesis when added to the collagen 
gel in its active form (unpublished observations). The angio- 
genic effect of TSP may be due in part to the capacity of this 
molecule to stimulate endothelial motility (38) and to modu- 
late endothelial cell adhesion (21). In fact, elongation of 
microvessels, such as the one induced by TSP, can be 
promoted by a proliferation-independent migratory recruit- 
ment of endothelial cells (24). 

TSP stimulated growth at concentrations similar to those 
of TSP present in serum or fibrin after blood coagulation. 
We have observed that tissue culture growth medium sup- 
plemented with 5 % FBS contains 60 #g/ml of TSP as deter- 
mined by indirect immunoadsorbent assay using anti-human 
TSP antibody and human TSP as a standard. Therefore, the 
similarity in our cultures of the effect of TSP with that of se- 
rum suggests that TSP may be one of the growth components 
of serum. 

The previous report that TSP inhibits the angiogenic effect 
of bFGF in the rabbit cornea model is not inconsistent with 
our results (7). The rabbit cornea model depends on the ca- 
pacity of molecules to diffuse from polymeric implants 
placed in the cornea, which is avascular, toward the limbus, 
which is richly vascularized. TSP diffuses poorly even when 
placed into a well of an agarose gel used for double im- 
munodiffusion (unpublished observations). Therefore, it is 
not surprising that TSE which has been shown to bind bFGF 
(39), does not promote angiogenesis in the cornea model but 
rather acts as a sink to sequester soluble angiogenic factors, 
impeding their diffusion toward their target vessels in the 
limbus. In our system the TSP effect on angiogenesis does 
not depend on diffusion since TSP is incorporated in the 
same matrix that contains the endothelial cells and the angio- 
genic factors, including bFGF (46), which are released by 
the aorta. 

Our observation that TSP promotes angiogenesis in- 
directly by promoting the proliferation of myofibroblasts 
which in turn stimulate angiogenesis is intriguing since these 
cells may have derived from fibroblasts, smooth muscle 
cells, or pericytes (1, 5). The possible origin of myofibro- 
blasts from fibroblasts is supported by the observation that 
fibroblasts can express alpha-smooth muscle actin (5) and 
stimulate angiogenesis in vitro (manuscript in preparation). 
Conversely, smooth muscle cells and pericytes have been 
shown to inhibit endothelial migration and proliferation (26, 
51). However these cells, which are potential sources of 
myofibroblasts, may modulate their activity depending on 
their state of differentiation since they require physical con- 
tact to inhibit the endothelium (26, 51). Thus, angiogenesis 
may be promoted when pericytes and smooth muscle cells 
de-differentiate becoming myofibroblasts and inhibited when 
the same cells mature and establish contacts with the en- 
dothelium (35). Alternatively, as proposed by others (34), 
the aortic wall may contain different subpopulations of 
smooth muscle cells some of which respond to TSP and 
stimulate angiogenesis. This dynamic interpretation of 
smooth muscle cell function would reconcile apparently 
conflicting reports that have attributed either angiogenic (2) 
or anti-angiogenic roles (26, 51) to these cells. It is also con- 
sistent with the observations that the progressive increase in 
the number of pericytes in aortic cultures (Nicosia, R. E,  
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and E. Bonanno. 1992. Lab. Invest. 66:22A) and in other an- 
giogenesis systems (36) is eventually followed by cessation 
of vascular proliferation and maturation of microvessels. 

Partial characterization of the myofibroblast conditioned 
medium suggests that the angiogenic activity is due to 
heparin-binding protein(s) having a molecular weight in ex- 
cess of 30 kD. However, more studies are needed to further 
characterize these factor(s) and determine their relation 
to TSP. 

In summary, our observations suggest that matrix-bound 
TSP may play an important role in stimulating the response 
of vascular connective tissue to injury at sites of fibrin and 
platelet deposition. Our studies provide evidence that TSP 
may mediate the proliferative response of the aortic wall to 
injury and the vascularization of the atherosclerotic plaque 
by recruiting myofibroblasts which in turn stimulate angio- 
genesis. These observations also suggest that TSP may pro- 
mote angiogenesis and myofibroblast proliferation during 
wound healing. Preliminary studies sowing that TSP directly 
promotes healing of full thickness skin wounds in a pig 
model support this interpretation (unpublished data). Fi- 
nally, TSP may potentiate tumor cell metastasis not only by 
promoting the adhesion of tumor cells and their subsequent 
sequestration in the lungs as previously reported (40), but 
also by stimulating angiogenesis. Recent reports from our 
laboratories (Tuszynski, G. P., V. L. Rothman, M. Papale, 
B. Zangwill, and R. E Nicosia. 1992. Mol. Biol. Cell. 
3:20a) and by others (28, 49) showing that malignant breast 
tumors, which are richly vascularized (47), contain a high 
level of stromal-associated TSP, are consistent with the con- 
clusion that TSP promotes angiogenesis. 
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