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molecule and is implicated in diverse biological

processes. However, the nature of intracellular signal-
ing triggered by CD44 remains to be elucidated. Here, we
show that CD44 undergoes sequential proteolytic cleavage
in the ectodomain and intracellular domain, resulting in
the release of a CD44 intracellular domain (ICD) fragment.
Consequently, CD44ICD acts as a signal transduction mol-
ecule, where it translocates to the nucleus and activates tran-
scription mediated through the 12-O-tetradecanoylphorbol
13-acetate-responsive element, which is found in numerous
genes involved in diverse cellular processes. Expression of
an uncleavable CD44 mutant as well as metalloprotease

CD44 is a widely distributed cell surface adhesion

inhibitor treatment blocks CD44-mediated transcriptional
activation. In search of the underlying mechanism, we
have found that CD44ICD potentiates transactivation
mediated by the transcriptional coactivator CBP/p300.
Furthermore, we show that cells expressing CD44ICD
produce high levels of CD44 messenger RNA, suggesting
that the CD44 gene is one of the potential targets for
transcriptional activation by CD44ICD. These observations
establish a novel CD44 signaling pathway and shed new
light on the functional link between proteolytic processing of
an adhesion molecule at the cell surface and transcriptional
activation in the nucleus.

Introduction

There is accumulating evidence that adhesion molecules par-
ticipate not only in mediating cell adhesion but also in a wide
variety of processes that transduce signals into the cell
(Gumbiner, 1996; Aplin et al., 1999). CD44 is the major
adhesion molecule expressed in most human cell types and
implicated in a wide variety of physiological and pathological
processes, including lymphocyte homing and activation,
wound healing, cell migration, and the regulation of tumor
cell growth and metastasis (Aruffo et al., 1990; Culty et al.,
1990; Giinthert et al., 1991; Arch et al., 1992; Lesley and
Hyman, 1998). The broad spectrum of functions suggests
that CD44 can transduce multiple intracellular signals;
however, it remains unclear how CD44 acts as a signal trans-
duction molecule.
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We previously presented a proteolysis-based model for
the regulation of CD44 function (Fig. 1 A) (Okamoto et
al., 1999a,b; Kawano et al., 2000). Our preceding works
demonstrated that the ectodomain of CD44 expressed on
the surface of various cancer cells undergoes proteolytic
cleavage by membrane-associated metalloproteases under
physiological conditions, and this cleavage is responsible
for dynamic regulation of the interaction between CD44
and the extracellular matrix during cell migration (Oka-
moto et al., 1999a). Consistent with this notion, mem-
brane type 1 matrix metalloprotease (MT1-MMP) has
been shown to cleave CD44 ectodomain at the cell surface
and promote cell migration (Kajita et al., 2001). Further-
more, we reported that the CD44 ectodomain cleavage is
itself regulated by multiple signaling pathways, for exam-
ple, the activation of PKC, the influx of extracellular Ca**,
members of the Rho family of small GTPases, and the Ras
oncoprotein (Fig. 1 A) (Okamoto et al., 1999b; Kawano et
al., 2000). Thus, accumulating evidence indicates that
CD44 proteolytic cleavage is emerging as a key regulatory
event for CD44 functions besides the initially character-
ized adhesion-dependent functioning.
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In this report, we demonstrate for the first time that
CD44 ectodomain cleavage is followed by CD44 intracellu-
lar cleavage. These sequential proteolytic events result in the
release of the CD44 intracellular domain (ICD)* fragment,
which translocates to the nucleus and promotes tran-
scription mediated through the 12-O-tetradecanoylphorbol
13-acetate (TPA)-responsive element (TRE). This work
demonstrates a novel CD44 signaling pathway linking pro-
teolytic processing at the cell surface to gene expression in
the nucleus.

Results and discussion

CD44 undergoes sequential proteolytic cleavage in the
ectodomain and intracellular domain

We previously demonstrated that cleavage of the ecto-
domain of CD44 generates membrane-tethered fragments
that are detectable by immunoblot analysis with antibodies
raised to the COOH-terminal region of the protein (anti-
CD44cyto antibody [Ab]) (Fig. 1 A) (Okamoto et al.,
1999a). Although these cleavage products of CD44 appear
to undergo further proteolysis through an intracellular pro-
cessing pathway (Okamoto et al., 1999b), little is known
about its nature or biological significance. To examine the
possible intracellular processing of these CD44 fragments,
we first incubated human glioma U251MG cells with TPA,
a procedure that induces cleavage of the CD44 ectodomain
(Okamoto et al., 1999b), and then incubated the cells for an
additional 3 h in fresh medium. Immunoblot analysis of cell
lysates with anti-CD44cyto Ab revealed the CD44 ecto-

domain cleavage products as a broad band that migrated

*Abbreviations used in this paper: Ab, antibody; ES, electrospray; ICD,
intracellular domain; HA, hemaggulutinin; luc, luciferase; MS, mass
spectrometry; Myr, myristoylated; RT, reverse transcript; TPA, 12- O-tet-
radecanoylphorbol 13-acetate; TRE, TPA-responsive element.

at ~25 kD (Fig. 1 B, lane 2). The ectodomain cleavage
products were not detected in TPA-treated cells that had
been preincubated with the specific metalloprotease inhibi-
tor BB2516 (Fig. 1 B, lane 3), consistent with our previous
demonstration that the ectodomain cleavage is mediated by
metalloproteases (Okamoto et al., 1999a,b). Notably, an
anti-CD44cyto Ab-specific immunoreactive fragment with
a mobility greater than the CD44 ectodomain cleavage
products was also apparent in the TPA-treated U251MG
cells (Fig. 1 B, lane 2, arrowhead). This fragment was puri-
fied by antibody affinity chromatography and subjected to
matrix-assisted laser-desorption/ionization mass spectrome-
try (MALDI-MS) and electrospray (ES)-MS analysis. The
mass spectra obtained from MALDI-MS were used for pep-
tide mass database searches which identified CD44 with
three peptides matching, covering 80% of CD44 intracellu-
lar domain (Fig. 1 C). ES-MS combined with maximum en-
tropy data analysis showed a major mass of 3923.95, which
matched the predicted molecular mass of 3923.10 for a pep-
tide composed of amino acid residues 288-324 (Fig. 1 C).
These results indicated that the small fragment, designated
CD44ICD, is indeed derived from CD44, and the NH, ter-
minus of CD44ICD begins with amino acid A**, within or
very close to the intracellular side of the transmembrane do-
main (Fig. 1 C) (Lesley and Hyman, 1998).

To further examine the generation of CD44ICD, we
treated U251MG cells with TPA and then for various peri-
ods with fresh medium in the absence or presence of car-
bobenzoxy-L-leucyl-L-leucyl-L-leucinal (MG132), an intra-
cellular protease inhibitor which has been shown previously
to block y-secretase—mediated intracellular proteolytic cleav-
ages of Notch and P-amyloid precursor protein (De
Strooper et al., 1999). Cells treated with TPA and then im-
mediately lysed revealed a significant amount of CD44
ectodomain cleavage products (Fig. 2 A, lanes 1 and 5).
Cells incubated for another 3 h after the removal of TPA re-
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Figure 2. Calcium influx induces
CD44 sequential cleavages as well as
TPA treatment. (A) Western blot of
U251MG cells incubated first for 40 min
with TPA (100 ng/ml) and then in the
absence (left) or presence (right) of
MG132 (15 M) for the indicated
periods. Blots were probed with
anti-CD44cyto Ab. (B) U25TMG cells
were left untreated (lane 1) or treated
with ionomycin (10 pM) for 30 min in
the presence (lanes 2 and 3) or absence
(lanes 4-10) of BB2516 (100 wM) or
EGTA (5 mM). After ionomycin treat-
ment, the cells were washed and then
incubated in the absence (lanes 5-7) or
presence (lanes 8-10) of MG132 (15
M) for the indicated periods. Blots
were probed with anti-CD44cyto Ab.
(C) U251MG cells were left untreated
(lane 1) or mechanically scraped in the
presence (lanes 2 and 3) or absence
(lanes 4-10) of BB2516 (100 uM) or
EGTA (5 mM). The cells were then
incubated in the absence (lanes 5-7) or
presence (lanes 8-10) of MG132

(15 wM) for the indicated periods. Blots
were probed with anti-CD44cyto Ab.

Blot: Anti-CD44cyto Ab

Blot: Anti-CD44cyto Ab

sulted in a decrease in the amount of the CD44 ectodomain
cleavage fragments and the appearance of CD44ICD (Fig. 2
A, lane 2). The abundance of CD44ICD decreased thereaf-
ter (Fig. 2 A, lanes 2-4), likely as a result of further degrada-
tion. In contrast, the presence of MG132 prevented both
the decrease in abundance of the CD44 ectodomain cleav-
age products and the concomitant increase in the amount of
CD44ICD (Fig. 2 A, lanes 6-8). These data indicate that
CD44ICD is generated as a result of proteolytic cleavage
from the membrane-tethered products of CD44 ectodomain
cleavage.

Next, we investigated the other physiological conditions
under which CD44ICD is generated. We have shown previ-
ously that a transient increase in intracellular calcium con-
centration, which can be induced by various physiological

events, promotes CD44 ectodomain cleavage (Okamoto et
al., 1999b). Accordingly, we examined whether calcium in-
flux subsequently induces the production of CD44ICD.
Ionomycin treatment, which induces the calcium influx, of
U251MG cells led to the release of CD44 ectodomain cleav-
age products, whereas this was markedly inhibited in the
presence of the metalloprotease inhibitor BB2516 or the cal-
cium chelator EGTA (Fig. 2 B, lanes 1-4). After the induc-
ton of CD44 ectodomain cleavage, the generation of
CD44ICD was found (Fig. 2 B, lanes 4-7), but not in the
presence of MG132 (Fig. 2 B, lanes 8-10), which confirms
that the generation of CD44ICD is dependent on the intra-
cellular proteolytic machinery. Furthermore, mechanical
scraping of U251MG cells, which mimic cell wounding in
vivo and induces the transient influx of calcium (McNeil et
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Figure 3.  Nuclear translocation of CD44ICD (A) COS-7 cells were
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Ab (cytosolic marker), and anti-Histone H1 (nuclear marker).
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al., 1989; Ito et al., 1999; Tran et al., 1999), promoted the
sequential CD44 cleavages and production of CD44ICD in
a similar manner (Fig. 2 C). These findings indicate that the
generation of CD44ICD is part of the diverse cellular signal-
ing events triggered by calcium influx. Thus, our results
show that CD44 undergoes two successive proteolytic cleav-
ages in the ectodomain and in the intracellular domain in
these physiological processes.

CD44ICD released by sequential proteolytic cleavages
translocates into the nucleus

We asked if the intracellular cleavage of CD44 affected its
intracellular localization. We transiently transfected COS-7
cells with a plasmid encoding CD44ICD tagged with
hemagglutinin (HA) at its NH, terminus. Immunoflu-
orescence staining of the transfected cells revealed that

CD44ICD was localized to the nucleus (Fig. 3 A, left). Iden-
tical results were obtained when CD44ICD was epitope-
tagged with Myc at its COOH terminus or fused to green
fluorescent protein at its NH, terminus (unpublished data).
Next, we examined whether endogenous CD44ICD gener-
ated by the sequential cleavage of CD44 also translocates to
the nucleus. U251MG cells treated with TPA were lysed
and separated into membrane/cytosol and nuclear fractions.
Immunoblot analysis with anti-CD44cyto Ab indicated that
the CD44 ectodomain cleavage products are present in the
membrane/cytosol fraction (Fig. 3 B), as we have shown pre-
viously (Okamoto et al., 1999a). In contrast, the CD441CD
proteolytic fragment is found in the nuclear fraction (Fig. 3
B). Both the ectodomain and intracellular cleavage products
are not found in cells pretreated with BB2516 (Fig. 3 B).
Identical results were obtained from calcium influx—induced
CD44 sequential cleavages (Fig. 3 B). Thus, the two sequen-
tial proteolytic cleavage of CD44 result in the release of
CD44ICD from the plasma membrane and its translocation
to the nucleus.

CD44ICD can activate transcription through the
TPA-responsive element

The proteolytic release and nuclear translocation of
CD44ICD are reminiscent of those recently described for
the signaling proteins Notch and SREBPs (sterol regulatory
element-binding proteins) (Sakai et al., 1996; Schroeter et
al., 1998; Struhl and Adachi, 1998; Brown et al., 2000).
These proteins can be cleaved to liberate cytosolic fragments
that enter the nucleus to control gene transcription. We hy-
pothesized that CD44ICD might be able to induce gene
transcription. Using a luciferase reporter, we tested the effect
of CD44ICD on transcriptional responses from several types
of enhancer elements that are the convergent points for
many intracellular signal transduction pathways. Remark-
ably, the reporter under the control of the TRE was strongly
transcribed in a dose-dependent manner when cotransfected
with CD44ICD (Fig. 4 A). As a control, the mutant TRE
reporters showed a reduced response to CD44ICD (Fig. 4,
A and B). To determine whether CD44ICD translocation to
the nucleus is necessary for the transactivation, we added the
myristoylation sequence (MGSSKSKPK) to the NH, termi-
nus of CD44ICD (myristoylated [Myr]-CD44ICD). Im-
munofluorescence analysis showed that Myr-CD44ICD fails
to translocate to the nucleus (Fig. 3 A, right). Cotransfection
of TRE-containing reporter with a plasmid expressing Myr-
CD44ICD resulted in no activation of the luciferase reporter
(Fig. 4 A). Together, these results strongly suggest that
CD44ICD acts as a signaling molecule via translocation to
the nucleus and the activation of transcription.

Sequential CD44 cleavage is required for

CD44-dependent transcriptional activity

To substantiate these ideas, we investigated the necessity of
sequential proteolytic processing for CD44-dependent tran-
scriptional activity. A cDNA encoding the full-length CD44
was transiently transfected into COS-7 cells, and immuno-
blots of the lysate with anti-CD44cyto Ab revealed, in addi-
tion to the overexpressed full-length CD44 bands, bands of
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y_,ﬁp Figure 4. Transcriptional activation by
o CD44. (A) COS-7 cells were transfected
&’f with plasmids as indicated, and the
transcriptional activity from the cotrans-
fected reporter plasmids was measured.
The activity of the TRE reporter plasmids

cells with RasV12 as a positive control.
CD44ICD revealed ~50% of the
TRE-mediated transcriptional activity
induced by overexpressed RasV12
protein under the experimental
condition (insets). (B) Nucleotides
mutated in Mut-TRE reporter plasmids
are shown in italics and underlined.

(C) COS-7 cells were transfected with a
cDNA encoding full-length CD44 (lanes
2 and 3), CD44A287-290 constructs
(lane 4) or with empty vector (lane 1).
36 h after transfection, the cells were
incubated for an additional 12 h in the
absence (lanes 1, 2, and 4) or presence
of 100 wM BB2516 (lane 3). Blots were
probed with anti-CD44cyto Ab. Asterisk
indicates endogenous full-length CD44.
(D) COS-7 cells were cotransfected with
the TRE reporter plasmid together with

4 CD44ICD
1234
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an expression vector encoding full-length CD44, oncogenic Ras, or the corresponding empty vector. After 32 h, the cells were incubated for
an additional 16 h in serum-free medium containing BB2516 (100 wM) or DMSO as a vehicle control before measurement of luciferase
activity. Luciferase activity was expressed as fold induction relative to the value for cells transfected with the empty vector. (E) COS-7 cells
were cotransfected with TRE reporter plasmid together with full-length CD44, CD44A287-290, or the corresponding empty vector. Data

are expressed as indicated in Fig. 3 D.

~25 kD and smaller fragments corresponding to the prod-
ucts of CD44 ectodomain and intracellular cleavage, respec-
tively (Fig. 4 C). The production of both CD44 cleavage
products was markedly reduced in cells treated with BB2516
(Fig. 4 C). These results indicate that overexpressed full-
length CD44 undergoes two sequential proteolytic cleavages
in a manner similar to that observed for endogenous CD44.
Expression of full-length CD44 in COS-7 cells significantly
increased TRE-dependent transcriptional activity (Fig. 4 D).
If sequential proteolytic cleavage of CD44 is necessary for
the CD44-dependent transcriptional activity, then manipu-
lations that affect the cleavage of CD44 should also affect
the transcriptional activation. We first examined the effects
of BB2516 on transcriptional activity in cells transfected
with full-length CD44. Treatment with BB2516 blocked
any transcriptional activation observed with full-length
CD44 (Fig. 4 D). As a control for other potential effects of
BB2516, we found that the luciferase activity of cells trans-
fected with oncogenic Ha-Ras did not change on treatment
with this inhibitor (Fig. 4 D).

Based on the intracellular cleavage site (I** 1 A®8) de-
termined by mass spectrometric analysis (Fig. 1 C), we
then eliminated four amino acids (I**-N3%) and transfected
this mutant construct (CD44A287-290) into cells. The
CD44ICD proteolytic fragments were barely detectable in
cells transfected with CD44A287-290 (Fig. 4 C), confirm-
ing that this is the essential region for CD44 intracellular
cleavage. We then found that CD44A287-290 failed to
show significant transcriptional enhancement, whereas cells
transfected with full-length CD44 exhibited a significant in-

crease in transcriptional activity (Fig. 4 E). We conclude

from these analyses that transcriptional activation by CD44
signaling requires the sequential proteolytic processing of

this protein and the consequent release of CD44ICD.

CD44ICD potentiates transactivation mediated by
transcriptional coactivator CBP/p300

We next set out to investigate how CD44ICD proteolytic
fragments are involved in transcriptional activation in the
nucleus. We first tested in GAL4 transactivation assays
whether CD44ICD itself acts as a transcription factor.
CD44ICD was fused to the GAL4 DNA binding domain
(GAL4-CD44ICD), and this expression plasmid was trans-
fected into COS-7 cells along with a reporter plasmid con-
taining five tandem GAL4 binding sites. GAL4-CD44I1CD
had no activity on the GAL4-dependent promoter (Fig. 5
A), suggesting that CD44ICD alone is not sufficient to acti-
vate the transcriptional response. We considered the possi-
bility that CD44ICD may modulate transcription by affect-
ing other transcription factors or transcriptional coactivators
that are involved in TRE-mediated transcription. To explore
this possibility, we assessed the effect of CD44ICD on the
activity of transcription factors c-Fos or ¢-Jun, and the tran-
scriptional coactivators, CBP (CREB-binding protein) and
p300 (Goodman and Smolik, 2000). Each of these was
fused to the GAL4 DNA binding domain. All of these fu-
sion constructs directed transcriptional activation of the
GAL4-dependent promoter (Fig. 5 B). However, the
cotransfection of CD44ICD did not affect the transcrip-
tional activity of c-Fos and c-Jun (Fig. 5 B). In contrast, co-
expression of CD44ICD did synergistically enhance tran-
scription by GAL4-CBP and GAL4-p300 (Fig. 5 B). The
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Figure 5.

Functional cooperation between CD44ICD and CBP/p300, and upregulation of CD44 transcript induced by CD44ICD. (A-C)

pFR-Luc, which has five GAL4 DNA binding sites, was used as a reporter for transcription mediated by GAL4 fusion proteins. Values are
relative to control cells transfected with the same amount of expression vector encoding only the GAL4 DNA-binding domain (GAL4).
(A) COS-7 cells were transfected with plasmid encoding GAL4, GAL4-CD44ICD, or GAL4-Elk-1, and the transcriptional activity from the
cotransfected pFR-Luc was measured. (B) COS-7 cells were cotransfected with constructs expressing indicated GAL4 fusion proteins
combined with CD44ICD or the corresponding empty vector. (C) COS-7 cells were transfected with CD44ICD, Myr-CD44ICD, or the

corresponding empty vector and constructs expressing GAL4-p300 or GAL4. (D) COS-7 cells were transfected with TRE reporter plasmid and
CD44ICD or the corresponding empty vector. Additionally, some transfections included an expression vector encoding E1A, ETAA2-36 or
the corresponding empty vector, as indicated. (E) Hela cells were transfected with a plasmid encoding CD44ICD or the corresponding empty
vector together with a puromycin resistance gene plasmid at a molar ratio of 20:1. The cells were fed with fresh complete medium containing
puromycin (3.0 pg/ml) 24 h after transfection. 36 h after the addition of puromycin, surviving cells were serum starved for 24 h in DME/F-12
containing 0.5% FCS. Total RNA was isolated and subjected to RT-PCR analysis of the expression of CD44 mRNA. The primers used were
derived from sequences in the extracellular domain of human CD44 gene (5'-ATCGATTTGAATATAACCTGCCGC-3' and 5'-ACAATCTTCT-
TCAGGTGGAGCTGA-3"). The products from the RT-PCR were normalized by comparison to RT-PCR of glyceraldehyde-3-phosphate
dehydrogenase mRNA. The numbers under each lane were expressed as a fold relative to control cells. (F) U25TMG cells were mechanically
scraped and incubated for various times as indicated in the absence or presence of MG132 (15 wM). At the indicated times, the RT-PCR
analyses of the expression of CD44 mRNA were conducted as described in Fig. 4 E.

strong synergistic activation was not observed in cells that
coexpressed the membrane-bound form of CD44ICD, Myr-
CD44ICD (Fig. 5 C). These results suggest that CD44ICD
potentiates transcriptional activation through the functional
cooperation with CBP/p300. To determine whether CBP/
p300 is necessary for CD44-induced transcription, we used
the adenoviral E1A protein, which inhibits CBP/p300-
dependent transactivation by interacting with CBP/p300
(Arany et al., 1995; Lundblad et al., 1995). E1A clearly in-
hibited TRE-activated transcription induced by CD441CD
(Fig. 5 D). In contrast, EIAA2-36, which has a short NH,-
terminal deletion and is defective for CBP/p300 binding
(Stein et al., 1990), was impaired in the repression of trans-
activation by CD44ICD (Fig. 5 D). Together, these data in-
dicate that CBP/p300 plays a role in mediating the transacti-
vation by CD44ICD and support a requirement at least in
part for a functional collaboration between CD44ICD and
CBP/p300. Since no direct interaction between CBP/p300

and CD44ICD has been found (unpublished data), we pro-
pose that CD44ICD might interact with unidentified fac-
tors that impinge upon the CBP/p300-mediated transcrip-
tional machinery. In light of several possible ways by which
CBP/p300 activates transcription (Giordano and Avantag-
giati, 1999), further analysis will be necessary to elucidate
the precise mechanism whereby CD44ICD modulates CBP/

p300 in transcriptional regulation.

The CD44 gene is one of the potential targets for
transcriptional activation by CD441CD

To identify endogenous target genes of CD44ICD-mediated
transcription, a plasmid encoding CD44ICD or the corre-
sponding empty vector was transiently transfected into Hela
cells together with a plasmid encoding a puromycin-resistant
genes as a selection marker. Following puromycin selection,
RNA from these cells was examined for increased expression
of candidate target genes by reverse transcript (RT)-PCR.



Through a series of RT-PCR analyses, we found that cells ex-
pressing CD44ICD express high levels of CD44 mRNA (Fig.
5 E). We have also observed that the generation of endoge-
nous CD44ICD in mechanically scraped cells is accompanied
by an increase in the endogenous CD44 transcript (Fig. 5 F).
However, this time-dependent induction of CD44 transcript
was not observed in the presence of MG132, which blocks in-
tracellular cleavage (Fig. 5 F). These data indicate an impor-
tant link between the intracellular cleavage of CD44 and the
up-regulation of expression of the CD44 transcript. Given
that the CD44 gene contains TRE elements within the proxi-
mal promoter region (Hofmann et al., 1993), these observa-
tions suggest that CD44ICD induces CD44 transcription,
thus promoting the rapid turnover of CD44 that is required
for efficient cell migration (Lauffenburger and Horwitz, 1996;
Okamoto et al., 1999a).

Conclusion

Cell-surface proteins can initiate a variety of intracellular
processes. Most of these signal transduction events have
been linked to interactions with cytoplasmic proteins which
in turn regulate transcription of key genes. The proteolytic
cleavage of the ectodomain of a variety of cell surface pro-
teins has recently emerged as a key mechanism for their
functional regulation (Hooper et al., 1997; Werb, 1997).
Although such proteolysis should produce cleavage prod-
ucts, the subsequent fate or biological effects of these prod-
ucts, especially for adhesion molecules, is poorly understood.
Here, we have shown that a fragment of CD44 can directly
interact with the transcriptional machinery, resulting in the
upregulation of genes containing the TPA-responsive ele-
ment, including CD44 itself. Our data provide new insights
into the functional link between proteolytic processing of
adhesion molecules and signal transduction, and suggest
that such fragments may directly participate in transcrip-
tional regulation.

Materials and methods

Immunoblot analysis

Cells were directly lysed in 2X Laemmli buffer or cell lysis buffer contain-
ing 1% Triton X-100, 0.1% SDS, and 0.5% deoxycholic acid. Equal
amounts of protein were separated by SDS-PAGE, transferred onto nitro-
cellulose membrane and incubated with antibodies. All immunoblots were
visualized by enhanced chemiluminescence detection (Amersham Phar-
macia Biotech).

Protein purification and mass spectrometry analysis

Purified anti-CD44cyto Ab (1 mg) was coupled to 0.4 ml of ImmunoPure
Immobilized ProteinG (Pierce Chemical co.) according to the manufac-
turer’s instruction and then was used as an anti-CD44cyto Ab affinity col-
umn. Normal rabbit IgG (1 mg) was separately immobilized, and this col-
umn was used for preclearing nonspecific binding proteins. U251MG cells
were plated (6 X 10° cells/dish) in 150-mm culture dishes and grown for
16 h. The cells were incubated for 40 min with TPA (100 ng/ml) and then
washed, incubated for an additional 3 h with fresh medium. The cells
(20 X 150-mm culture dishes) were lysed with PBS/TDS buffer (10 mM
Na,HPO,4, 150 mM NaCl, 1% Triton X-100, 0.5% sodium deoxycholate,
0.1% SDS, 0.2% NaHj;, 0.004% NaF, 1T mM NaVO,, 25 mM B-glycero-
phosphate, 100 pg/ml PMSF, and 1 wg/ml each aprotinin and leupeptin)
and centrifuged at 15,000 g to remove insoluble material. The total cell ly-
sates (60 mg) were incubated with Concanavalin A immobilized on 4%
cross-linked beaded agarose (Sigma-Aldrich) for 90 min at 4°C with con-
stant rotation to remove the glycosylated full-length CD44. The superna-
tant was then passed over a normal rabbit IgG column and this precleared
lysate was then applied to an anti-CD44cyto Ab affinity column and re-

Proteolytic release of CD44 intracellular domain | Okamoto etal. 761

passed two additional times. The column was washed with 2 ml of PBS/
TDS and then with 1 ml of 10 mM Tris (pH 7.5). The CD44ICD proteolytic
fragment was eluted stepwise with 5 passes of 0.5 ml of T00mM trieth-
ylamine buffer (pH 11.5). The fractions containing the highest concentra-
tions of CD44ICD were combined, dialyzed against 0.01X PBS, followed
by concentration with a centrifugal concentration device. The resultant
sample was resolved on 18% SDS-PAGE. The gel was stained with Gel
Code Blue stain (Pierce Chemical Co.) following the manufacturer’s in-
struction. The CD44ICD band was excised and subjected to in-gel diges-
tion with Lys-C followed by MALDI-MS and ES-MS analysis. MALDI-MS
was performed on a research grade, Micromass Tofspec SE instrument
equipped with delayed extraction and a reflectron. ES-MS was performed
on a Micromass Q-Tof mass spectrometer. The raw ES-MS spectra were
processed using the maximum entropy based approach using MAXENT3
program.

Expression plasmids and transfection

Detailed information on the plasmid constructions will be provided upon
request. Expression plasmids encoding GAL4-p300 or E1A were gifts from
A. Giordano (Jefferson Medical College, Philadelphia, PA). GAL4-CBP was
constructed by cloning the BamH1 fragment from CMXCBP kindly pro-
vided from R.M. Evans (The Salk Institute for Biological Studies, La Jolla,
CA) into pFA-CMV. Transfections were performed using the FUGENE6
transfection reagent (Boehringer).

Immunofluorescence analysis

Cells were fixed with 4% paraformaldehyde for 10 min, exposed to 0.2%
(volivol) Triton X-100 in phosphate-buffered saline (PBS) for 5 min,
washed with PBS, and then incubated for 60 min at room temperature with
the 12CA5 mADb directed against HA. After washing three times with PBS,
the cells were incubated for 60 min at room temperature with FITC-conju-
gated secondary antibodies (Biosource International). The cells were again
washed with PBS, mounted in 80% glycerol, and examined with a confo-
cal microscope (Fluoview; Olympus).

Cellular subfractionation

Cells were washed and scraped in ice-cold PBS and centrifuged at 1,800 g
for 10 min. The pellets were suspended in buffer A (20 mM Hepes-KOH
[pH 7.4], T mM EDTA, 1 mM EGTA, 1.5 mM MgCl,, T mM DTT, and pro-
tease inhibitor cocktail) with 0.2% NP-40, disrupted by Dounce homoge-
nization with microscopic monitoring of cell lysis throughout homogeni-
zation, and centrifuged at 1,000 g for 5 min; the supernatant was used as
soluble fraction. The pellet was washed with and resuspended in buffer A,
mixed with 0.34 M sucrose made in buffer A followed by centrifugation at
1,500 g for 5 min, and the pellet was used as the nuclear fraction.

Reporter gene assays

COS-7 cells maintained in culture for <2 wk were seeded into six-well
plates (2.5 X 10° cells per well) and grown for 16 h before transfection.
Cells were cotransfected with luciferase reporter plasmids and other ex-
pression plasmids, as specified in the figure legends. The total amount of
DNA transfected was maintained constant by the addition of control DNA.
The cells were incubated for 48 h and during the last 16 h they were de-
prived of serum. Luciferase activity was analyzed in cell lysates (Promega)
and normalized to the protein concentration.
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