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Abstract
Background: Glioblastoma	(GBM)	remains	the	most	biologically	aggressive	subtype	
of gliomas with an average survival of 10 to 12 months. Considering that the overall 
survival	(OS)	of	each	GBM	patient	is	a	key	factor	in	the	treatment	of	individuals,	it	is	
meaningful	to	predict	the	survival	probability	for	GBM	patients	newly	diagnosed	in	
clinical practice.
Material and Methods: Using	the	TCGA	dataset	and	two	independent	GEO	datasets,	
we	identified	genes	that	are	associated	with	the	OS	and	differentially	expressed	be‐
tween	GBM	tissues	and	the	adjacent	normal	tissues.	A	robust	likelihood‐based	sur‐
vival	modeling	approach	was	applied	to	select	the	best	genes	for	modeling.	After	the	
prognostic	nomogram	was	generated,	an	independent	dataset	on	different	platform	
was used to evaluate its effectiveness.
Results: We	 identified	168	differentially	expressed	genes	associated	with	 the	OS.	
Five	of	 these	genes	were	 selected	 to	generate	a	gene	prognostic	nomogram.	The	
external validation demonstrated that 5‐gene prognostic nomogram has the capabil‐
ity	of	predicting	the	OS	of	GBM	patients.
Conclusion: We developed a novel and convenient prognostic tool based on five 
genes that exhibited clinical value in predicting the survival probability for newly di‐
agnosed	GBM	patients,	and	all	of	these	five	genes	could	represent	potential	target	
genes	for	the	treatment	of	GBM.	The	development	of	this	model	will	provide	a	good	
reference for cancer researchers.
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1  | INTRODUC TION

Malignant gliomas are the most frequent and lethal brain tumors 
worldwide	(Louis	et	al.,	2007),	and	they	account	for	approximately	

80%	of	primary	malignant	brain	tumors	(Omuro	&	Deangelis,	2013).	
These	tumors	grow	rapidly,	recur	easily	(Meir	et	al.,	2010)	and	repre‐
sent a leading cause of cancer‐related deaths in adults and children 
(Natesh	et	al.,	2015).	Gliomas	are	categorized	as	 low	grade	glioma	
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(LGG)	 and	 high	 grade	 glioma	 (HGG)	 (Wang	 et	 al.,	 2009;	Wang	 &	
Jiang,	2013).	HGG	includes	grade	IV	glioblastoma	(GBM)	(Brennan	 
et	 al.,	 2013),	 the	 most	 biologically	 aggressive	 subtype	 of	 glioma	
with	 an	 average	 survival	 of	 10	 to	 12	months	 (Ning,	Hao,	 Feng,	&	
Zou,	 2017).	 Invasion	 and	 neo‐angiogenesis	 are	 the	 hallmarks	 of	
GBM	(Cooper	et	al.,	2012).	The	current	standard	of	care	for	GBM	
patients is surgical resection followed by adjuvant radiation ther‐
apy	and	chemotherapy	with	the	oral	alkylating	agent	temozolomide	
(Parsons	et	al.,	2008),	which	minimally	contributes	to	the	prognosis	
of	GBM	by	only	prolonging	the	median	survival	to	15	months	(Stupp	
et	 al.,	 2005).	 Unfortunately,	 life‐threatening	 tumor	 recurrence	 is	
inevitable in the vast majority of patients given the best available 
treatments	 (Wang	 et	 al.,	 2017).	 Thus,	 it	 is	 necessary	 to	 develop	
novel	 treatments	 to	 improve	 the	prognosis	of	GBM.	Gene	 target‐
ing	provides	new	hope	 for	GBM	patients.	And	 in	 recent	decades,	
considerable effort has been placed on the identification of genetic 
alterations	 in	GBMs	 that	might	help	 to	define	GBM	patients	with	
varied	 prognoses	 or	 responses	 to	 specific	 therapies	 (Mellinghoff	
et	al.,	2005).	However,	very	few	tumor‐specific	 targets	have	been	
identified,	tested,	and	validated	for	clinical	development	(Ge	et	al.,	
2017).	Hence,	 it	 is	 urgent	 to	develop	methods	 to	 identify	 reliable	
therapeutic gene targets that could enable earlier prognostic evalu‐
ation and better therapeutic strategies.

The	overall	 survival	 (OS)	of	each	GBM	patient	 is	 a	 critical	 fac‐
tor	to	devise	a	personal	treatment	plan.	Therefore,	it	is	important	to	
develop a reliable tool to predict the survival probability for newly 
diagnosed	GBM	patients	 in	clinical	practice.	Given	the	remarkable	
development of high‐throughput technologies for the profiling of 
genome‐wide	methylation	and	expression,	such	as	methylation	mi‐
croarray	 and	MeDip‐seq,	 and	 RNA‐seq,	 and	 the	 publicly	 available	
datasets	around	the	world	(He,	Zhang,	Shi,	&	Lu,	2018;	Ning	et	al.,	
2017),	we	were	able	to	analyze	world‐wide	data.	In	previous	cancer	
studies,	a	risk	score	system	based	on	genes	was	applied	to	identify	
cancer	patients	with	a	high	risk	of	mortality	(Chen	et	al.,	2017).	Here,	
we developed a new prognostic tool to make the prediction method 
more convenient and intuitive.

We aimed to generate an easy and effective prognostic tool 
based	on	several	genes	and	other	factors	that	may	affect	OS.	Using	
the	TCGA	dataset	and	two	independent	GEO	datasets,	we	identified	
168	genes	that	were	associated	with	OS	and	differentially	expressed	
between	 GBM	 tissues	 and	 adjacent	 normal	 tissues.	 Furthermore,	
five of these genes were selected by a robust likelihood‐based sur‐
vival modeling approach to generate a gene prognostic nomogram. 
We used an independent dataset to validate the effectiveness of the 
nomogram,	 demonstrating	 its	 clinical	 value	 for	 predicting	 the	 sur‐
vival	probability	for	newly	diagnosed	GBM	patients.

2  | MATERIAL AND METHODS

2.1 | GBM dataset from TCGA and survival analyses

We first downloaded the gene expression dataset and the clinical 
information	 of	 GBM	 patients	 including	 168	 samples	 from	 TCGA	

(The	 Cancer	 Genome	 Atlas,	 RRID:SCR_003193)	 cohort	 using	 the	
Illumina	 RNA	 Sequencing	 method.	 The	 normalization	 was	 per‐
formed	using	 the	 “calcNormFactors”	 function	 from	 the	R	package	
“edgeR”	 (edgeR,	 RRID:SCR_012802).	 This	 function	 normalizes	 for	
RNA	composition	by	finding	a	set	of	scaling	factors	for	the	library	
sizes	 that	minimize	 the	 log‐fold	changes	between	 the	samples	 for	
most	genes	using	a	trimmed	mean	of	Mvalues	(TMM)	(Robinson	&	
Oshlack,	 2010).	 After	 normalization,	 the	 gene	 expression	 data	 of	
each	sample	were	matched	with	the	OS	information.	Statistical	anal‐
yses	were	performed	using	R	 (R	Project	for	Statistical	Computing,	
RRID:SCR_001905).	Kaplan‐Meier	curves	for	high	and	low	expres‐
sion	groups	of	each	gene	were	plotted	using	the	“survfit”	function	
from	the	R	package	“survival”.	Calculated	using	the	“survdiff”	func‐
tion,	a	p‐value of log rank test less than 0.05 was considered statisti‐
cally significant.

2.2 | Analysis of differentially expressed genes

We	identified	the	differentially	expressed	genes	(DEGs)	within	the	
TCGA	 cohort,	 using	 the	 “exactTest”	 function	 from	 the	 R	 package	
“edgeR”	which	 is	based	on	the	quantile‐adjusted	conditional	maxi‐
mum	likelihood	(qCML)	method	(Robinson	&	Smyth,	2008),	via	the	
thresholds	of	fold	change	greater	than	1	or	less	than	−1	and	adjusted	
p	<	0.05.	 This	 dataset	 included	 168	 samples	 from	 GBM	 tissues	
and five samples from adjacent normal tissues. Two independent 
microarray	 datasets	 from	 the	 GEO	 (Gene	 Expression	 Omnibus,	
RRID:SCR_005012)	 of	 the	 National	 Center	 for	 Biotechnology	
Information	(NCBI,	RRID:SCR_006472)	were	used	to	further	narrow	
down	these	DEGs.	GSE68848	(Madhavan	et	al.,	2009)	included	the	
gene	expression	data	of	228	GBM	tissue	samples	and	28	samples	
from	adjacent	normal	 tissues,	whereas	GSE4290	 (Sun	et	al.,	2006)	
included	 77	 GBM	 tissue	 samples	 and	 23	 adjacent	 normal	 tissue	
samples	(Table	1).	All	these	samples	from	GEO	were	included	on	the	
Affymetrix	 Human	 Genome	 U133	 Plus	 2.0	 Array	 platform.	 Since	
nontransformed gene expression values usually are substantially 
skewed	in	linear	scale,	we	performed	data	normalization	of	the	two	
datasets to obtain equal distributions of the probe signal intensi‐
ties	suitable	for	the	analysis	using	the	R	package	“limma”	 (LIMMA,	
RRID:SCR_010943).	 Expression	 values	 for	 all	 genes	 were	 trans‐
formed	to	the	log	base	2.	DEGs	were	selected	via	the	same	standard	
as	the	TCGA	dataset.	The	final	set	of	DEGs	was	obtained	via	overlap‐
ping the three datasets above.

2.3 | Enrichment analysis of GO function and Kyoto 
Encyclopedia of Genes and Genomes pathway

Within	 the	 selected	 DEGs,	 we	 performed	 the	 functional	 en‐
richment	 analysis	 of	 Gene	 Ontology	 (GO)	 function	 and	 Kyoto	
Encyclopedia	 of	 Genes	 and	Genomes	 (KEGG)	 pathways	 using	 the	
WebGestalt	 (WebGestalt:	WEB‐based	GEne	SeT	AnaLysis	 Toolkit,	
RRID:SCR_006786)	 via	 a	 significance	 threshold	 of	 FDR	 less	 than	
0.05 to understand the critical biological implications of the identi‐
fied	DEGs	in	GBM	tissues.
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2.4 | Selection of best genes for modeling

After	obtaining	the	DEGs	associated	with	OS,	we	used	a	robust	likeli‐
hood‐based survival approach to select the best genes for modeling. 
The analysis was performed in R environment using the R package 
“rbsurv”	(rbsurv,	RRID:SCR_001175).	Our	detailed	algorithm	is	sum‐
marized	as	follows:

1.	 All	 the	 TCGA	 GBM	 samples	 were	 randomly	 divided	 into	 the	
training set with N*(1	−	p)	 samples	 and	 the	 validation	 set	 with	
N*p	 samples	 (p	=	1/3).	 Next,	 a	 gene	 was	 fitted	 to	 the	 training	
set	 of	 samples	 using	 the	 Cox	 proportional	 hazards	 model	 and	
the	 parameter	 estimate	 for	 this	 gene	 was	 obtained.	 Log	 like‐
lihood was evaluated with the parameter estimate and the 
validation set of samples. This evaluation was performed for 
each gene.

2.	 The	above	procedure	was	 repeated	10	times,	 thus	10	 log	 likeli‐
hoods	were	obtained	for	each	gene.	Next,	the	best	gene	g(1) with 
the	largest	mean	log	likelihood	was	selected.	All	the	best	survival‐
associated genes were selected by the robust likelihood‐based 
approach.

3.	 Let	g(1)	be	the	selected	best	gene	in	the	previous	step.	Adjusting	
for g(1),	the	next	best	gene	was	found	by	repeating	the	above	two	
steps.	In	other	words,	g(1) + g(j) was evaluated for every j and an 
optimal	 two‐gene	model,	 g(1) + g(2),	 was	 selected.	 This	 forward	
gene selection procedure was continued until fitting was impos‐
sible	because	of	the	lack	of	samples.	Thus,	a	series	of	K	models	
were generated: M1 = g(1),	M2 = g(1) + g(2),	…,	MK−1 = g(1) + g(2)	+	…	
+ g(K	−	1),	MK = g(1) + g(2)	+	…	+	g(K).

4.	 To	avoid	over‐fitting,	Akaike	 information	criterion	 (AICs)	 for	 all	
the	candidate	models	were	computed,	and	an	optimal	model	with	
the	smallest	AIC	was	selected.	The	model	that	is	best	according	
to	AIC	is	the	one	that	minimizes	prediction	error	(Akaike,	1981;	
Cho,	Yu,	Kim,	&	Kang,	2008).

2.5 | Development of the gene 
prognostic nomogram

We	used	the	R	package	“rms”	to	generate	the	prognostic	nomogram	
based on the expression level of the genes selected by the previ‐
ous	step,	using	the	168	training	samples	from	TCGA.	In	the	package,	
the	“cph”	function	was	used	to	build	the	COX	model.	Based	on	the	

model,	the	“nomogram”	function	was	used	to	generate	the	prognos‐
tic nomogram. The length of line segments corresponding to each 
variable in the prognostic nomogram reflects the contribution of 
predictors to the patient outcome.

2.6 | External validation of the gene 
prognostic nomogram

After	 the	 nomogram	 was	 generated,	 an	 independent	 dataset	
GSE43378	 (Kawaguchi	 et	 al.,	 2013)	 (Affymetrix	 Human	 Genome	
U133	Plus	2.0	Array;	N	=	32)	with	complete	OS	information	was	used	
as	the	external	validation	dataset.	For	this	cohort,	we	calculated	the	
C‐index to test the ability of the gene prognostic nomogram to dis‐
criminate the outcome of patients. To evaluate the calibration of the 
gene	 prognostic	 nomogram,	 we	 also	 generated	 calibration	 curves	
for	 the	12‐,	15‐	and	18‐month	survival	predictions,	as	well	as	sur‐
vival curves for the high‐risk group and low‐risk group. To discover 
whether our gene nomogram could be deemed as an independent 
prognostic	factor,	multivariate	Cox	regression	was	performed	with	
the	nomogram,	patient	age,	and	gender.

3  | RESULTS

3.1 | Genes associated with OS

The	TCGA	dataset	included	168	effective	samples	with	expression	
values	for	29,846	genes.	Additionally,	all	datasets	contain	informa‐
tion on sample observation time and censoring status. We prelimi‐
narily	 identified	 2,154	 survival	 associated	 genes	 with	 a	 p	<	0.05,	
using log‐rank test.

3.2 | DEGs in GBM and adjacent normal tissues

We	compared	 the	 expression	 values	 of	 these	2,154	 genes	 among	
168	samples	from	GBM	tissues	and	five	samples	from	adjacent	nor‐
mal	 tissues	 in	 TCGA	 datasets.	 DEGs(11,972)	 were	 initially	 identi‐
fied with the thresholds of fold change greater than 1 or less than 
−1	and	adjusted	p < 0.05. To further narrow down to a list of more 
effective	 DEGs,	 we	 screened	 DEGs	 in	 two	 independent	 datasets	
(GSE68848	 included	228	 samples	 from	GBM	 tissues	 and	28	 from	
adjacent	normal	tissues;	GSE4290	included	77	samples	from	GBM	
tissues	and	23	from	adjacent	normal	tissues)	using	the	same	crite‐
ria.	 In	 the	 GSE68848	 cohort,	 2,753	 DEGs	 were	 identified.	 In	 the	

Dataset

Sample

Tissue MethodGBM Control

TCGA 168 5 GBM Illumina	RNA	Sequencing

GSE68848 228 28 GBM Affymetrix	Human	Genome	
U133	Plus	2.0	Array

GSE4290 77 23 GBM Affymetrix	Human	Genome	
U133	Plus	2.0	Array

TA B L E  1   The characteristics of the 
datasets used for screening differentially 
expressed genes
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GSE4290	 cohort,	 3,077	 DEGs	 were	 identified.	 After	 overlapping	
these	three	datasets,	2,005	DEGs	were	identified	to	exhibit	differ‐
ent	expression	between	GBM	tissues	and	adjacent	normal	tissues,	
including	 808	 upregulated	 genes	 and	 1,197	 downregulated	 genes	
(Figure	1).	To	understand	 the	biological	 implications	of	 the	 identi‐
fied	DEGs	in	GBM	tissues,	we	performed	enrichment	analysis	of	GO	
function	and	KEGG	pathways	within	the	DEGs.	The	GO	terms	of	up‐
regulated	genes	and	downregulated	genes	are	presented	in	Figure	2,	
respectively. The top 10 enriched KEGG pathway terms of upregu‐
lated genes and downregulated genes are provided in Tables 2 and 
3,	respectively.

3.3 | Best genes for modeling

Of	 the	 overlapping	 2,154	 genes	 associated	 with	 OS	 and	 2,005	 
DEGs,	 168	 genes	 were	 identified	 for	 the	 final	 analysis.	 Using	 a	 
partial	 likelihood	of	the	Cox	proportional	hazard	regression	model,	
we next selected the best survival‐associated genes. We imple‐
mented a cross‐validation technique considering the large data  
variability.	A	 forward	selection	was	employed	to	generate	a	series	
of	gene	models,	and	the	optimal	model	was	then	selected	using	the	
minimal	AIC.	 Finally,	 five	 genes	 (OSMR,	BICDL1,	 SH3BP2,	MSTN,	
and	RGS14)	were	selected	that	can	optimally	predict	the	OS	of	GBM	
patients	(Table	4).

3.4 | The development of a prognostic nomogram

We	used	the	R	package	“rms”	to	generate	the	prognostic	nomogram	
based	 on	 the	 expression	 level	 of	 the	 five	 genes	 (OSMR,	 BICDL1,	
SH3BP2,	MSTN,	and	RGS14).	As	shown	in	Figure	3,	"1"	represents	

the	high	expression	level	of	each	gene,	whereas	"0"	represents	the	
low	expression	level	of	each	gene.	“Points”	is	the	score	correspond‐
ing	to	the	expression	level	of	a	single	gene.	“Total	points”	is	the	sum	
of	the	“Points”	that	five	genes	get,	which	corresponds	to	the	accu‐
rate	survival	probability	of	each	sample.	An	increased	“Total	points”	
indicates	greater	mortality	risk	for	GBM	patients.

3.5 | External validation of the 
prognostic nomogram

An	independent	cohort	of	GBM	patients	with	OS	and	gene	expres‐
sion from different platform was used to evaluate the robustness and 
effectiveness of the gene prognostic nomogram. The validation data 
set	GSE43378	was	obtained	using	Affymetrix	Human	Genome	U133	
Plus	2.0	Array	and	32	GBM	samples	with	complete	data	regarding	
observation time and censoring status. We next calculated the C‐
index	 (C‐index	=	0.629,	 p	=	0.0273)	 and	 generated	 the	 calibration	
curve	for	the	12‐,	15‐	and	18‐month	survival	predictions	to	evaluate	
the	calibration	of	the	gene	prognostic	nomogram	shown	in	Figure	4.	
These results demonstrate the ability of our gene prognostic nom‐
ogram to discriminate the outcome of patients and the calibration 
between	the	probabilities	of	the	actual	outcome	and	prediction.	On	
the	other	hand,	the	cohort	was	divided	into	a	high	risk	group	and	a	
low	risk	group	using	the	nomogram.	Noteworthily,	the	survival	curve	
revealed that the high risk group exhibited a poorer prognosis com‐
pared	to	 the	 low	risk	group	 (p	=	0.018,	Figure	5).	Multivariate	Cox	
regression	was	performed	with	the	gene	nomogram,	patient	age	and	
gender	 in	 the	validation	dataset.	As	a	 result,	only	 the	gene	nomo‐
gram	was	in	the	equation	(p	=	0.021,	Exp(B)	=	2.506),	which	showed	
that it could work as a prognostic factor independent of age or gen‐
der.	Therefore,	the	prognostic	nomogram	based	on	five	genes	could	
effectively	 predict	 the	 survival	 probability	 of	 patients	 with	 GBM.	
The	process	of	this	study	is	represented	in	Figure	6.

4  | DISCUSSION

In	this	study,	we	developed	a	5‐gene	prognostic	nomogram	that	ex‐
hibits the ability of predicting the survival probability for patients 
within	GBM.	Using	this	tool,	we	could	predict	patients	with	higher	
risk	of	mortality,	and	thus	a	need	for	them	to	get	more	 immediate	
attention	 and	 treatment.	Within	 the	 survival	 analysis	 of	 the	GBM	
samples	 from	TCGA,	 a	 total	 of	 2,154	 genes	were	 identified	 to	 be	
associated	with	the	OS	of	GBM	patients.	Meanwhile,	2,005	genes	
were	found	differentially	expressed	between	GBM	tissues	and	ad‐
jacent	normal	tissues	by	analyzing	the	TCGA	dataset	and	two	other	
independent	datasets.	By	KEGG	analysis,	we	found	that	these	DEGs	
were	 enriched	 in	 the	 signaling	 pathways	 such	 as	 cell	 cycle,	 p53	
signaling	pathway,	retrograde	endocannabinoid	signaling	and	dopa‐
minergic	synapse.	A	previous	study	showed	that	the	cell	cycle	and	
p53	 signaling	 pathways	 co‐mutated	 in	GBM	 (Wei,	Wang,	&	 Zhao,	
2014).	Notably,	the	p53	signaling	pathway	exerts	an	important	role	
in	glioma	pathogenesis	 (Stegh	&	DePinho,	2011).	After	 identifying	

F I G U R E  1  The	2,005	differentially	expressed	genes	(DEGs)	
were	identified	by	overlapping	the	TCGA	cohort,	GSE68848	cohort	
and	GSE4290	cohort	using	Venny	2.1.0.	The	criteria	of	DEGs	was	
set	as	the	thresholds	of	fold	change	greater	than	1	or	less	than	−1	
and adjusted p < 0.05
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F I G U R E  2  GOSlim	summary	for	the	differentially	expressed	genes	(DEGs).	Each	Biological	Process,	Cellular	Component	and	Molecular	
Function	category	is	represented	by	a	red,	blue	and	green	bar,	respectively.	The	height	of	the	bar	represents	the	number	of	DEGs	observed	
in	the	category.	Figure	2a	shows	the	GO	terms	of	upregulated	genes.	Figure	2b	shows	the	GO	terms	of	downregulated	genes

KEGG ID KEGG pathway No. of genes FDR

hsa04110 Cell cycle 28 1.45E−09

hsa04610 Complement and coagulation 
cascades

21 1.39E−08

hsa05150 Staphylococcus	aureus	infection 16 5.38E−07

hsa05166 HTLV‐I	infection 36 5.48E−07

hsa04512 ECM‐receptor interaction 19 5.48E−07

hsa04115 p53 signaling pathway 16 6.88E−06

hsa04145 Phagosome 24 1.57E−05

hsa05133 Pertussis 16 2.13E−05

hsa05205 Proteoglycans in cancer 28 2.14E−05

hsa05416 Viral	myocarditis 12 6.57E−04

Note.	DEGs,	differentially	expressed	genes;	KEGG,	Kyoto	Encyclopedia	of	Genes	and	Genomes.

TA B L E  2   The top 10 enriched KEGG 
pathway	terms	of	upregulated	DEGs
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the	overlapping	the	genes	associated	with	OS	and	DEGs,	we	further	
selected the best five genes to develop the gene prognostic nomo‐
gram:	OSMR,	BICDL1,	SH3BP2,	MSTN,	and	RGS14.

Recently,	a	study	demonstrated	that	OSMR	is	required	for	GBM	
tumor growth. The study discovered that the cytokine receptor 
OSMR	is	an	essential	co‐receptor	of	EGFRvIII	that	plays	a	prominent	

role	 in	GBM	 tumorigenesis,	 and	 it	 is	 also	 a	 highly	 upregulated	 di‐
rect	transcriptional	target	gene	of	STAT3	in	GBM	(Jahaniasl,	Yin,	&	
Soleimani,	2016).	Similarly,	another	study	identified	OSMR	as	a	novel	
key	regulator	of	brain	tumor	stem	cell	proliferation	and	GBM	tumor‐
igenesis	(Mohan,	Bonni,	&	Jahani‐Asl,	2017).	Their	findings	highlight	
the	 significance	 of	OSMR	as	 a	 potential	 druggable	 target	 in	GBM	
therapy.	Furthermore,	our	study	not	only	validated	the	relationship	
between	OSMR	and	GBM	but	also	demonstrated	the	effectiveness	
of	using	OSMR	on	the	prognosis	of	GBM.

SH3BP2,	a	c‐Abl	binding	protein	in	mice	and	humans	(Bell,	Shaw,	
Jou,	Myers,	&	Knowles,	 1997;	Ren,	Mayer,	Cicchetti,	&	Baltimore,	
1993),	is	expressed	in	most	cell	types	(Reichenberger,	Levine,	Olsen,	
Papadaki,	&	Lietman,	2012).	SH3BP2	acts	as	an	adapter	protein	to	
control intracellular signaling by interacting and forming complexes 
with	binding	proteins	(Deckert	&	Rottapel,	2006;	Le	et	al.,	2004)	and	
scaffolding	 proteins	 (Le,	Moon,	 Foucault,	 Breittmayer,	 &	Deckert,	
2007).	MSTN,	a	potent	negative	regulator	of	muscle	growth,	is	indis‐
pensable	in	regulating	neuronal	and	muscle	function	(Augustin	et	al.,	
2017).	Inhibition	of	MSTN	is	a	promising	method	to	alleviate	muscle	
wasting,	especially	considering	that	 loss	of	functional	myostatin	 in	
humans is not related with apparent deleterious effects other than 
muscle	hypertrophy	(Schuelke	et	al.,	2004).	Currently	in	clinical	tri‐
als,	applying	monoclonal	antibodies	that	bind	to	myostatin	to	inhibit	
its function is a potential therapy to treat cachexia syndrome in can‐
cer	patients	(Nicole,	Lisa,	Wolfram,	Anker,	&	Stephan,	2014).	RGS14,	
a	 multifunctional	 scaffolding	 protein,	 integrates	 heterotrimeric	 G	
protein	 and	H‐Ras	 signaling	 pathways	 (Vellano,	 Brown,	 Blumer,	 &	
Hepler,	2012),	and	plays	a	key	role	 in	regulating	synaptic	plasticity	
(Branch	&	Hepler,	2017).	However,	the	function	of	BICDL1	remains	
unknown.

Except	OSMR,	the	other	four	genes	have	not	been	reported	in	
previous	GBM	studies,	indicating	that	these	genes	could	represent	
potential	target	genes	for	GBM	treatments,	and	their	biological	roles	
in	 the	development	 of	GBM	would	be	of	 great	 interest	 in	 further	
studies.

The 5‐gene prognostic nomogram was validated using an inde‐
pendent dataset on different platform. The C‐index revealed the 

KEGG ID KEGG pathway No. of genes FDR

hsa04723 Retrograde endocannabinoid 
signaling

34 0

hsa04727 GABAergic	synapse 30 0

hsa05032 Morphine addiction 29 1.46E−13

hsa05033 Nicotine	addiction 19 1.92E−12

hsa04724 Glutamatergic synapse 30 8.75E−12

hsa04921 Oxytocin	signaling	pathway 34 1.10E−10

hsa05031 Amphetamine	addiction 22 1.30E−10

hsa04721 Synaptic	vesicle	cycle 21 1.77E−10

hsa04020 Calcium signaling pathway 36 1.77E−10

hsa04728 Dopaminergic	synapse 30 1.77E−10

Note.	KEGG,	Kyoto	Encyclopedia	of	Genes	and	Genomes;	DEGs,	differentially	expressed	genes.

TA B L E  3   The top 10 enriched KEGG 
pathway	terms	of	downregulated	DEGs

TA B L E  4   The best genes predicting overall survival of 
glioblastoma patients

Gene symbol nloglik AIC Selected

OSMR 466.84 935.69 * 

BICDL1 459.69 923.38 * 

SH3BP2 455.95 917.90 * 

MSTN 453.84 915.68 * 

RGS14 452.75 915.50 * 

*Gene selected for the optimal model.

F I G U R E  3   The 5‐gene prognostic nomogram based on the 
expression	level	of	OSMR,	BICDL1,	SH3BP2,	MSTN,	and	RGS14.	
The high and low expression levels of each gene were represented 
by	“1”	and	“0”	respectively.	“Points”	is	the	score	corresponding	to	
the	expression	level	of	a	single	gene.	“Total	points”	is	the	sum	of	
the	“Points”	which	five	genes	get.	The	higher	“Total	points”	value	
means	the	lower	survival	probability	of	GBM	patients
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nomogram's ability to discriminate the outcome of patients; The 
calibration curve presented the calibration between the probability 
of the actual outcome and the probability of prediction; The result 
of multivariate Cox regression showed that the nomogram could 
work	as	an	independent	prognostic	factor.	All	these	above	findings	
demonstrated that this prognostic nomogram based on five genes 
has	the	capability	of	predicting	the	survival	probability	of	GBM	pa‐
tients.	On	the	other	hand,	we	have	considered	trying	to	build	a	new	

model	 including	 patients’	 age.	However,	 after	 adjustment	 for	 age,	
we obtained another 9‐gene model whose prediction power is not 
as	good	as	the	5‐gene	model.	Finally,	the	5‐gene	model	was	chosen.

F I G U R E  5   The survival curves of the high risk group and low 
risk	group	of	GSE43378	cohort	divided	by	5‐gene	prognostic	
nomogram. The high risk group exhibited a poorer prognosis 
compared	with	the	low	risk	group	(p	=	0.018)

F I G U R E  6   The process of developing the 5‐gene prognostic 
nomogram.	First,	168	differentially	expressed	genes	associated	
with	the	OS	in	GBM	patients	were	identified	by	univariate	survival	
analysis	and	differential	expression	analysis.	Next,	a	robust	
likelihood‐based survival modeling approach was applied to identify 
the	best	genes	for	prognosis	prediction.	Then,	the	gene	prognostic	
nomogram	was	generated	based	on	five	genes	(OSMR,	BICDL1,	
SH3BP2,	MSTN,	and	RGS14).	Finally,	the	5‐gene	prognostic	
nomogram was validated in an independent cohort on different 
platforms

F I G U R E  4   Performance of 5‐gene prognostic nomogram in 
predicting	survival	probability	of	GBM	patients	from	GSE43378	
cohort.	(a)	The	calibration	curve	was	generated	for	12‐month	
survival	predictions	of	the	5‐gene	prognostic	nomogram.	(b)	The	
calibration curve was generated for 15‐month survival predictions 
of	the	5‐gene	prognostic	nomogram.	(c)	The	calibration	curve	
was generated for 18‐month survival predictions of the 5‐gene 
prognostic nomogram
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In	 prior	 cancer	 studies,	 the	 risk	 score	 system	 was	 often	 con‐
structed	to	predict	the	mortality	risk	for	patients.	However,	in	clinical	
practice,	 risk	scores	occasionally	do	not	accurately	reflect	the	sur‐
vival	probability.	It	is	important	to	build	a	convenient	predicting	tool	
for	 clinical	practice.	Our	 study	developed	a	prognostic	nomogram	
with five genes that could effectively predict the survival probability 
for	GBM	patients.	Moreover,	the	method	is	flexible	and	convenient.	
The result is presented by relative risk combined with absolute sur‐
vival	probability,	which	is	more	visual	and	intuitive.	Based	on	the	rel‐
ative	risk	ratio,	 the	specific	survival	probabilities	of	the	 individuals	
can	be	queried	according	to	the	level	of	the	five	genes,	and	patients	
predicted to be in severe condition will very likely need more at‐
tention and care. The prognostic nomogram can be easily generated 
using R software and can serve as a powerful tool in model predic‐
tion.	 It	 is	 important	 to	 make	 Real‐time	 Quantitative	 PCR	 (QPCR)	
assay more popular in clinical practice. The expression level of genes 
could	be	obtained	with	QPCR,	which	could	make	our	gene	nomo‐
gram implemented into routine clinical setting conveniently. This 
model	will	provide	a	good	reference	for	cancer	researchers.	 In	our	
future	studies,	we	will	collect	more	clinical	tumor	tissues	which	are	
used	to	determine	the	cut‐off	point	of	risk.	Meanwhile,	other	well‐
known clinical prognostic factors that could not be obtained from 
the	database,	 like	 IDH	mutation	and	pre‐operative	KPS,	should	be	
the key point in our further study. With the patient's clinical infor‐
mation	collected	more	comprehensively,	we	will	try	to	build	a	model	
with adjustment for these well‐known risk factors or find a way to 
combine our nomogram with these clinical characteristics.
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