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It is a challenge in evoked potential (EP) analysis to incorporate prior physiological knowledge for estimation. In this paper, we
address the problem of single-channel trial-to-trial EP characteristics estimation. Prior information about phase-locked properties
of the EPs is assesed by means of estimated signal subspace and eigenvalue decomposition. Then for those situations that dynamic
fluctuations from stimulus-to-stimulus could be expected, prior information can be exploited by means of state-space modeling
and recursive Bayesian mean square estimation methods (Kalman filtering and smoothing). We demonstrate that a few dominant
eigenvectors of the data correlation matrix are able to model trend-like changes of some component of the EPs, and that Kalman
smoother algorithm is to be preferred in terms of better tracking capabilities and mean square error reduction. We also demonstrate
the effect of strong artifacts, particularly eye blinks, on the quality of the signal subspace and EP estimates by means of independent
component analysis applied as a prepossessing step on the multichannel measurements.
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1. INTRODUCTION

Evoked potentials (EPs) and ongoing brain activity os-
cillations, obtained by scalp electroencephalogram (EEG)
recordings, have been linked with various cognitive pro-
cesses and provide means for studying cerebral brain func-
tion [1]. An EP is usually considered to be a wave or com-
plex elicited by and time-locked to a physiological or non-
physiological stimulation or event. EPs are buried into back-
ground brain activity, and nonneural activity like muscle
noise. Since many parallel mental processes may occur si-
multaneously in the brain, it is difficult to observe and de-
termine an evoked potential on a single-trial base. Therefore,
the simplest way to investigate EPs is to use ensemble aver-
ages of time-locked EEG epochs obtained by repeated stimu-
lation. It is well known that this signal enhancement implies
a loss of information related to trial-to-trial variability, and
nonstationary features of event-related phenomena.

The generation mechanism of evoked responses is not
precisely known in many situations. EPs are assumed to
be generated either separately of ongoing brain activity, or
through stimulus-induced reorganization of ongoing activ-
ity. For example, it might be possible that during the per-

formance of an auditory oddball discrimination task, the
brain activity is being restructured while attention is focused
on the target stimulus [2]. Phase synchronization of ongo-
ing brain activity is one possible mechanism for the gener-
ation of event-related responses. That is, following the on-
set of a sensory stimulus, the phase distribution of ongo-
ing activity changes from uniform to one which is centered
around a specific phase [3]. Moreover, several studies have
concluded that averaged EPs are not separate from ongoing
cortical processes, but rather, are generated by phase syn-
chronization and partial phase resetting of ongoing activity
[4, 5]. However, phase coherence over trials observed with
common signal decomposition methods (e.g., wavelets) can
result both from a phase-coherent state of ongoing rhythms
and from the presence of a phase-coherent event related po-
tential, which is additive to ongoing EEG [6]. Furthermore,
stochastic changes in amplitude and latency of different com-
ponents of the EPs are able to explain significant part of in-
tertrial variability of the measurements [6–9].

Several methods have been proposed for EP estimation
and denoising; see, for example, [10–13]. In general, most of
the methods for single-trial EP analysis aim to decompose
the measurements into relevant components or to explain
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the data through some parameters. The parametrization
gives the necessary means to investigate, for example, the
changes that the stimulus causes to the ongoing EEG signal,
or that the repetition of the test causes to the responses. Most
of the methods are based on an explicit model or on some
specific assumptions for the EPs. Every decomposition then
involves at least two main considerations. On the one hand, if
the resulting estimates follow too closely the measurements,
it is possible that some features of the data are still going to be
hidden by phenomena unrelated to the stimulation. On the
other hand, if the estimates do not follow the measurements,
some features may have been neglected. Usually a balance be-
tween these considerations is made and care is given to the
correct interpretation of a parametrization that is able to re-
veal specific features of the experiment.

The performance and applicability of every single-trial
estimation method depends on the prior information used
and the statistical properties of the EP signals. Here, we fo-
cus on the case that some parameters of the EPs change dy-
namically from stimulus to stimulus. This situation could
be a trend-like change of the amplitude or latency of some
phase-locked component of the EPs. Although, for example,
the above-mentioned methods [10–13] could be used to es-
timate such changes, they do not take into account in the es-
timation procedure this trend-like variability.

The most obvious way to handle time variations between
single-trial measurements is subaveraging of the measure-
ments in groups. Subaveraging could give optimal estimators
if the EPs are assumed to be invariant within the subaveraged
groups. A better approach is to use moving window or expo-
nentially weighted average filters; see, for example, [14, 15].
Other adaptive methods have also been proposed for EP es-
timation, especially for brain stem potential tracking, for ex-
ample, [16]. The statistical properties of some average filters
and different recursive estimation methods for EP estimation
have been discussed through Kalman filtering in [17]. Some
smoothing methods have also been proposed for modeling
trial-to-trial variability in EPs (e.g., [18]).

An elegant way to describe trial-to-trial variations in EPs
can be given through state-space models. State-space mod-
eling for single-trial dynamical estimation considers the EP
as a vector-valued random process with stochastic fluctua-
tions from stimulus to stimulus [17]. Then, past and future
realizations contain information of relevance to be used in
the estimation procedure. Recursive estimates for the states,
that are optimal in the mean square sense, are given by
Kalman filter and smoother algorithms. Of importance is
also the parametrization of the problem and the selection
of an observation model for the measurements. For exam-
ple, in [16, 17] generic observation models were used based
on shifted Gaussian-shaped smooth functions. While other
generic observation models could also be considered, when
all the measurements are available, data-based observation
models can be used.

In this paper, we extend the method presented in [17]
to the use of Kalman smoother algorithm. We demonstrate
that for batch processing the use of the smoother algorithm
is preferable. Fixed-interval smoothing improves the track-
ing performance of EP characteristics and reduces greater the

noise. In parallel, we propose a novel method for state-space
modeling of EPs. The method is based on the eigenvalue
decomposition of the ensemble data correlation matrix. A
few dominant eigenvectors form a signal subspace that can
be used for single-trial estimation. Subspace-based methods
have already been proposed for EP estimation, for example,
in [12, 19]. However, these approaches do not take into ac-
count in the estimation procedure the situation that some
characteristics of the EPs change dynamically from stimulus
to stimulus. In this paper, we demonstrate that such a signal
subspace can be used to model dynamic changes present in
EP measurements.

The approach is demonstrated with simulated and real
measurements obtained by an auditory EP experiment. Fi-
nally, we investigate the effect of strong artifacts on the qual-
ity of the estimates by means of independent component
analysis (ICA), which is applied as a prepossessing step on
the multichannel measurements.

2. METHODS

The sampled potential (from channel l) relative to the succes-
sive stimulus or trial t can be denoted with a column vector
of length M:

zt =

⎛
⎜⎜⎜⎜⎝

zt(1)
zt(2)

...
zt(M)

⎞
⎟⎟⎟⎟⎠

, t = 1, . . . ,T , (1)

where T is the total number of trials.

2.1. Linear estimation and additive noise model

A widely used model for EP estimation is the additive noise
model. The observations are then assumed to be of the form

zt = st + υt. (2)

The vector st corresponds to the part of the activity that is re-
lated to the stimulation, and the rest of the activity υt is usu-
ally assumed to be independent of the stimulus and the EP.
Single-trial EPs can be further modeled as a linear combina-
tion of some preselected basis vectors. Then, the observation
model takes the form

zt = Htθt + υt, (3)

where Ht is the observation matrix, which contains the basis
vectors ψt,1, . . . ,ψt,k of length M in its columns, and θt is a
parameter vector of length k. The estimated EPs ŝt can then

be obtained by using the estimated parameters θ̂t as follows:

ŝt = Htθ̂t. (4)

By treating both θt and υt as random, the estimator θ̂t that

minimizes the mean square Bayes cost BMS = E{‖ θt− θ̂t‖ 2}
is given by the conditional mean [20]

θ̂t = E
{
θt | zt

}
(5)
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of the posterior distribution

p
(
θt | zt

)∝ p
(
zt | θt

)
p
(
θt
)

∝ pυt
(
zt −Htθt | θt

)
p
(
θt
)
.

(6)

By taking into account the linear observation model, and that
θt and υt are assumed uncorrelated, that is, Cθt ,υt = 0. the
linear conditional mean estimator takes the form [20]

θ̂t =
(
HT
t C

−1
υt Ht + C−1

θt

)−1(
HT
t C

−1
υt zt + C−1

θt
ηθt
)
, (7)

where Cθt and ηθt are, respectively, the covariance and the
mean of θt. Cυt is the covariance of the zero mean measure-
ment noise, and (·)T denotes transpose. The estimator is op-
timal in the mean square sense among all possible estima-
tors, not only linear, if θt and υt are Gaussian. In Bayesian
estimation this is also called the maximum a posteriori esti-
mator (MAP), and Cθt and ηθt represent prior information
about the parameters θt. If they are not available, we can as-
sume C−1

θt
= 0 corresponding to infinite prior variance for

the parameters. In this case, the estimator reduces to the or-
dinary minimum variance Gauss-Markov estimator, which
treats the parameters as nonrandom. If we assume that the
errors are independent with equal variances Cυt = σ2

υt I . the
estimator is identical to the ordinary least squares estimator

θ̂t =
(
HT
t Ht

)−1
HT
t zt. (8)

2.2. State-space modeling of EPs

Estimators of the form (7) can be used to model time-varying
characteristics of EPs, for example, in terms of amplitude and
latency estimates of some characteristic peak of the signals.
However, such estimators do not take into account situations
that some dynamical behavior is expected from stimulus to
stimulus. A mathematical plausible way to incorporate prior
information for estimation about time-varying phenomena
is given through state-space modeling.

The measurement vectors zt can be considered as realiza-
tions of a stochastic vector process, that depends on some un-
observed parameters θt (state vector) through the model (3).
The parameters θt are the quantities that we are primarily
interested in, and their form depends on the parametrization
of the estimation problem. In order to model the time evo-
lution of the hidden process θt, a linear first-order Markov
model can be used, that is,

θt = Ftθt−1 + ωt, (9)

with some initial distribution for θ0. Equations (3) and (9)
form a linear state-space model, where Ft and Ht are prese-
lected matrices. Other important assumptions for the model
are

(i) for every i�= j, the observation noise vectors υi, υj as
well as the state noise vectors ωi,ωj are mutually inde-
pendent and also mutually independent of the initial
state θ0,

(ii) the vectors ωi, υj are mutually independent for all i, j.

For the white noise sequences ωt and υt , we can also assume
E{ωt} = 0 and E{υt} = 0 for every t, but the covariances Cωt ,
Cυt can still be time-varying.

2.3. Kalman filter and smoother algorithms

The Kalman filtering problem is related to the determination

of the mean square estimator θ̂t for the state θt given the ob-
servations z1, . . . , zt. This is equal to the conditional mean

θ̂t = E
{
θt | z1, . . . , zt

} = E
{
θt | Zt

}
, (10)

that relates to the density [20]

p
(
θt | Zt

)∝ p
(
zt | θt

)
p
(
θt | Zt−1

)
, (11)

where

p
(
θt | Zt−1

) =
∫
p
(
θt | θt−1

)
p
(
θt−1 | Zt−1

)
dθt−1. (12)

The optimal linear mean square estimator can then be ob-
tained recursively by restricting to a linear conditional mean,
or by assuming υt and ωt to be Gaussian [20]. The recursive
estimator can be written as

θ̂t =
(
HT
t C

−1
υt Ht + C−1

θ̃t|t−1

)−1(
HT
t C

−1
υt zt + C−1

θ̃t|t−1
θ̂t|t−1

)
,

(13)

where θ̂t|t−1 is the prediction of θt based on θ̂t−1 and θ̂t−1 =
E{θt−1 | zt−1, . . . , z1} is the optimal MS estimate at time t−1.
Clearly this is of the form (7), which is the Bayesian MAP es-
timator using the last available estimate as prior information.
After adding the initializations, Kalman filter algorithm can
be written as follows.

(i) Initialization:

Cθ̃0
= Cθ0 ,

θ̂0 = E
{
θ0
}
.

(14)

(ii) Prediction step:

θ̂t|t−1 = Ftθ̂t−1,

Cθ̃t|t−1
= FtCθ̃t−1

FTt + Cωt .
(15)

(iii) Filtering step:

Kt = Cθ̃t|t−1
HT
t

(
HtCθ̃t|t−1

HT
t + Cυt

)−1
,

θ̂t = θ̂t|t−1 + Kt
(
zt −Htθ̂t|t−1

)
,

Cθ̃t =
(
I − KtHt

)
Cθ̃t|t−1

,

(16)

for t = 1, . . . ,T . The matrix Kt is called the Kalman gain ma-
trix.

If all the measurements are available, that is, zt, t =
1, . . . ,T , then the fixed interval smoothing problem can be
considered, that is,

θ̂
s

t = E
{
θt | z1, . . . , zT

} = E
{
θt | ZT

}
, (17)

that relates to the density [21]

p
(
θt | ZT

) = p
(
θt | Zt

) ∫ p
(
θt+1 | θt

)
p
(
θt+1 | ZT

)

p
(
θt+1 | Zt

) dθt+1.

(18)
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The last form suggests again a recursive estimation procedure
for the determination of the conditional density. It is thus
possible to compute filtered and prediction distributions in
a forward (filtering) recursion, and then execute a back-
ward recursion with each smoothed distribution p(θt | ZT)
relying upon the quantities calculated in the forward run
and the previous (in reverse time) smoothed distributions
p(θt+1 | ZT). This property enables the formulation of the
forward-backward method for the smoothing problem [22],
which gives the smoother estimates as corrections of the filter
estimates. So for the linear or Gaussian case the smoothing
problem is complete through the backward recursion.

Smoothing:

At = Cθ̃tF
T
t+1Cθ̃t+1|t

,

θ̂
s

t = θ̂t + At
(
θ̂
s

t+1 − θ̂t+1|t
)

,

C
θ̃
s

t
= Cθ̃t + At

(
C
θ̃
s

t+1
− Cθ̃t+1|t

)
ATt ,

(19)

for t = T − 1,T − 2, . . . , 1. For the initialization of the
backward recursion the filter estimates can be used, that is,
θ̂
s

T = θ̂T .

2.4. Signal and noise subspaces

Singular value decomposition (SVD) has many theoretical
and practical applications in signal processing and identifi-
cation problems [23]. In relatively high signal-to-noise ratio
conditions (SNR), SVD of a data matrix can divide measure-
ments into signal and noise subspaces. Alternatively, it can
also be understood in terms of principal component regres-
sion (PCR) as a combined method for signal enhancement
and optimal model dimension reduction [24]. The subspace
method has been used to enhance stimulus phase-locked ac-
tivity in different studies (e.g., [19]).

The available data matrix Z = [z1, . . . , zT] ∈ RM×T ,
which has as columns the EEG sampled epochs relative to
the stimulation, can be decomposed as

Z = UΣVT , (20)

where U ∈ RM×M satisfies UTU = I , V ∈ RT×T satis-
fies VTV = I , and Σ ∈ RM×T is a pseudodiagonal matrix
with nonnegative diagonal elements σi such that σ1 ≥ σ2 ≥
· · · ≥ σmin (M,T) ≥ 0. If M ≤ T , then Σ has the form
Σ = [Σ1, 0], where Σ1 = diag(σ1, . . . , σM) and 0 is a zero
matrix. If M > T , then Σ has the form Σ = [ Σ1

0 ], where
Σ1 = diag(σ1, . . . , σT). Only r singular values are nonzero,
where r = rank(Z).

For the additive noise model and relatively small noise
the following decomposition can be considered:

Z = [Us,Uυ
][Σs 0

0 Συ

][
Vs,Vυ

]T
. (21)

The matrix Σs contains the k largest singular values and Us

the respective left singular vectors associated mainly with the
signals st. Thus the matrices (Us,Σs,Vs) represent a signal

subspace, and (Uυ,Συ,Vυ) represent primarily the noise sub-
space.

From the SVD of the matrix Z = UΣVT we also have

ZZT = UΣ2
1U

T. (22)

This means that the left singular vectors of Z are the eigen-
vectors of the matrix ZZT , or the eigenvectors of the data
correlation matrix

R̂ = 1
M
ZZT. (23)

If we denote withHs the matrix with columns the k dom-
inant eigenvectors, then the ordinary least squares estimator
for the parameters θt becomes

θ̂t =
(
HT
s Hs

)−1
HT
s zt = HT

s zt. (24)

Estimates for the EPs can then be obtained from (4). Quan-
titatively, the first basis vector is the best mean-square fit
of a single waveform to the entire set of epochs. Thus, the
first eigenvector is similar to the mean of the epochs, and

the corresponding parameters or principal component θ̂t(1)
(t = 1, 2, . . . ,T) reveal the contribution of the eigenvector
to each epoch. The rest of the dominant eigenvectors model
primarily amplitude differences between individual EP peak
components, and latency variations from trial to trial. There-
fore, since this basis contains prior information about phase-
locked characteristics of the EP signals, we consider the fol-
lowing state-space model for dynamical estimation:

θt = θt−1 + ωt,

zt = Hsθt + υt,
(25)

with the selections Ft = I , t = 1, . . . ,T , that is, a random
walk model, and Ht = Hs for all t. Estimates for the param-
eters can then be obtained by Kalman filter and smoother
algorithms for different selections of state and observation
noise covariance matrices. Thus, the applicability of the pro-
posed method relates on the quality of the signal subspace
in low signal-to-noise ratio conditions, as well as on the as-
sumption of hidden dynamical behavior from trial-to-trial.

2.5. Artifact correction by ICA

Individual EEG channels measure superimposed activity
generated simultaneously by various brain sources. The be-
havior of the sources is stochastic and generally nonstation-
ary. In addition, artifact sources, such as eye blinks, can dis-
tort statistical properties of the signals and increase complex-
ity. For the problem of blind source separation (BSS) of the
multichannel EEG measurements, target is to recover unob-
served brain generated initial source signals by using only the
available sensor data and some statistical properties assumed
for the sources [25, 26].

Fundamentally, the basic problem that BSS attempts
to solve assumes a set of L measured data points xn =
(xn(1), . . . , xn(l), . . . , xn(L))T at time instant n (n = 1, . . . ,N)
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to be a linear combination of m unknown sources yn =
(yn(1), . . . , yn(m))T , that is

xn = Ayn + υn. (26)

For EEG measurements, L is the number of available chan-
nels, and the measurements can be summarized in a matrix
X having the vectors xn in its columns and different channel
recordings in each row. A time-invariant mixing matrix A is
the common approach for ICA and BSS of EEG, for example,
in event-related studies [3]. This model can be interpreted as
the fixed biophysical structure of the brain itself whilst the
sources distributed within this structure change their inten-
sity over time [25].

A general formulation for BSS without any assumptions
(prior information) about the nature of the data, noise, or
mixing system will leave the problem of EEG separation in-
tractable. Therefore, some basic assumptions are needed. For
example, the goal of ICA is to recover independent sources
given only sensor observations that are unknown linear mix-
tures of unobserved independent source signals [27, 28].

The assumption of physiological independence of the
sources can be quite obvious in some situations, for example,
when used in artifact rejection separating brain signals from
ocular artifacts. Note that the ICA model considers the sig-
nals as independent and identically distributed, and requires
non-Gaussian sources. Thus, by ignoring time structure, the
estimation is based solely on investigating structure across
the sensors as estimated by the sample distribution of the
measurements, and an embedded density parametrization
(differentiating at least between sub-Gaussian and super-
Gaussian sources). Therefore, the model might not be able
to separate every kind of sources (e.g., stationary Gaussian
random processes). However, in many situations predomi-
nant artifacts show a highly kurtotic sample distribution that
enables estimation.

ICA methods carry ambiguities about the ordering and
the overall amplitude and sign of the estimated sources. The
rows of the data matrix X are the EEG channel recordings
and are decomposed as X = AY , where Y has in its rows the
independent components. The mixing matrix A contains the
spatial information of the sources obtained at the sensors.
Therefore, the columns of A are the spatial distributions of
the estimated sources, which are normalized to unit variance.
For example, eye movements and eye blinks project mainly
to frontal sites. An artifact source can be eliminated and re-
moved from the measurements by backprojection.

3. RESULTS

In this section, we present the performance of Kalman fil-
ter and smoother algorithms on tracking dynamic variations,
and estimating single-trial EPs in a simulated and a real data
set. In parallel, we investigate the performance of the method
when the signal subspace is enhanced by rejecting eye-related
artifacts with the use of ICA.
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Figure 1: Blink-related components estimated with ICA. Time acti-
vations (left) and scalp activations (right). The left plots correspond
to the first minute of the measurement set.

3.1. Measurements and artifact removal

EEG measurements were obtained from a standard oddball
paradigm with auditory stimulation (1 subject, 60 EEG chan-
nels, reference: ears). In the recording, 569 auditory stimuli
were presented with an interstimulus interval of 1 second.
Eighty-five percent of the stimuli were the standard tones at
800 Hz. Fifteen percent were the deviant tones at 560 Hz. The
deviant tones were randomly presented. The subject was sit-
ting in a chair, and was asked to press a button every time
he heard the deviant target tone. The sampling rate of the
measurements was 500 Hz.

Reduction in noise for EEG signals can be done with lin-
ear filtering without altering the basic ICA model [27]. If we
further assume less sources than sensors and that the sensor
noise is relatively small, then principal component analysis
(PCA) on the data covariance matrix and dimension reduc-
tion can be used to reduce the noise and to prevent overlearn-
ing [27]. For the analysis, the data were digitally filtered in the
range (1–35 Hz). All the measurement set (about 10 minutes)
was used for the estimation of the separating matrix. The di-
mension of the data was reduced with PCA to 31, by keeping
eigenvectors associated with eigenvalues larger than 1, result-
ing in more than 99% of explained variance. The FastICA al-
gorithm in parallel form [27] was used for the estimation of
independent components.

By visual inspection of the estimated components and
scalp activations two components showed to be related to
eye activity. The blink components are presented in Figure 1.
On the left, the time activations corresponding to the first
minute of the recordings are presented, and on the right
the spatial distributions. Furthermore, these components did
not show any significant correlation with the two types of
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stimuli (standard and target). Correlation with stimulation
time was investigated by computing EP image plots for ev-
ery estimated component. The component-based EP image
plots are not shown here, but such images are also used in
the next section (Figures 3 and 5). EP image plots are con-
structed by color-coding potential variations occurring in
single-trial epoch vectors (e.g., [3]). The thin color-coded
horizontal bars, each representing a single-trial, are, for ex-
ample, stacked row-by-row according to data collection time
(data epochs sampled relative to successive stimulus or trial
t) producing an EP image.

Note that PCA-based dimension reduction is a rather
subjective approach for the determination of the number
of brain source signals in EEG measurements [25]. Some
relatively weak brain sources, as measured at the sensors,
may be eliminated. Additionally, some estimated indepen-
dent components may remain the mixture of more than one
source signals. However, by computing different EP image
plots we did not observe any significant loss of phase-locked
EP activity. Furthermore, filtering and dimension reduction
provided good estimates for the blink components and fast
convergence for the FastICA algorithm. Therefore, the per-
formance was considered satisfactory for ocular artifact re-
moval, and for the demonstration needs of the proposed
subspace method for dynamical estimation of single-channel
single-trial EPs.

3.2. Single-trial estimation

Real EEG data were used as background EEG activity, or
noise, in the simulations. From the recordings, we used only
the channel CZ, after preprocessing and artifact removal by
ICA. Only ocular artifacts were considered. As background
activity for the simulations, we sampled prestimulus EEG
epochs from −500 milliseconds to 0 millisecond relative to
the standard stimulus onset. Simulated EPs were constructed
according to the additive noise model by superimposing
upon the selected real EEG epochs linear combinations of
2 Gaussian-shaped functions. In order to be consistent to
the real measurements (standard tones and N100/P200 com-
plex), each pseudoreal EP vector has two Gaussian peaks: a
negative after 100 milliseconds and a positive after 200 mil-
liseconds. Trial-to-trial sinusoidal variations for the ampli-
tude and latency of the second peak were generated. Random
variations were also added to the amplitudes, latencies, and
widths of both simulated peaks.

The estimated time-varying SNR with respect only to the
second peak can be seen in Figure 2 as a function of the
stimulus number t. Therefore, the important assumption in
the simulations is the trend-like behavior in low signal-to-
noise ratio conditions. By construction the simulated EPs
have trend-like trial-to-trial characteristics. This can be ob-
served in Figure 3 (left) and the EP image plots. In the same
figure (bottom, left), they are also presented the 10 dominant
eigenvectors of the data correlation matrix obtained before
and after EEG addition.

It must be noted that the aim in the creation of the sim-
ulations was that the average of the simulated EPs is close
to the average of the real measurements (standard tones and
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Figure 2: Time-varying SNR(dB) for the simulated second peak
as a function of the stimulus number (trial) t, that is, SNRt =
10 log 10

∑
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2
t (i)/

∑
iυ

2
t (i), t = 1, . . . ,T , where st are the simulated

noise-free single-trial EPs and υt prestimulus EEG epochs sampled
relative to the standard tone from channel CZ after ocular artifact
removal with ICA. The sums were considered in a smaller interval
around 200 milliseconds covering only the second peak (see also
Figure 3).

N100/P200 complex at channel CZ). The average of the real
measurements has a negative peak around 110 milliseconds
(N100) with amplitude about −4μV , and a positive peak
(P200) around 230 milliseconds with amplitude about 5 μV .
Then the simulations were created as follows. For the first
peak random variability in a small range in amplitude and
latency was simulated that gives ensemble average with peak
amplitude about −4μV at the required latency. For the sec-
ond peak dynamic variability was created with range of about
10 μV (2–12 μV) in amplitude and about 45 milliseconds in
latency, such that the average has peak amplitude about 6 μV
and similar latency to the real measurements. Then prestim-
uli EEG was added. In that respect, SNR conditions were not
directly considered, but instead a reasonable range for the
time-varying behavior was assumed that can produce simi-
lar average with the real measurements.

For estimation the state-space model (25) was selected.
For the covariances we used Cωt = σ2

ωI and Cυt = σ2
υI for

every stimulus t. Then the selection of the last variance term
is not essential since only the ratio σ2

υ/σ
2
ω has effect on the

estimates. Then the choice Cυt = I can be made and care
should be given to the selection of σ2

ω. In general, if it is tuned
too small, fast fluctuations of EPs are going to be lost, and if it
is selected too big the estimates have too much variance and
they will tend to be similar to the ordinary least squares or
principal component regression solution. The selection can
be based on experience and visual inspection of the estimates
as a balance between preserving expected dynamic variability
and greater noise reduction.

In order to identify an optimal value for the variance
term σ2

ω for the simulations we calculated root mean square
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Figure 3: Simulations resembling the N100/P200 auditory complex and obtained estimates. For background noise prestimuli EEG samples
relative to standard tones from channel CZ after ocular artifacts removal were used. Left: simulations (Gaussian functions) and noisy simula-
tions, single-trials as image plots (up), and the respective 10 dominant eigenvectors of the data correlation matrix (bottom). The EP images
represent stimulus locked stacked epochs (row-by-row). The color-maps describe the amplitude level in μV , y-axis represents successive
stimulus or trial t, and the x-axis represents within a trial latency variation. Right: single-trial estimates as image plots with Kalman filter and
smoother (up) and estimated variability of the second positive peak (bottom). Simulated amplitude and latency trends (light bold), estimates
based on Kalman filter (dark thin) and based on fixed-interval Kalman smoother (dark bold). For estimation the selection σ2

ω= 10−2 was
used.

errors (RMSEs) between the estimates based on the noisy
data and the noiseless simulated EPs. The RMSEs were com-
puted with respect to the second peak only over a smaller
time interval around 200 milliseconds. For initialization of
the algorithms we used half the data set by filtering back-
wards in time. The last estimates were used for initializ-
ing the forward run. Finally, the last state estimate of the
Kalman filter forward run was used to initialize the backward
smoothing procedure.

Means of RMSEs over all single-trials for different values
of state noise variance parameter and for different dimen-
sions of the observation matrix are presented in Figure 4 as
contour plots for Kalman filter (top) and smoother (middle).
In all the cases, Kalman smoother provides smaller error than

the filter. This is to be expected, since all the measurements
are included in the estimation procedure. The reduction of
the error during backward smoothing is due to greater noise
cancellation, as well as better tracking of the dynamic fluc-
tuations. Optimal values of σ2

ω for all the selected observa-
tion matrices are between 10−3 and 10−2. By considering the
contour plots and by inspection of the estimates, around 10
eigenvectors are enough for tracking the dynamic fluctua-
tions. Single-trial estimates for that dimension (k = 10) and
with the selection σ2

ω= 10−2 are presented in Figure 3 as im-
age plots for Kalman filter and smoother. In the right (bot-
tom) of the same figure they are presented estimates for the
single-trial latency and amplitude of the second peak as a
function of the stimulus number or trial t.
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Figure 4: Means of RMSEs for different values of the state noise
variance parameter σ2

ω and different number of dominant eigen-
vectors included in the observation model. Contour plots of the
means for Kalman filter (top) and smoother (middle). Means when
10 eigenvector are included in the observation model (bottom). In
all plots the x-axis is in logarithmic scale.

State-space representation and a few dominant eigenvec-
tors obtained from the ensemble data correlation matrix are
able to model the amplitude and latency changes. Bayesian
recursive mean square estimation is able to reveal the hidden
dynamic variability under unfavorable signal-to-noise ratio
conditions. Clearly, Kalman smoother tracks better the dy-
namic changes and reduces greater the noise.

For the real measurements we considered epochs 0–500
milliseconds after the presentation of the standard tones
from channel CZ before and after eye artifact removal. For
the two data sets we selected 10 eigenvectors of the data
correlation matrix for estimation. The strong blink contri-
butions clearly affect the eigenvectors and the signal sub-
space, especially after the first half of the measurements,
see Figure 5. This can also be seen by observing the first
two eigenvectors that reflect mainly blink artifacts. How-
ever, since the blinks occur random enough, recursive mean
square estimation is largely reducing their contribution.
This can be observed in Figure 5 from the estimates, which
are obtained with Kalman smoother with the same choices
σ2
ω= 10−2 and k = 10 for both data sets. The estimated dy-

namic variability of the second peak (P200) in terms of am-
plitudes and latencies is presented in the left (bottom) of the
same figure.

Some representative individual single-trial estimates are
presented in Figure 6 for the simulations (left) and real
EP measurements (right). The estimates for the simula-
tions and the real EP measurements (standard tones and
N100/P200 complex) are based on the artifact corrected EEG
and Kalman smoother algorithm. The identification of peak
potentials from raw measurements can be misleading even

in simple simulations (e.g., stimulus number t = 50, left).
The proposed method produced accurate estimates for the
simulations even in very low SNR conditions (e.g., stimu-
lus number t = 450, left). This is because we assumed a
trend-like variability. The evaluation of the estimates for the
real EPs is naturally more difficult. For example, clear N100
and P200 peaks are obtained for stimuli 50 and 250 (right).
Though, the identification of peaks is not trivial for stimu-
lus 450 (right). However, it must be noted that the proposed
method does not make assumptions for the number of peaks
and their exact form. This information is obtained from the
estimated signal subspace and the included eigenvectors.

In summary, the proposed approach for single-trial dy-
namical estimation of EPs consists of the following steps. (1)
Band-pass filter the selected EEG channels. This has as an
effect on the improvement of the quality of the signal sub-
space. For example, it can reduce high-frequency compo-
nents, and therefore, it can provide smoother eigenvectors
and estimates. (2) Enhance the quality of the signal subspace.
If the EEG epochs contain strong artifact contributions, such
as eye blinks, an artifact correction method can be applied,
for example, ICA. (3) Estimate the data correlation matrix
and compute eigenvectors. In the simplest case, a basic ar-
tifact correction method based on thresholding of potential
values and excluding very noisy single-trial epochs can be ap-
plied prior to the computation of the correlation matrix. (4)
Select a few dominant eigenvectors to form the observation
model for estimation. The estimated signal subspace must
be able to model latency changes for different phase-locked
EP components. (5) Estimate EP characteristics with Kalman
smoother algorithm. The smoothing parameter can be se-
lected by visual inspection of the estimates (EP image plots),
and by considering the expected trial-to-trial variability of
individual peaks.

4. DISCUSSION AND CONCLUSION

We presented a new dynamical estimation method for single-
trial EP estimation based on a state-space representation for
the trial-to-trial evolution of EP characteristics. The method
uses the eigenvalue decomposition of the data correlation
matrix for the identification of the state-space model. This
is an extension of the method presented in [17], where a
generic observation model was used. A few dominant eigen-
vectors obtained from the ensemble measurements incor-
porate prior information about shape characteristics and
within trials correlations of individual EP peaks. This ap-
proach takes also into account individual subject character-
istics for estimation. Therefore, the method is applicable for
different types of EP experiments as long as dynamical be-
havior from trial-to-trial could be expected. For a Gaussian
basis selection like in [17], someone has to select the number
of basis vectors and their width. This is not always trivially
easy, since a given wave shape may perform in a different way
for every individual peak. Therefore, a benefit of SVD is the
rather easy selection of observation model that can take into
account shape information about different peaks and indi-
vidual subject characteristics. However, for very weak EPs a
generic observation model may have better performance.
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Figure 5: N100/P200 auditory complex, measurements from channel CZ. EEG epochs relative to the standard tones (0–500 milliseconds
after auditory stimulation), and obtained estimates. Left: EEG epochs as image plots after and before blink correction (up) and the respective
10 dominant eigenvectors of the data correlation matrix (bottom). The EP images represent stimulus locked stacked epochs (row-by-row).
The color-maps describe the amplitude level in μV , y-axis represent successive stimulus or trial t, and the x-axis within a trial latency
variation. Right: single-trial estimates as image plots with Kalman smoother (up) based on artifact corrected measurements and original
measurements respectively, amplitude and latency estimates of the P200 peak (bottom) based on original measurements (thin) and artifact
corrected measurements (bold). For estimation the selection σ2

ω= 10−2 was used.

Estimates for the state parameters are obtained with
Kalman filter and fixed-interval smoother algorithms. Both
share the optimality of Bayesian recursive mean square es-
timation. The fixed-interval smoothing method estimates
better the hidden dynamic changes and reduces greater the
noise. Therefore, it should be preferred when all the mea-
surements are available. The same behavior can be shown
when other observation models are considered, for exam-
ple, generic basis vectors as in [17]. Therefore, the present
paper introduces the use of Kalman smoother algorithm for
dynamical estimation of EPs. The use of the filter is appro-
priate for online estimation. However, compromises between
better tracking capabilities and almost online estimation can
be searched in terms of fixed-lag smoothing methods [29].

For the demonstration of the methods we used mea-
surements from an auditory experiment (oddball paradigm).
Since the aim was to investigate to performance of the meth-
ods when strong artifacts exist, we only considered the stan-
dard tone measurements and not the deviant and the P300
target response. For this data set the blink artifacts were
more prominent for the standard tones. In addition, the es-
timates of latency and amplitude of the P200 peak (slower
and smaller responses towards the end of the measurements)
just show that even in ordinary experiments some dynamic
behavior from stimulus to stimulus could be expected. How-
ever, the method should be addressed to the study of more
specific experimental settings. The investigation of latency
or amplitude estimates could, for example, be used to study
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Figure 6: Representative single-trial estimates based on Kalman smoother algorithm. Estimates for the simulations (left) and for the real
measurements (right) (standard tones and N100/P200 complex after ocular artifact correction by ICA). Measurements and noisy simulations
(dark thin), noise-free simulations (light bold), and estimates (dark bold).

possible habituation effects due to repetition of stimuli, or to
study cognitive changes due to time-varying task difficulty or
extra distraction. Latency or amplitude changes of peak po-
tentials can also be used to track changes caused by sedative
drugs during anesthesia.

EP measurements are usually made with multiple elec-
trodes providing spatial information for the experiment.
This information can be used at least to remove artifacts from
the signals. We showed by means of ICA that even when the
signal subspace is distorted from characteristic artifacts the
method is still able to track changes in EP peak components.
This is because in the filtering or smoothing procedure phe-
nomena uncorrelated from trial to trial are largely elimi-
nated. In fact, this is exactly the main advantage of dynam-
ical estimation for single-trial EP analysis. However, accu-
rate artifact removal or further elimination of undesirable
brain generated components can enable better quality for the

signal subspace and individual channel measurements. Ex-
tensions to multichannel measurements could be searched
by applying the method to each channel separately. Then
the variable signal-to-noise ratio conditions from channel
to channel should be considered. Another approach could
be to direct introduce spatial information in the state-space
model. Such multichannel extensions could be investigated
for further development of the method. Finally, the signal
subspace method can be extended to multichannel measure-
ments. Then it could, for example, be combined with BSS
methods.

REFERENCES

[1] E. Niedermeyer and F. Lopes da Silva, Electroencephalogra-
phy: Basic Principles, Clinical Applications, and Related Fields,
Williams and Wilkins, Baltimore, Md, USA, 1999.



Stefanos D. Georgiadis et al. 11

[2] J. Intriligator and J. Polich, “On the relationship between back-
ground EEG and the P300 event-related potential,” Biological
Psychology, vol. 37, no. 3, pp. 207–218, 1994.

[3] S. Makeig, S. Debener, J. Onton, and A. Delorme, “Mining
event-related brain dynamics,” Trends in Cognitive Sciences,
vol. 8, no. 5, pp. 204–210, 2004.

[4] S. Makeig, M. Westerfield, T.-P. Jung, et al., “Dynamic brain
sources of visual evoked responses,” Science, vol. 295, no. 5555,
pp. 690–694, 2002.

[5] B. H. Jansen, G. Agarwal, A. Hegde, and N. N. Boutros, “Phase
synchronization of the ongoing EEG and auditory EP gen-
eration,” Clinical Neurophysiology, vol. 114, no. 1, pp. 79–85,
2003.
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