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Abstract

Background: Biomedical knowledge is dispersed in scientific literature and is
growing constantly. Curation is the extraction of knowledge from unstructured data
into a computable form and could be done manually or automatically. Hypertrophic
cardiomyopathy (HCM) is the most common inherited cardiac disease, with
genotype–phenotype associations still incompletely understood. We compared
human- and machine-curated HCM molecular mechanisms’ models and examined
the performance of different machine approaches for that task.

Results: We created six models representing HCM molecular mechanisms using
different approaches and made them publicly available, analyzed them as networks,
and tried to explain the models’ differences by the analysis of factors that affect the
quality of machine-curated models (query constraints and reading systems’
performance). A result of this work is also the Interactive HCM map, the only publicly
available knowledge resource dedicated to HCM. Sizes and topological parameters of
the networks differed notably, and a low consensus was found in terms of centrality
measures between networks. Consensus about the most important nodes was
achieved only with respect to one element (calcium). Models with a reduced level of
noise were generated and cooperatively working elements were detected. REACH
and TRIPS reading systems showed much higher accuracy than Sparser, but at the
cost of extraction performance. TRIPS proved to be the best single reading system
for text segments about HCM, in terms of the compromise between accuracy and
extraction performance.
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Conclusions: Different approaches in curation can produce models of the same
disease with diverse characteristics, and they give rise to utterly different conclusions
in subsequent analysis. The final purpose of the model should direct the choice of
curation techniques. Manual curation represents the gold standard for information
extraction in biomedical research and is most suitable when only high-quality
elements for models are required. Automated curation provides more substance, but
high level of noise is expected. Different curation strategies can reduce the level of
human input needed. Biomedical knowledge would benefit overwhelmingly, especially
as to its rapid growth, if computers were to be able to assist in analysis on a larger scale.

Keywords: Data mining, Curation, Automated curation, Hypertrophic cardiomyopathy,
Signaling pathways, Knowledge graphs, Disease maps

Background
Biomedical knowledge is dispersed across scientific papers and databases and is grow-

ing constantly. Biomedical literature can be seen as a large, unstructured data reposi-

tory [1]. PubMed is a biomedical literature database and supports the search and

retrieval of the literature [2]. Filters are used to narrow the search by different criteria

(publication date, species, etc.). Each publication in the database has a unique PubMed

Identifier (PMID). Medical Subject Headings (MeSH) is a vocabulary thesaurus used

for indexing articles for PubMed [3]. Combinations of these and other approaches (e.g.,

using keywords and key phrases) can be used to constrain database queries. There are

also other biomedical databases such as Pathway Commons [4], DrugBank [5],

ChEMBL [6], CTDbase [7], miRTarBase [8], and many more.

Curation is the extraction of knowledge from unstructured data into a structured,

computable form [9]. Molecular mechanisms can be extracted from biomedical know-

ledge resources by manual or automated curation [10, 11]. Manual curation consists of

the synthesis and integration of information from the literature, large-scale projects,

and databases [9] and represents the gold standard for information extraction in bio-

medical research [12]. The extracted information about molecular mechanisms can be

subsequently visually represented using visual pathway editors such as CellDesigner

[10]. One example of an automated approach is the “Integrated Network and Dynam-

ical Reasoning Assembler” (INDRA), which extracts molecular mechanisms from text

and biomedical databases and assembles them into executable models [13]. It contains

a number of clients for accessing and using resources from biomedical databases (e.g.,

Pathway Commons database) and literature clients for retrieving the literature. For the

extraction of molecular mechanisms from text, INDRA uses reading systems such as

REACH [14], TRIPS [15], Sparser [16], ISI [17], RLIMPS-P [18], Eidos [19], etc. They

extract INDRA statements, intermediate knowledge representations of extracted mo-

lecular mechanisms [13]. INDRA statements are then assembled into models [13]. The

INDRA Database is built with INDRA, combining content from numerous readers and

databases [20].

When the information is combined, its value increases [9]. Disease maps are compre-

hensive, knowledge-based representations of disease mechanisms [21]. Biomedical

knowledge in the form of graphs facilitates the study of complex processes, both as vis-

ual and thereby more intuitive representations, as well as a standardized data structure

that is human- and computer-readable [22].
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Hypertrophic cardiomyopathy (HCM) is the most common genetic cardiac disease

[23–25], with a prevalence of 1 in 500 people worldwide [23, 26–29]. It is characterized

by marked variability in expression, ranging from asymptomatic to sudden cardiac

death or heart failure [30]. In addition to the direct effects of underlying mutations,

gene expression is altered by micro and small noncoding RNAs, and secondary molecu-

lar changes occur in many signaling pathways [31]. Many studies have been conducted

to decipher the molecular mechanisms underlying HCM; however, genotype–pheno-

type associations remain incompletely understood [32].

Models made exclusively by manual curation or by automated curation have never

been compared. Automated biomedical knowledge curation policies that produce dis-

ease models of higher quality are still not known.

Our aims were to compare human- and machine-curated HCM models, as well as to

examine the performance of different machine approaches for the same task.

Results
Constructed models

We created six models representing HCM molecular mechanisms using different ap-

proaches and made them publicly available (Table 1). The Manual HCM model was

constructed by a human, based on an extensive literature search in PubMed, using Cell-

Designer. The Tabular manual HCM model was created by manual transcription of

species and reactions from the original Manual HCM model CellDesigner XML file to

nodes and interactions of a network table in XLSX format. The INDRA-assembled

PubMed HCM model was assembled automatically, using INDRA’s PubMed literature

client. The INDRA-assembled PubMed+PathwayCommons HCM model was assembled

automatically, using INDRA’s PubMed literature client and Pathway Commons data-

base via INDRA’s BioPAX API. The Truncated INDRA DB model was created using

INDRA Database. Only statements that were completely correctly extracted from the

text were incorporated into the Truncated INDRA DB model. After applying the cri-

teria for correctness, 9.27% of statements remained for inclusion in the Truncated

INDRA DB HCM model. The INDRA DB model was created using the INDRA Data-

base. All statements returned by the query were incorporated into the INDRA DB

model.

Table 1 Constructed models

Model Number of
elements

Number of
interactions

Number of
compartments

Available at

Manual HCM model 440a 509a 0a https://bit.ly/3
s47FyA

Tabular manual HCM model 175 278 0 https://bit.ly/3
saXwR2

INDRA-assembled PubMed HCM model 435 451 0 https://bit.ly/3
blm2rB

INDRA-assembled
PubMed+PathwayCommons HCM
model

1883 3642 0 https://bit.ly/2
OLxJQM

Truncated INDRA DB HCM model 77 59 0 https://bit.ly/2
ZKypbD

INDRA DB HCM model 546 638 0 https://bit.ly/3
upHsga

aAs estimated by Cytoscape. The original Manual HCM model consisted of 207 elements, 233 reactions, and 11 compartments
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The number of elements and interactions in models differ markedly, regardless of

whether they represent the same disease (HCM). Models created by automated cur-

ation contain no compartments (Table 1).

Network analysis of the generated models

Topological analysis

Topological parameters for the networks (Table 2) and network diameter per element

(Table 3) were computed.

Nodes’ centrality scores

The intersections of sets containing the top 10% elements by centrality measures for each net-

work showed low consensus in terms of centrality measures between networks (Fig. 1). The ele-

ments ranked in the top 10% by different centrality measures for each network were visualized

(Table 4). Network centrality scores could not be determined for the CellDesigner XML file.

The most important nodes

Consensus about the most important nodes was achieved only with respect to one element

(calcium), while consensus for other most and least important nodes was lacking (Fig. 2).

Each network was represented as a packed concentric ring sorted by k-shell and gra-

dient of nodes’ color applied based on k-shell (Fig. 3, Additional file 1). Rank and k-

shell for each node of each network were calculated (Additional file 2). Cytoscape Wk-

decomposition [33] could not be performed on the CellDesigner XML file.

Table 2 Topological parameters for HCM models obtained with Network Analyzer

Manual
HCM
model

Tabular
manual
HCM
model

INDRA-
assembled
PubMed HCM
model

INDRA-assembled
PubMed+PathwayCommons
HCM model

Truncated
INDRA DB
HCM model

INDRA
DB
HCM
model

Average
number of
neighbors

2.309a 2.789 1.917 3.582 1.455 2.059

Network
diameter

1a 12 6 8 3 9

Network
radius

1a 1 1 1 1 1

Characteristic
path length

1.000a 4.334 2.541 2.395 1.299 3.900

Clustering
coefficient

0.000a 0.054 0.007 0.006 0.014 0.028

Network
density

0.003a 0.009 0.002 0.001 0.010 0.002

Connected
components

26a 11 58 51 23 101

Multi-edge
node pairs

1a 24 21 213 3 48

Number of
self-loops

0a 4 7 14 0 6

a Due to the CellDesigner XML file incompatibility, we suggest that some or all topological measures for the Manual HCM
model are calculated falsely by Cytoscape
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Reliability of interactions

A different level of reliability threshold was estimated and applied for each model and,

as a result, models with reduced levels of noise were generated (Table 5).

Cooperatively working elements

The number of detected cooperatively working elements (functional modules) was

vastly different for networks (Table 6). Models made by machines without later human

intervention contained ambiguous and exogenous elements in the detected functional

modules (Table 6, Additional file 3). We have proposed likely implications for the de-

tected functional modules in HCM (Additional file 3). The Manual HCM model could

not be analyzed using NCMine app [34].

Table 3 Network diameter per element

Manual
HCM
model

Tabular
manual
HCM
model

INDRA-
assembled
PubMed HCM
model

INDRA-assembled
PubMed+PathwayCommons
HCM model

Truncated
INDRA DB
HCM model

INDRA
DB
HCM
model

Network
diameter/
number of
elements

0.0023a

0.0048
0.0686 0.0138 0.0042 0.0390 0.0165

aNumber of elements estimated using Cytoscape

Fig. 1 Intersections of sets containing top 10% elements ranked by centrality measures for each network.
Top 10% elements were determined for each network by: a-betweenness, b-bottleneck, c-closeness, d-
clustering coefficient, e-degree, f-DMNC, g-eccentricity, h-EPC, i-MCC, j-MNC, k-radiality, l-stress
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Factors that affect the quality of machine-curated models

Query constraints in machine-curated models

Query based on keywords is considerably more potent than query by MeSH (Table 7).

The average year of publication for papers found by INDRA Database [20] query by

the MeSH, used for the INDRA DB HCM model, was x=2010.27, with 43.75% of the

papers describing research conducted on human material, 15.97% on human and other

species material, and the rest being animal studies.

Reading systems’ performance

The most dominant reading system for the extraction of statements for the INDRA DB

HCM model was Sparser, followed by RLIMS-P, REACH, and TRIPS/DRUM (Fig. 4).

Reading systems’ extraction performance differed markedly for different reaction types

(Table 8). Most extractions per statement were found for different versions of phos-

phorylation and translocation (Fig. 5).

For all reading systems, the most common issue was that statements extracted had

two or more critical issues (a combination of wrong elements, misleading element label,

wrong interaction, or wrong direction of the interaction) in the same statement,

followed by wrong element and wrong direction of interaction in case of Sparser and

TRIPS reading systems (Fig. 6).

REACH and TRIPS showed much higher accuracy than Sparser (Table 9) but at the

cost of extraction performance (Fig. 4, Table 9). The TRIPS reading system proved to

Table 4 Elements ranked as top 10% by centrality measures for each network

Model Link to folder with top 10% elements for each of centrality
measures for the model

Tabular manual HCM model https://bit.ly/3s7PQyO

INDRA-assembled PubMed HCM model https://bit.ly/3k6Dmon

INDRA-assembled
PubMed+PathwayCommons HCM model

https://bit.ly/3s9Wc0x

Truncated INDRA DB HCM model https://bit.ly/3s6uqSL

INDRA DB model https://bit.ly/37Kqlfc

Fig. 2 The most important elements of networks (left) and the least important elements of networks (right)
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be the best single reading system for text segments about HCM when considering a

compromise between accuracy and extraction performance (Fig. 4, Table 9).

For the INDRA DB model, 44.19% of the statements extracted by the Eidos reading

system (the result of 20.65% of total extractions by Eidos) were meaningless and in-

applicable (Additional file 4). Those were complex statements by structure and brought

puzzling noise to the model. For the statements representing simple interactions (con-

sisting of one subject, one object, and interaction between them), Eidos extracted the

possible and applicable statements.

Interactive HCM map

The Interactive HCM map is available at https://silicofcm.eu/interactive-map/. It is

hosted on the MINERVA (Molecular Interaction NEtwoRks VisuAlization) platform

[35–37] which interfaces with DrugBank [5], ChEMBL [6], CTDbase [7], and miRTar-

Base [8]. The majority of the proteins that have a 3D structure already resolved and

available in the Protein Data Bank can be directly visualized and explored using MolArt

[38], a built-in MINERVA platform visualization tool.

Plugins enable additional onsite analysis. In maps with defined pathway areas, the

Gene set enrichment analysis (GSEA) plugin [37] retrieves active data overlays and per-

forms enrichment analysis, highlighting pathways significantly enriched for data

Fig. 3 Packed concentric ring sorted by k-shell and gradient of nodes’ color. Tabular manual HCM model
(left), INDRA DB model (right)

Table 5 Estimated best reliability threshold for each network and models with reduced level of
noise

Model Estimated best reliability
threshold

Models with reduced level
of noise

Manual HCM model – https://bit.ly/3qDFZ3g

Tabular manual HCM model 0.15 https://bit.ly/3qBzv59

INDRA-assembled PubMed HCM model 0.15 https://bit.ly/3bBKFkf

INDRA-assembled PubMed+PathwayCommons
HCM model

0.60 https://bit.ly/3s6ALO3

Truncated INDRA DB HCM model 0.02 https://bit.ly/3k9iH2T

INDRA DB model 0.50 https://bit.ly/3pFqo1Y
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overlays. These data can be user-provided. Adverse drug reactions plugin [37] links an

external data file to the corresponding map elements. Targets of drugs with identified

adverse reactions are shown in the map and can be filtered. The Disease-variant associ-

ations plugin [37] indicates genes with variants associated with a given disease [37].

Map exploration plugin [37] enables focused molecular interaction network exploration

(e.g., of the neighborhood of a molecule appearing multiple times in a network) [37].

Centrality plugin [39] calculates network topology values. Overlays plugin [39] auto-

matically creates, displays, or removes multiple overlays from uploaded data files [39].

Discussion
Constructed models

The difference in the number of nodes and interactions between the original Manual

HCM model in CellDesigner XML format and its uploaded version is caused by the in-

compatibility of the Cytoscape [40] and CellDesigner XML formats. The incompatibility

is also evident from visual inspection of the network uploaded to Cytoscape/NDEx

Table 6 Functional modules

Model Criterion for
near-clique
mining

Number of
functional
modules
detected

Functional modules
with ambiguous
elements (%)

Functional modules
with exogenous
elements (%)

Tabular manual HCM model Page Rank 17 0.00 0.00

Tabular manual HCM model Node Degree 18 0.00 0.00

INDRA-assembled PubMed
HCM model

Page Rank 6 50.00 16.67

INDRA-assembled PubMed
HCM model

Node Degree 5 60.00 20.00

INDRA-assembled
PubMed+PathwayCommons
HCM model

Page Rank 61 4.92 77.05

INDRA-assembled
PubMed+PathwayCommons
HCM model

Node Degree 60 5.00 80.00

Truncated INDRA DB HCM
model

Page Rank 2 0.00 0.00

Truncated INDRA DB HCM
model

Node Degree 2 0.00 0.00

INDRA DB HCM model Page Rank 27 22.22 18.52

INDRA DB HCM model Node Degree 33 21.21 15.15

Table 7 Number of results as a consequence of different query constraints

Query Filter Search details Number of results

MeSH Cardiomyopathy, Hypertrophic, Familial 10 years MeSH Term 265

MeSH Cardiomyopathy, Hypertrophic, Familial 10 years MeSH Major Topic 232

keywords familial hypertrophic cardiomyopathy 10 years – 562

keywords “familial hypertrophic cardiomyopathy” 10 years Exact match 336

keywords hypertrophic cardiomyopathy 10 years – 7952

keywords “hypertrophic cardiomyopathy” 10 years Exact match 7390
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[41–43], where empty elements (reactions represented as nodes) constitute 53.95%.

The inaccurate number of elements and misconstructed visual representation raised

questions regarding the reliability of CellDesigner XML format in any Cytoscape

analysis.

Visual inspection of networks revealed a weakness of the machine-curated models:

the absence of compartments, which can be important for diseases like HCM, where a

molecular signal is context-specific (organelle, cell, tissue, organ).

When the number of elements and interactions in models is taken as a criterion, the

machine-curated models proved to be a richer source of information. Whether that

abundance is noise or a broader view of the topic is yet to be determined.

The general problem of machine-curated models is the misleading labeling of the ele-

ments. Abbreviations like LV (a common abbreviation for the left ventricle in HCM ar-

ticles) are turned into amino acid sequences (Leu-Val). Elements starting with Greek

letters (e.g. α-adrenergic receptor) are turned into labels that consist of Greek letters

only (e.g., α).

Network analysis of the generated models

Comparing the original Manual HCM model in CellDesigner XML format and the

same model (same elements and interactions) transcribed to the network table, we got

different values for topological parameters in network analysis for all relevant measures.

Taken together with the unsatisfactory result of upload for the model in CellDesigner

XML format, we suggest that, although this format is readable by some Cytoscape

tools, it should not be used for network analysis.

Topological analysis

The average number of neighbors is the highest in the INDRA-assembled PubMed+

PathwayCommons HCM model and the lowest in the Truncated INDRA DB HCM

model. That is as expected because the INDRA-assembled PubMed+PathwayCommons

HCM model is built using “neighborhood” query for the list of genes associated with

HCM. “Neighborhood” query returns the neighborhood around a set of source genes

Fig. 4 Reading systems’ contribution to extraction of statements for INDRA DB HCM model
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[13], which is then incorporated in the model—it adds both elements and their neigh-

bors to a model at the same time. The choice of the Truncated INDRA DB HCM

model statements was based only on the correctness of a limited set of statements, so

the discontinuity (manifested also as a lack of neighborhood connections) in the model

was expected. All other models have a comparable average number of neighbors, with

an element usually having two neighbors.

Network diameter indicates how distant the two most distant nodes are. It is a par-

ameter of graph “compactness” (overall proximity between nodes) [44]. In order to

compare the compactness of graphs of different sizes, we determined the network

diameter per element. The Tabular manual HCM model was far more compact than

the machine-curated models. At the same time, network diameter per element for the

Manual HCM model had the lowest values, probably due to incompatible format.

Table 8 Percent of reading systems’ extractions by different reaction types in INDRA DB HCM
model

Reaction types ISI/AMR
(%)

RLIMS-P
(%)

Eidos
(%)

TRIPS/DRUM
(%)

Sparser
(%)

REACH
(%)

Activation, 2 elements 0.01 0.00 0.20 0.05 22.57 77.16

Activation, when binding 0.00 0.00 0.00 0.00 0.00 100.00

Activation, when carrying 0.00 0.00 100.00 0.00 0.00 0.00

Activation, when occurring 0.00 0.00 100.00 0.00 0.00 0.00

Autophosphorylation 0.00 0.00 0.00 1.57 98.43 0.00

Binding inhibits 0.00 0.00 0.00 0.00 0.00 100.00

Binding, 2 elements 0.04 0.00 0.00 0.03 58.36 41.57

Binding, more than 2 elements 0.00 0.00 0.00 0.00 99.07 0.93

Complex 0.00 0.00 100.00 0.00 0.00 0.00

Decreasing the amount, 2 elements 0.00 0.00 0.00 0.00 0.00 100.00

Dephosphorylation, 2 elements 0.00 0.00 0.00 0.00 0.00 100.00

Dephosphorylation, 2 elements,
precise

0.00 0.00 0.00 0.00 0.00 100.00

Increasing the amount, 2 elements 0.00 0.00 0.00 0.00 0.00 100.00

Inhibition observed in 0.00 0.00 100.00 0.00 0.00 0.00

Inhibition, 2 elements 0.01 0.00 0.53 0.17 3.27 96.02

Inhibition, when binding 0.00 0.00 0.00 0.00 0.00 100.00

Object dephosphorylated 0.00 0.00 0.00 0.00 99.95 0.05

Object phosphorylated 0.00 18.80 0.00 0.71 80.25 0.24

Object phosphorylated, precise 0.00 9.15 0.00 0.00 90.79 0.06

Object produced 0.00 0.00 0.00 60.00 0.00 40.00

Phosphorylation increases amount 0.00 0.00 0.00 0.00 0.00 100.00

Phosphorylation, 2 elements 0.05 5.08 0.00 0.23 43.26 51.38

Phosphorylation, 2 elements, precise 0.00 1.51 0.00 0.00 43.22 55.28

Subject leads to dephosphorylation
of object

0.00 0.00 0.00 0.00 0.00 100.00

Subject leads to phosphorylation of
object

0.00 0.00 0.00 0.00 0.00 100.00

Translocation, destination precise 0.00 0.00 0.00 0.08 82.95 16.97

Translocation, starting point precise 0.00 0.00 0.00 0.00 0.00 100.00

Ubiquitination, 2 elements 0.00 0.00 0.00 0.00 0.00 100.00
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Fig. 5 Number of extractions per statement for 28 reaction types in INDRA DB HCM model

Fig. 6 Specific issues found in the statements extracted by reading systems. Count of correct statements is
shown as a reference point. The “not correct” issue was assigned in cases where two or more critical issues
were found. Wrong element, misleading element label, wrong interaction, wrong direction of the
interaction were designated as critical issues
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Characteristic (average) path length represents “closeness” in a network [45]. It is de-

fined as the average distance between all pairs of its nodes [46]. The characteristic path

length is largest for the Tabular manual HCM model, closely followed by the INDRA

DB HCM model, INDRA-assembled PubMed HCM model, INDRA-assembled

PubMed+PathwayCommons HCM model, and Truncated INDRA DB HCM model.

Characteristic (average) path length for the Manual HCM model has value 1, which is

probably the result of incompatible CellDesigner XML format.

Clustering coefficient is a measure of local cohesiveness [47]. The clustering coeffi-

cient of a network is the average of all its individual clustering coefficients [48]. It is the

largest for the Tabular manual HCM model. The Manual HCM model has a clustering

coefficient of 0.0.

Network density is the number of existing relationships relative to a possible number.

Dense networks are more important for control than for information. Dense networks

tend to generate a lot of redundant information. Large networks tend to be sparse [49].

Nodes’ centrality scores

There was no consensus between networks about the top elements in terms of centrality

measures. This result is partially a consequence of diverse labeling between models, along

with inconsistent labeling within models. Some rare elements were found as intersections

of these sets, but they reflect the combination of the same principle for labeling, simultan-

eously with consistency about the highest values of centrality measures. Conclusions re-

garding the consensus turned out not to depend on the choice of centrality measure. The

effect of different number of elements in networks on centrality measures and consequent

comparison of top 10% of nodes is hard to predict and generalize, and could be the sub-

ject of a future research. Although this issue is partially and roughly resolved by using the

same proportion of the elements (10%), the consensus between networks about the top el-

ements in terms of centrality measures is affected by number of elements in networks,

with impact and magnitude that are yet to be estimated.

The most important nodes

Although the actually important nodes are estimated as important ones for all the

models, the INDRA-assembled PubMed+PathwayCommons HCM model had the most

less-expected elements estimated as being the most important ones.

For all models, among the group of elements estimated as the least important, most

of the nodes are indeed less important for HCM. However, in the same group, there

were some elements that are considered as important. We suggest that happens be-

cause of diverse labeling of closely related or same elements. K-shell decomposition

Table 9 Accuracy of Sparser, REACH, and TRIPS reading systems

Sparser REACH TRIPS

Tolerably accuratea (%) 41.02 83.59 84.38

Not tolerably accurate, not inaccurate (%) 12.89 8.01 6.64

Inaccurateb (%) 46.09 8.40 8.98

No extraction (%) – 68.16 38.48

Accuracy has been determined for all text segments for which Sparser, as the most dominant reading system, extracted
a statement. a Tolerably accurate: correct statement or no extraction; b Inaccurate: contains critical issue(s)
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algorithm assigns a weight based on the degree of a node (number of connections that

it has to other nodes) and the adjacent nodes. Accordingly, diverse labeling makes these

elements scattered, and thus less connected.

Venn diagrams for the most important nodes of all networks revealed that a consen-

sus is achieved with respect to calcium, while other 95 percentile bucket elements were

rarely the most important in a few models.

Venn diagrams for the least important nodes of all networks revealed that there is no

consensus about the least important elements either, which is as expected because

those elements represent noise or additional (non-essential) information.

In an interpretation context, wk-shell-decompositions and measures of centrality both tell

us about importance of a node, but wk-shell-decompositions and each of centrality mea-

sures have different criteria of what is important and how is it estimated (i.e. calculated).

Reliability of interactions

The PE-measure tool [50] demonstrated useful noise reduction in networks, especially

in the INDRA DB model. We suggest that the combination of INDRA DB and PE-

measure (or equivalent) tools could be beneficial for other disease models as well. The

estimated best reliability threshold could also serve as a rough assessment of the level

of noise in models. In this respect, the INDRA-assembled PubMed+PathwayCommons

HCM model and INDRA DB model contain much more noise than the Tabular manual

HCM model, INDRA-assembled PubMed HCM model, and especially the Truncated

INDRA DB HCM model (which has the lowest estimated reliability threshold).

At the moment, there is no strict, straightforward, nor objective way to estimate where

the border between the clutter and definite molecular elements involved in the disease is.

Disease modelers interested in domain knowledge consistency of models might be in-

terested in what do combinations of the applied noise-removal technique and each of

these model-generation techniques could bring, since model-generation techniques do

not all generate same type of clutter.

Cooperatively working elements

Most of the determined functional modules (cooperatively working elements) are pos-

sible and relevant for HCM (Additional file 3). All the machine-curated models con-

tained ambiguous elements (due to imprecise labeling), except the Truncated INDRA

DB, for which before construction such elements were excluded. All machine-curated

models contained exogenous elements, except the Truncated INDRA DB. In the

INDRA-assembled PubMed+PathwayCommons HCM model, functional modules con-

taining exogenous elements dominated. Although these functional modules do not rep-

resent HCM itself properly, this approach could be interesting in cases where

interactions between diseases and external factors are studied.

Factors that affect the quality of machine-curated models

Reading systems’ performance

We propose assigning weights to statements extracted by a reading system that is fa-

vorable with regard to a particular use-case instead of giving preference to more nu-

merous identical statements extracted. The choice of the reading system (and proposed
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weighting) is a trade-off between quantity and quality and could be guided by the mo-

lecular context and type of reactions important for a disease.

Although the RLIMS-P reading system demonstrated higher statement extraction

performance, it is specifically designed to extract protein phosphorylation information.

Favoritism of RLIMS-P due to its high extraction performance and, consequently, a

large volume of phosphorylation statements should be revised for each disease of inter-

est individually. Phosphorylation is the most common post-translational protein modifi-

cation, and a key component of signal transduction [51]. However, statements about

phosphorylation in HCM overshadowed other reaction types in the INDRA DB. Al-

though we cannot pinpoint the exact contribution of phosphorylation to HCM mecha-

nisms, especially in terms of understudied (“dark”) kinases [52], our suggestion is that

phosphorylation statements should be dosed based on the model purpose. When

models are built to enable hypothesis generation, abundance of phosphorylation state-

ments is useful; when the purpose is to find key elements, they could produce an im-

balance in the analysis.

Query constraints in machine-curated models

In HCM query by MeSH, the average year of publication is 10 years apart from the

current research, which makes a difference in the overall representation of HCM, as

more recent HCM research has brought in a whole additional quantum of knowledge.

Moreover, query by MeSH returned a lot of animal studies, which are mostly aggregat-

ing noise in models for diseases like HCM, where animal models do not fully replicate

human HCM [53]. For those reasons, we suggest that, for machine-curated models, the

best approach to finding elements for HCM models is to query by keywords. Relying

on MeSH, both fully or partially, should be avoided. HCM research tagged with MeSH

is usually basic research, whereas HCM applied research is usually easier to find using

keywords.

Interactive HCM map

The interactive HCM Map is both human- and machine-readable and represents a plat-

form for sharing and gathering molecular mechanisms of HCM and a standalone basis for

in silico exploration. It also serves as a template for uploading and visualizing multiple

datasets. It is the only publicly available knowledge resource dedicated to HCM.

Related work

To the best of our knowledge, this is the first attempt to compare human and

machine-curated disease models and examine how the choice of different query con-

straints in machine approaches can affect disease modeling.

Hoyt et al. (2019) manually evaluated 2989 statements generated by INDRA using

REACH and Sparser readers containing studied genes from MEDLINE abstracts and

PubMed Central full-text articles, following which 30.7% of statements were marked as

correct, 48.6% required manual correction, and 20.7% could not be corrected. The cri-

terion for correctness was that “all” aspects of the statement, including the subject and

object entities, relationship type, phosphorylation, and other post-translational modifi-

cations, were extracted to the same extent as careful manual curation could. The
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authors identified errors in BEL statements extracted from INDRA. The most common

error was wrong name entity recognition. Other common errors were the improper as-

signment of the subject and object, semantic incorrectness due to the presence of a

negation word, and errors arising from evidence that did not actually include relations

between the subject and object entities [11].

Allen et al. (2015) showed that the DRUM system (Deep Reader for Understanding

Mechanisms, a version of the general-purpose TRIPS NLP system customized for ex-

traction of molecular mechanisms from biomedical text) has performance (precision

and recall) close to human experts in extracting the molecular mechanisms from text,

and it was the best performing system among those evaluated. The same authors also

found high precision among human biologists, but considerable non-overlap in the an-

swers they provided. That accounted for the approximately 0.50 recall for either of the

human teams they observed, using the pooled answers of the two teams as the gold

standard [54].

Cohen et al. (2015) carried out a test with two expert human biologists and reading

systems. Their task was to identify as many relationships as possible between six text

passages and a prior model. Four kinds of relationships between texts and prior models

were probed: the text might corroborate or contradict something in the model; it might

introduce a new mechanism or a new relationship between entities in the model. Before

the test began, biology experts on the evaluation team prepared a gold standard—a list

of assertions. Recall was defined as the fraction of relationships that should have been

found that were actually found, and precision as the fraction of the relationships

found that were in the gold standard. The two expert human biologists’ recall scores were

less than 0.5 (they failed to notice roughly half of the relationships between the texts and

the prior models). However, their precision was very high: 0.86–1.00. They noticed differ-

ent relationships, they disagreed with each other. They also noticed some relationships

that the evaluation team had not. For the same task, the best recall score for a reading sys-

tem was 0.4 with an associated precision score of 0.67. The least effective system achieved

0.03 recall at 0.33 precision. The authors assumed that human expertise probably includes

an ability to not notice assertions that are “obvious” or “unimportant” [55].

Allen et al. (2018) studied how different extensions and customizations of the TRIPS

parser affected performance [15]. Bose et al. (2020) used decisions from a statistical

word sense disambiguation system SupWSD to advise the logical semantic parser

TRIPS. Significant improvement across all metrics was found using this approach, with

roughly 14% improvement to raw accuracy, although the research was not conducted

on biomedical literature specifically [56].

While other authors have focused on reading systems’ performance as parsers (preci-

sion, recall, and F1 score—often defined differently), we focused on their potential to

build models that would be equal to the models built by humans: containing reliable

information (accuracy of extracted statements, based on human estimation) and pro-

viding complete information (extraction performance). We believe that the reliability

of the information is the principal aspect of any reading system for biomedical know-

ledge curation.

Interactive disease maps have so far been generated for Alzheimer’s disease [57], can-

cer [58], Parkinson’s disease [59], influenza A virus replication cycle [60], rheumatoid

arthritis [22], asthma [61, 62], inflammation [63], and others.
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Future directions

CellDesigner XML format should not be used for network analysis in Cytoscape. A higher

level of interoperability between CellDesigner XML (and related) and INDRA generated

formats and platforms would be useful because only in that case would direct comparison

or better complementation of human- and machine-curated models be possible.

In machine-curated models, query constraints strongly affect the final disease models,

so they should be chosen carefully and according to the purpose, with complete informa-

tion about the advantages and disadvantages that each approach brings. Although we have

shown that the PubMed database is a reliable source of information for human reading,

the REACH reading system is equally or more accurate than other reading systems, and

we suggest that a period of “last 10 years” is optimal for HCM research; the strategy that

unites all these components derived a suboptimal (noisy and containing blurred key path-

ways) HCM model. More research is required, about the advantages and disadvantages of

particular query constraints and their combinations for machine-curated models.

There is an urgent need for quality control criteria for disease models. Owing to the

many techniques available for generating disease models, the formalization of minimal

requirements for adequate quality of disease models or definition of methods for esti-

mation of the quality of disease models are necessary. Such an approach could also ac-

celerate and direct the development of more sophisticated techniques for building

useful and representative disease models.

The Interactive HCM Map represents the body of knowledge available today, a sum-

mary of all major molecular pathways involved in HCM. Since some molecular mecha-

nisms underlying HCM are still unknown, more interactions have yet to be identified.

The HCM map will be constantly updated and improved, involving the community of

HCM signaling experts.

Limitations

Although our goal was a comprehensive comparison of models produced by different ap-

proaches (as a whole, by the most central and important elements, by the reliability of in-

teractions and the level of noise they contain, as well as by cooperatively working

elements), there is no single correct way to compare models and their quality. Moreover,

since the molecular mechanisms underlying HCM are still only partially understood, we

cannot claim that some interactions are more important or less possible—we can only as-

sess the extent to which results are in line with the literature. Our analysis covered only

the first phase of biomedical knowledge curation (and not the subsequent manual, semi-

automatic, or automatic re-curation), so as to isolate only the effects of the selections

made in this phase. Since we studied only one disease, we cannot generalize our findings

to all diseases and models. In manual disease modeling, different persons cannot produce

completely consistent results. Consequently, our results show the features of a single man-

ual model made by a particular person rather than features of manual disease modeling it-

self. Currently there are no criteria for the diverse characteristics of different models.

General

The rapid growth and accumulation of biomedical knowledge demands its structuring

so that computers can assist in its interpretation [11] and comprehensive

Glavaški and Velicki BioData Mining           (2021) 14:45 Page 16 of 25



understanding. Disease models still need plenty of human input in the curation or re-

curation phases, although semi-automatic or automatic re-curation options are emer-

ging and can reduce time-consuming manual effort. Our results show how better per-

formance can be attained even without the development of highly complex

technologies. Selections made in the first phase of biomedical knowledge curation can

affect overall performance. Our results show the effect of different strategies (tech-

niques, query constraints, and reading systems) that should be considered in this phase.

This evaluation also identified approaches that could be combined in order to achieve a

specific goal of disease modeling. We anticipate that these results could be helpful for

developers of the reading systems and model assemblers and may improve

performance.

Manual curation represents the gold standard for information extraction in biomed-

ical research [12] and is most suitable for models that will be used as a base for math-

ematical models generation, because only high-quality elements will be incorporated

into the model. On the other side, manual curation is time- and effort-consuming. Au-

tomated curation is useful in situations where the more elements is the better, such for

new hypothesis generation, because it provides more substance.

INDRA’s BioPAX API for the Pathway Commons database query is useful in auto-

matic approach when paths between sets of genes are important and especially when

microRNAs should be included in the model. INDRA’s PubMed literature client is fa-

vorable when focus is on available biomedical literature. INDRA Database is preferable

when all available information is needed. All automated approaches generate a high

level of noise. Although we expected the best results when the two approaches were

combined: use of INDRA Database (expected to provide a high volume of information)

with latter human intervention (expected to rigorously remove the clutter), in our case

the model generated was too disconnected to be useful. In our case, the best automated

approach for finding molecular mechanisms from clinical research was to query by key-

words, while for finding elements from preclinical research query by MeSH was better.

The PE-measure tool [50] demonstrated useful noise reduction in networks.

Conclusions
There are many ways and resolutions for a disease to be modeled. Different approaches

for the curation of models for the same disease can produce models with diverse char-

acteristics and they give rise to utterly different conclusions in subsequent analysis. The

final purpose of the model should direct the choice of techniques and tools for the cur-

ation. Manual curation represents the gold standard for information extraction in bio-

medical research and is most suitable when only high-quality elements for models are

required. Automated curation provides more substance, but high level of noise is ex-

pected. Strategic combinations of query constraints, reading systems, and techniques

like PE-measure could improve the performance and quality of machine-curated

models. Different curation strategies can also reduce the level of human input.

Methods
Our research comprises four parts: construction of HCM models using different ap-

proaches, network analysis of the generated models, analysis of factors that affect the
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quality of machine-curated models, and construction of the Interactive HCM Map

(Fig. 7).

Construction of models

Manual HCM model

Construction of the Manual HCM model started with an extensive literature search in

PubMed, for the molecular mechanisms underlying HCM. Relevant key phrases like

“noncoding RNA hypertrophic cardiomyopathy,” “micro RNA hypertrophic cardiomy-

opathy,” “gene hypertrophic cardiomyopathy,” “signaling hypertrophic cardiomyop-

athy,” among others, and the filter “10 years” (for covering the period 2010–2020) were

used for selection of the literature. First, well-established “consensus” information was

retrieved from major reviews, and details from recent original publications were added

subsequently.

The information was represented in Systems Biology Markup Language (SBML) for-

mat [64], as a Systems Biology Graphical Notation (SBGN) diagram [65] using CellDe-

signer v 4.4.2. Annotations for all the components (RNAs, genes, and proteins) were added

using Minimal Information Requested In the Annotations of Models (MIRIAM) [66].

Tabular manual HCM model

All species and reactions from the original Manual HCM model XML file were manu-

ally transcribed to nodes and interactions of a network table in XLSX format.

Fig. 7 Phases of the research
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INDRA-assembled PubMed HCM model

The model was assembled using INDRA [13]: INDRA’s PubMed literature client was

used with the search term “hypertrophic cardiomyopathy” (major_topic = True) and fil-

tering out results older than January 1, 2010. The content was read using the REACH

reading system [14]. The statements extracted were grounded, mapped, and preassem-

bled (de-duplicated and arranged in a hierarchy) before they were assembled using

Cytoscape networks assembler for further analysis. Additional file 5 contains the code

used for the generation of the model.

INDRA-assembled PubMed+PathwayCommons HCM model

The model was assembled using INDRA [13]: one collection of statements was gener-

ated from the Pathway Commons database [4] via INDRA’s BioPAX API, with “neigh-

borhood” query, for a list of genes associated with HCM: GAA, ACTC1, ACTN2, ANKR

D1, CALR3, CASQ2, CAV3, CRYAB, CSRP3, DES, FHL1, FLNC, GLA, JPH2, LAMP2,

LDB3, MYBPC3, MYH6, MYH7, MYL2, MYL3, MYLK2, MYOZ2, MYPN, NEXN, PLN,

PRKAG2, TCAP, TNNC1, TNNI3, TNNT2, TPM1, TTR, and VCL.

Another collection of statements for this model was compiled using INDRA’s

PubMed literature client with the search term “hypertrophic cardiomyopathy” (major_

topic = True) and filtering out results older than January 1, 2010. The content was read

using the REACH reading system [14]. All the statements retrieved from both collec-

tions were gathered, and then grounded, mapped, and preassembled (de-duplicated and

arranged in a hierarchy) before they were assembled using Cytoscape networks assem-

bler for further analysis. Additional file 6 contains the code used for the generation of

the model.

Truncated INDRA DB model

Statements were found using INDRA Database with the MeSH query constraint “Car-

diomyopathy, Hypertrophic, Familial.” Only statements that were completely correctly

extracted from the text were incorporated into the Truncated INDRA DB model. The

criteria for correctness were that all aspects of the statement, including subject and ob-

ject, their labels, interaction type, and interaction direction, were extracted the same

way as careful manual curation would. The statements were manually transcribed to

nodes and interactions in a network table in XLSX format.

INDRA DB model

Statements were found using the INDRA Database with the MeSH query constraint

“Cardiomyopathy, Hypertrophic, Familial.” All statements were incorporated into the

INDRA DB model. The statements were manually transcribed to nodes and interac-

tions in a network table in XLSX format.

Network analysis of the generated models

Network analysis was conducted analogous to network analysis in our previous re-

search [67].

All models were imported to Cytoscape v. 3.8.2 [40] for further analysis and uploaded

to NDEx v. 2.5.0 [41–43].
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Topological analysis

Topological analysis of each network was performed using Network Analyzer v. 4.4.6

[68], a built-in Cytoscape tool. All networks were analyzed as directed graphs.

Definitions of the topological measures and other parameters were as following. “The

neighborhood of a given node is the set of its neighbors. The connectivity of a given

node is the size of its neighborhood. The average number of neighbors indicates the

average connectivity of a node in the network. A normalized version of this parameter

is the network density. The density is a value between 0 and 1. It shows how densely

the network is populated with edges. The length of a path is the number of edges form-

ing it. The eccentricity is the maximum non-infinite length of a shortest path between

a given node and another node in the network. The network diameter is the largest dis-

tance between two nodes. If a network is disconnected, its diameter is the maximum of

all diameters of its connected components. The diameter can also be described as the

maximum node eccentricity. The network radius is the minimum among the non-zero

eccentricites of the nodes in the network. The average shortest path length, also known

as the characteristic path length, gives the expected distance between two connected

nodes.” [69].

“In directed networks, the clustering coefficient Cn of a node n is defined as: Cn = en/

(kn (kn-1)), where kn is the number of neighbors of n and en is the number of connected

pairs between all neighbors of n. The clustering coefficient of a node is always a num-

ber between 0 and 1. The network clustering coefficient is the average of the clustering

coefficients for all nodes in the network.” [69].

“Two nodes are connected if there is a path of edges between them. Within a net-

work, all nodes that are pairwise connected form a connected component. The number

of connected components indicates the connectivity of a network – a lower number of

connected components suggests a stronger connectivity. The number of multi-edge

node pairs indicates how often neighboring nodes are linked by more than one edge.”

[69].

Since the diameter of a graph is better defined when compared to the total number

of nodes in the graph [39], we also determined the network diameter per element.

Nodes’ centrality scores

Betweenness, bottleneck, closeness, clustering coefficient, degree, DMNC, eccentricity,

EPC, MCC, MNC, radiality, and stress centrality measures were used. Centrality scores

for each node of each network were calculated and the top 10% elements for each of

the centrality measures of each network were visualized using the Cytoscape Cyto-

Hubba app v. 0.1 [70] and uploaded to NDEx. Venn diagrams for the top 10% elements

for each centrality measure of each network were drawn using the Venn diagram tool

[71].

The most important nodes

Estimation of the most import nodes in networks and their partition into shells based

on that rank was performed by wk-shell-decomposition using the Cytoscape Wk-shell-

decomposition app v. 1.1.0 [33]. Each network was represented as a packed concentric

ring sorted by k-shell and gradient of nodes’ color applied based on k-shell. Rank and
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k-shell were calculated for each node of each network. Venn diagrams for the most and

least important nodes of all networks were drawn using the Venn diagram tool [71].

Reliability of interactions

Models with a reduced level of noise were generated using the Cytoscape PE-measure

app v. 1.0 [50] and uploaded to NDEx. The best reliability threshold for each model

was estimated by a human domain expert, following the principle of finding the net-

work that covers HCM mechanisms the best with the least clutter. The term clutter in

this case covered: wrong elements, wrongly labeled elements, and all the elements that

should not be present in an ideal disease model. A human domain expert was inspect-

ing the networks with different thresholds applied and chose the level which produced

the network that best represent the disease (according to up-to-date scientific literature,

with the most of the known elements involved in the disease and the least of the

clutter).

Cooperatively working elements

The cooperatively working elements (functional modules) of each network were de-

tected by near-clique mining using the Cytoscape NCMine app v. 1.3.0 [34]. All models

were analyzed as directed networks.

Factors that affect the quality of machine-curated models

Query constraints in machine-curated models

PubMed searches by “Cardiomyopathy, Hypertrophic, Familial” MeSH Term with filter

“in the last 10 years,” as well as “Cardiomyopathy, Hypertrophic, Familial” MeSH Major

Topic with filter “in the last 10 years” were conducted manually and compared with

PubMed search for keywords “familial hypertrophic cardiomyopathy,” “hypertrophic

cardiomyopathy,” exact match keywords “familial hypertrophic cardiomyopathy,” and”

hypertrophic cardiomyopathy,” all with filter “10 years.”

A deeper analysis of all papers listed in the INDRA Database tagged with the MeSH

was carried out manually; the average year of publication, along with the percentage of

species studied, was calculated.

Reading systems’ performance

We compared the extraction performance of all reading systems used in the INDRA

Database (ISI/AMR, RLIMS-P, Eidos, TRIPS/DRUM, Sparser, REACH), by calculating

their contribution to each individual statement and the database query by MeSH for

HCM as a whole. We classified all statements extracted from the query into 28 reaction

types and calculated the corresponding contribution of each reading system.

We compared the accuracy of reading systems capable of translating the most im-

portant types of reactions (including subject, interaction, and object) for HCM: Sparser,

REACH, and TRIPS. The output of Sparser, REACH, and TRIPS reading systems, for

all text segments for which Sparser extracted a statement, was analyzed by the same

human curator. We have proposed an issue for each of the statements that were

assessed as incorrectly extracted and estimated the contribution of each issue to the in-

accuracies of the reading systems.
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We evaluated the adequacy of the Eidos reading system for studying a disease

through human estimation of the meaningfulness of extracted statements.

Construction of interactive HCM map

The Manual HCM model was transformed into an HCM knowledge resource and

made publicly available using the MINERVA (Molecular Interaction NEtwoRks

VisuAlization) platform v. 15.1.2 [35–37]. Disease-variant associations v. 1.0.0 [37], Ad-

verse drug reactions v. 1.0.0 [37], Map exploration v. 1.0.0 [37], Gene Set Enrichment

Analysis (GSEA) v. 0.9.1 [37], Centrality v. 0.9.0 [39], and Overlays v. 0.9.0 [39] plugins

were added.
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