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Neuropilin-1 is upregulated in the adaptive response of
prostate tumors to androgen-targeted therapies and is
prognostic of metastatic progression and patient mortality
BWC Tse1,13, M Volpert1,13, E Ratther1,13, N Stylianou1, M Nouri2, K McGowan1, ML Lehman1, SJ McPherson1, M Roshan-Moniri2,
MS Butler2, J Caradec2, CY Gregory-Evans3, J McGovern4, R Das5, M Takhar6, N Erho6, M Alshalafa6, E Davicioni6, EM Schaeffer7,
RB Jenkins8, AE Ross9, RJ Karnes10, RB Den11, L Fazli2, PA Gregory12, ME Gleave2, ED Williams1, PS Rennie2, R Buttyan2, JH Gunter1,
LA Selth5, PJ Russell1, CC Nelson1 and BG Hollier1

Recent evidence has implicated the transmembrane co-receptor neuropilin-1 (NRP1) in cancer progression. Primarily known as a
regulator of neuronal guidance and angiogenesis, NRP1 is also expressed in multiple human malignancies, where it promotes
tumor angiogenesis. However, non-angiogenic roles of NRP1 in tumor progression remain poorly characterized. In this study, we
define NRP1 as an androgen-repressed gene whose expression is elevated during the adaptation of prostate tumors to androgen-
targeted therapies (ATTs), and subsequent progression to metastatic castration-resistant prostate cancer (mCRPC). Using short
hairpin RNA (shRNA)-mediated suppression of NRP1, we demonstrate that NRP1 regulates the mesenchymal phenotype of mCRPC
cell models and the invasive and metastatic dissemination of tumor cells in vivo. In patients, immunohistochemical staining of
tissue microarrays and mRNA expression analyses revealed a positive association between NRP1 expression and increasing Gleason
grade, pathological T score, positive lymph node status and primary therapy failure. Furthermore, multivariate analysis of several
large clinical prostate cancer (PCa) cohorts identified NRP1 expression at radical prostatectomy as an independent prognostic
biomarker of biochemical recurrence after radiation therapy, metastasis and cancer-specific mortality. This study identifies NRP1 for
the first time as a novel androgen-suppressed gene upregulated during the adaptive response of prostate tumors to ATTs and a
prognostic biomarker of clinical metastasis and lethal PCa.
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INTRODUCTION
Prostate cancer (PCa)-associated mortality is due to therapy-
resistant metastatic tumor burden. Although prostate-confined
tumors are often treatable by surgery and/or radiation, distal
metastatic disease remains incurable. Local recurrence following
radical prostatectomy (RP) can be treated by salvage radiation
therapy. However, this approach fails in some patients if tumor
cells acquire radiation resistance, or if undetected (occult) distal
metastases have already formed at the time of radiotherapy. Once
metastatic disease is established, treatment relies on androgen-
targeted therapies (ATTs), which exploit the androgen depen-
dence of PCa cells. Although ATTs provide a temporary remission
(usually 2–3 years), they inevitably promote adaptation of tumor
cells to low androgen conditions, giving rise to lethal castration-
resistant PCa (CRPC), a highly aggressive and metastatic PCa

variant. Second- and third-generation ATTs such as abiraterone
(Zytiga) and enzalutamide (Xtandi) delay progression to CRPC, but
are not curative.1 Standard cytotoxic chemotherapies such as
docetaxel (Taxotere) and cabazitaxel (Jevtana) offer additional
survival benefits of only 2–22 months before inevitable relapse,2,3

whereby greater survival benefits (410–22 months) have been
reported when administered early with ADT.4,5 Nevertheless, it is
clear that sequential treatment failure drives the emergence of
increasingly aggressive, therapy-resistant PCa, progressively short-
ening time to relapse.
Although the mechanisms underlying treatment failure and

progression to CRPC are not completely understood, it is
increasingly apparent that a population of tumor cells can
undergo an adaptive response to ATTs. This adaptive tumor
response leads to the activation of alternative tumor-promoting
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pathways, alterations to androgen receptor (AR) function, and
scavenging of adrenal and intra-tumoral steroids.6–8 The identifi-
cation of the molecular determinants of the prostate tumor
adaptation to ATTs relevant for the progression to CRPC will likely
identify new candidates for therapeutic intervention. Used along-
side current and emerging ATT and cytotoxic treatment combina-
tions, these new therapies may lead to the improved clinical
management of metastatic CRPC (mCRPC) and patient outcomes.
In this study, we have utilized the genome-wide transcriptional

profiling of cell lines, xenografts and clinical PCa samples to
identify a gene signature of tumor adaptation to ATTs. Refinement
of this gene set has implicated the transmembrane glycoprotein
neuropilin-1 (NRP1) in the adaptive response to ATTs and
progression to CRPC. Here, we report that NRP1 is an androgen-
suppressed gene overexpressed in therapy-resistant tumors and
mCRPC. In cell line models of mCRPC, the short hairpin RNA
(shRNA)-mediated inhibition of NRP1 expression led to a
significant reduction in their invasive and metastatic capacity.
Moreover, analysis of several PCa patient cohorts identified NRP1
as an independent prognostic indicator of early biochemical
recurrence (BCR) following radiation therapy, metastasis and PCa-
specific mortality. This study not only provides new insights into
the function of NRP1 expressed by tumor cells, but also supports
the rational use of anti-NRP1 agents alongside current ATT and
cytotoxic regimes in the treatment of men with advanced PCa.

RESULTS
Identification of a transcriptional signature representing the
adaptive tumor response to ATTs
To characterize the adaptive response of PCa cells to ATTs, a
human PCa xenograft (LNCaP) model of CRPC9,10 was used to
identify a cluster of genes significantly upregulated with castration
and remaining elevated in CRPC (Figure 1a). Of these genes, a
subset was repressed by the androgen dihydrotestosterone (DHT)
and upregulated by enzalutamide (ENZ) in LNCaP cells in vitro
(Figure 1b). Overlay of this data set with genes upregulated in
human mCRPC versus localized PCa11 revealed a core transcrip-
tional cluster of 120 androgen-regulated genes overexpressed in
CRPC (Figure 1b, Supplementary Table 1). In an effort to identify
clinically robust gene candidates, we analyzed the 120 gene set in
publicly available gene expression profiling of patient metastatic

versus localized PCa12–15 (Figure 1c). This revealed NRP1 to be
significantly upregulated (Po0.05; X 1.5 fc) in five of five data
sets analyzed, with 1.9–4.7 times higher expression in metastatic
samples than localized PCa samples (Figure 1d). Although studies
have reported NRP1 to facilitate cancer progression in multiple
tissues,16–21 the biological role of NRP1 when expressed by PCa
cells remains poorly understood. As such, we chose to characterize
NRP1 expression during the adaptive response to ATTs and its role
in prostate tumor progression.

NRP1 expression is suppressed by active androgen signaling
In vitro validation studies confirmed NRP1 mRNA expression to be
suppressed in LNCaP cells by 48-h treatment with DHT (10 nM) or
the synthetic androgen metribolone (R1881; 1 nM) (Figure 2a). To
determine whether the AR directly binds to the NRP1 gene loci to
mediate its transcriptional repression, analysis of a chromatin
immunoprecipitation (ChIP) sequencing data set22 demonstrated
AR enrichment at five putative AR-binding sites in multiple human
prostate tumors (Figure 2b). We conducted ChIP assays coupled
with quantitative PCR using primers that amplified these five
putative binding sites, detecting significant AR enrichment at
distal (distal_1) and intron 12 genomic regions, as well as a
positive control locus (KLK3/prostate specific antigen (PSA)) in
LNCaP cells cultured in the presence of androgens (Figure 2c). The
repressive effect of AR on NRP1 expression was relieved by AR
knockdown using small interfering RNA (Figure 2d and
Supplementary Figure 1) or treatment with the AR inhibitors
bicalutamide (Bic) and Enz (Figure 2e). In concordance, NRP1
mRNA (Figure 2f) and protein (Figure 2g) levels rose in response to
in vitro androgen deprivation with 5% charcoal-stripped serum
(CSS) supplementation over 7 days. Notably, the re-introduction of
DHT attenuated the CSS-mediated increase in NRP1 mRNA and
protein levels (Figures 2f and g), however, NRP1 levels remained
elevated compared with basal levels in androgen containing
media (fetal bovine serum (FBS)). Consistent with this in vitro data,
surgical castration of mice significantly elevated NRP1mRNA levels
in LuCAP35 tumor xenografts as compared with sham-castrated
controls (Figure 2h). Taken together, these data indicate that
active AR signaling may directly mediate the suppression of NRP1
expression.

Figure 1. Transcriptional signature of the adaptive tumor response to ATTs. (a) Genes differentially expressed following castration of host mice
versus non-castrated (‘intact’) LNCaP tumor xenografts at PSA nadir and CR. NRP1 is indicated by the large blue dot in the upper right
quadrant. (b) Numbers of genes common to three data sets: LNCaP Enz-upregulated genes (top left), genes upregulated in LNCaP xenografts
post-castration (top right) and genes upregulated in mCRPC versus localized PCa (Grasso et al., bottom;11 GSE35988). (c) Heatmap showing
differential expression of the 120 gene subset identified in b in metastatic versus localized PCa data sets.11–15 (d) NRP1 mRNA levels in clinical
samples of metastasis versus primary localized PCa across multiple data sets.11–15 *Po0.05, ***Po0.001. In c and d, log2 median centered
gene expression data was downloaded from the Oncomine database.
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NRP1 is upregulated during the adaptive response to ATTs and
progression to CRPC
We have previously established the LNCaP xenograft model to
mimic the in vivo progression to CRPC following castration.9,10 The
transcriptional profiling of LNCaP tumors following castration of
host mice identified NRP1 levels to peak at post-castration PSA
nadir and remain elevated with progression to castration
resistance (CR; Figure 3a). Increased NRP1 protein expression
was also observed in an androgen-independent LNCaP variant
cell line generated following long-term culture in androgen-
deprived conditions (LNCaP-AI),23 compared with their androgen-
dependent parental cells (Figure 3b). Next, we assessed the
expression levels of NRP1 in clinical samples of CRPC. Analysis of
gene expression data obtained from laser capture microdissected
samples from treatment naive or hormone refractory primary
tumor samples24 identified significantly higher NRP1 mRNA
expression in men with hormone refractory progressive disease
(PD; Figure 3c). This was confirmed by transcriptional profiling of
mCRPC samples by Grasso et al.,11 which showed a significant
upregulation of NRP1 expression in heavily pre-treated samples of
mCRPC compared with either localized PCa or benign tissue
samples (Figure 3d). No significant difference in expression was
observed between benign and localized PCa samples (Figure 3d).
Moreover, RNA-sequencing data of 150 mCRPC bone or soft tumor
biopsies25 identified the substantial expression of NRP1 in these
tumors to be further increased in patients treated with abiraterone
(Abi) or Enz versus neither treatment (Figure 3e). Collectively,
these data establish NRP1 to be dynamically regulated during the
prostate tumor adaptation to ATTs and progression to mCRPC.

NRP1 is required for the invasion and metastatic dissemination of
mCRPC cell models
As few reports have described a functional role for NRP1 when
expressed directly by PCa cells, we next investigated the effect of
NRP1 on the invasive and metastatic phenotype. Flow cytometric
profiling revealed cell surface NRP1 levels to be relatively low in
the benign prostate epithelial cell lines BPH-1 and RWPE-1, but
elevated in tumor cells with increasing invasive and metastatic
potential, with highest expression seen in the castration-resistant
and metastatic PC3 line (Figure 4a). To determine the effect of
NRP1 suppression on the phenotype of PCa cells, two stable NRP1
knockdown PC3 cell lines (shNRP1(1) and shNRP1(2)) were
generated using the pLKO.1 lentiviral vector (Figure 4b). No
significant difference in proliferation was observed between NRP1
knockdown and control cell lines as measured by either cell
confluence or DNA content quantification (Figure 4c). However,
we observed that NRP1 knockdown caused PC3 cells to grow as
more compact and non-invasive colonies over a 10-day period in
both monolayer (Figure 4d) and modified three-dimensional (3D)
On-top Matrigel cultures (Figure 4e). A reduction in invasive
capacity following NRP1 suppression in PC3 cells, as well as the
additional metastatic and castrate resistant DU145 cell line, was
confirmed using wound scratch invasion studies (Supplementary
Figure 2).
As previous reports have implicated NRP1 in the epithelial-

mesenchymal transition phenotype,26,27 a developmental pro-
gram capable of endowing tumor cells with invasive properties,28

we next assessed the mesenchymal properties of PC3 cells upon
NRP1 knockdown. The expression of the prototypical mesenchy-
mal and epithelial markers, vimentin and E-cadherin, respectively,

Figure 2. Regulation of NRP1 expression by the androgen signaling axis. (a) Relative NRP1 mRNA expression in LNCaP cells grown in CSS after
48-h treatment with 10 nM DHT, 1 nM R1881 or vehicle. (b) Modified UCSC screenshot showing AR binding sites (ChIP-seq) proximal to the
NRP1 gene in 13 PCa samples 22 (GSE70079). Each track depicts ChIP-seq AR binding intensity for a given sample. (c) ChIP-quantitative PCR
(qPCR) demonstrates AR binding to distal 1 and Intron_12 regions at the NRP1 gene locus. The dotted line demarcates no enrichment over an
IgG control ChIP. A known AR binding site in the KLK3 enhancer region was used as a positive control, whereas a gene-poor region on
chromosome 20 with no previous evidence of AR binding was used as a negative control (NC). (d) NRP1 expression in LNCaP cells grown in
CSS after 48- h treatment with 10 nM DHT and AR or scrambled control (scr) small interfering RNA. For AR and KLK3/PSA mRNA levels refer to
Supplementary Figure 1. (e) NRP1 expression in LNCaP cells grown in CSS after 48- h treatment with 10 nM DHT with or without Bic or ENZ co-
treatment. (f) qPCR analysis of NRP1 and PSA expression and (g) western blot analysis of NRP1 expression in LNCaP cells after culture in CSS for
1, 3, 5 or 7 days, or 7 days followed by 3 days of DHT treatment (10 nM). (h) NRP1 mRNA expression levels in LuCaP35 xenografts following
sham castration (sham) or castration (Cx) of host mice. Raw expression data from GSE33316.51 *Po0.05; **Po0.01; ****Po0.0001.

NRP1 promotes metastatic progression and therapy failure
BWC Tse et al

3419

Oncogene (2017) 3417 – 3427



were examined using the In-Cell Western technique LI-COR
Biosciences (Lincoln, NE, USA) on monolayer cultures (Figure 4f)
or immunofluorescence staining of cells grown in 3D On-top
Matrigel cultures (Figure 4g). In both monolayer and 3D cultures,
the suppression of NRP1 levels resulted in reduced vimentin and
increased E-cadherin protein expression (Figures 4f and g). The
reduction in NRP1 expression was also associated with increased
cortical actin staining (Figure 4g), a characteristic of epithelial cell
types. Next, we assessed the impact of NRP1 knockdown on
metastatic dissemination. Control (shCntrol) and NRP1 knockdown
PC3 cells were xenografted into the yolk sacs of dechorionated
2-day post-fertilization wild-type zebrafish embryos and metas-
tasis, measured as cell dissemination outside the yolk sac, was
imaged 5 days later. In comparison with control cells, which
disseminated toward the head and tail of the fish, a significantly
reduced proportion of zebrafish were positive for metastasis
following injection of the NRP1 knockdown cell lines (Figures 4h
and i). Collectively, these data provide evidence that NRP1 is
required for the invasion and metastatic dissemination of mCRPC
cell models, which may be mediated via its regulation of the
mesenchymal phenotype.

Increased NRP1 expression is associated with primary tumor
progression and therapy failure
Previous studies have reported a positive association between
NRP1 expression and Gleason grade in immunohistochemical
(IHC) analyses of small patient cohorts (5–17 specimens per
Gleason grade).16,18 We expanded upon these studies by
performing IHC staining for NRP1 using a Gleason grade tissue
microarray containing 176 patient specimens (cohort summarized
in Supplementary Table 2). Results from this larger cohort

supported previous observations, with strong NRP1 staining more
frequently observed in higher Gleason grade tumors (Figure 5a). In
addition, analysis of RNA-sequencing data from The Cancer
Genome Atlas (TCGA) Prostate Adenocarcinoma (PRAD) cohort
(http://xena.ucsc.edu) revealed increased NRP1 mRNA expression
to be associated with increasing pathological stage and node
status in a large cohort (n= 498) of primary tumor samples
(Figure 5b). RNA sequencing of the TCGA PRAD cohort also
identified significantly elevated NRP1 expression in tumor samples
from men with progressive disease (PD) following primary therapy
versus those who had complete response (CR; Figure 5b). Kaplan–
Meier analysis of the TCGA PRAD cohort showed significantly
lower probability of relapse-free survival in men with higher than
median NRP1 expression (Figure 5c).

NRP1 predicts biochemical failure in patients after postoperative
radiation therapy
As TCGA analysis revealed elevated NRP1 expression in the
primary tumors of patients who failed primary therapy, we next
investigated the significance of NRP1 as a predictive biomarker for
BCR after primary therapies. NRP1 expression at RP was analyzed
with reference to patient outcome in a cohort of 130 patients
who underwent post-RP adjuvant or salvage radiotherapy at the
Kimmel Cancer Center, Thomas Jefferson University (TJU),
Philadelphia, PA, USA29 (Figure 5d). All patients were diagnosed
with pT3 or margin positive disease at the time of radiotherapy.
Significantly higher NRP1 expression was observed in patients
who developed post-radiotherapy BCR compared with patients
who did not (Figures 5e and f). This was confirmed by Kaplan–
Meier survival analysis revealing patients with high NRP1
expression to have a rapid progression to BCR, suggestive of a

Figure 3. NRP1 expression is dynamically regulated during the adaptive response to ATTs and progression to mCRPC. (a) Microarray analysis of
NRP1 expression in LNCaP xenografts harvested from non-castrated mice (intact) and during progression to CR after castration of host nude
mice. (b) Western blot of NRP1 in parental LNCaP cells and their androgen-independent variant, LNCaP-AI. (c) NRP1 mRNA expression in
hormone naive primary PCa biopsies compared with hormone refractory samples from data set GDS1390.24 (d) NRP1 mRNA levels in benign,
localized PCa and mCRPC samples from Grasso et al.11 Data extracted from GSE35988. (e) Scatterplot showing log2 RPKM normalized NRP1
RNA-seq read counts from individual mCRPC samples (n= 118) from the Stand Up To Cancer (SU2C)/Prostate Cancer Foundation (PCF) Dream
Team cohort.25 Data obtained from cBioPortal.52,53 (d, e) Error bars represent s.e.m. ****P o0.0001.
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greater presence or outgrowth of occult metastases (Figure 5g).
Finally, multivariate analysis identified high NRP1 expression as a
significant independent predictor of BCR (P= 0.019, Supple-
mentary Table 3). Taken together, these data provide novel
insight into the expression of NRP1 in clinical samples of primary
PCa and its positive association with aggressive clinicopathologi-
cal parameters.

NRP1 is an independent prognostic biomarker of metastatic
progression and cancer-specific mortality
As a small minority of patients from the TJU cohort developed
distal metastases during follow-up, we analyzed the ability of NRP1
to predict metastasis in a larger cohort. Hence, NRP1 expression at
RP was analyzed for its ability to predict metastasis, defined by
positive bone or computed tomography scan, in a cohort of 545
patients who had undergone RP at the Mayo Clinic30 (Figure 6a).
NRP1 expression was found to be significantly higher in patients
who were positive for metastasis (Figures 6b–c) and prostate
cancer-specific mortality (PCSM; Figures 6d and e). Moreover,
multivariate analysis identified high NRP1 expression at RP as a
significant independent predictor of both metastatic progression
(P= 0.008) and PCSM (P= 0.013; Table 1).

To further validate these findings, we performed a similar
analysis in a Natural History cohort of 644 intermediate- and high-
risk men who underwent RP at Johns Hopkins Medical Institutions
(JHMI).31 In this unique cohort, patients received no adjuvant or
salvage therapy following RP until metastatic progression. Again,
high NRP1 expression was associated with lower probability of
metastasis-free survival (Figure 7a) and was an independent
predictor of metastatic progression (P= 0.048, Table 1). Within a
subgroup of 211 patients who were positive for BCR (Figure 7b),
NRP1 was associated with a shorter time to PCSM (Figure 7b) and
was a significant predictor of PCSM (P= 0.034; Table 1). Overall,
these results define NRP1 as a novel biomarker for identifying
patients at risk of metastatic progression and death from PCa
after RP.

DISCUSSION
Despite the introduction of new androgen-targeting agents ENZ
and Abi acetate into treatment regimens for CRPC, it remains
incurable.1,6 Androgens are potent growth and differentiation
factors for prostate tissue, and loss of this differentiation pressure
is an unintended consequence of ATTs. This can result in the
initiation of de-differentiation and trans-differentiation cell

Figure 4. NRP1 promotes the invasion and metastatic dissemination of mCRPC cell models. (a) Flow cytometric quantification of NRP1 protein
levels in benign (BPH-1, RWPE-1) and tumorigenic PCa cell lines. Error bars: s.d. n= 3, *P o0.05. (b) Western blot of NRP1 expression in PC3-
shCntrl, -shNRP1(1) and -shNRP1(2) total cell lysates. (c) Left panel: relative confluence of PC3-shCntrl (black lines), -shNRP1(1) (red lines) and
-shNRP1(2) (blue lines) cells over 48 h measured by the CellPlayer Kinetic Proliferation assay. Right panel: DNA content in the same cell lines
quantified by PicoGreen assay after 1, 3 and 5 days. (d) Representative phase-contrast images of PC3-shRNA models grown in 2D monolayer
and (e) 3D On-top Matrigel cultures. Scale bars, 100 μm. (f) Quantification of vimentin and E-cadherin protein expression using the In-Cell
Western technique (LI-COR) on intact PC3-shCntrl, -shNRP1(3) and -shNRP1(5) cells. Wells were stained immediately following wound scratch
assays reported in Supplementary Figure 2. Bar chart displays combined intensity data (n= 16 wells from three experiments). Error bars: s.d.
(g) Vimentin and E-cadherin protein expression detected by immunofluorescence in PC3-shCntrl and -shNRP1(3) cells after 10 days of 3D On-
top Matrigel culture. Red: actin; blue: DAPI. × 60 magnification. (h) Zebrafish-xenografted control (shCntrol) and NRP1 knockdown (shNRP1 (1)
and shNRP1 (2)) PC3 cells (red fluorescent signal) at 1 day (left panels) and 5 days (right panels) post-injection (dpi). White arrows indicate
metastatic dissemination outside of the yolk sac. (i) Percentage incidence of metastasis in xenografted zebrafish (n= 64, shContrl; n= 30,
shNRP1 (1); n= 28, shNRP1 (2)). P= 0.0002 (chi-square test).
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Figure 5. Increased NRP1 expression is associated with tumor progression and primary therapy failure. (a) Representative images of BPH and
Gleason grade 3, 4 or 5 (G3, G4, G5) tumor samples from a tissue microarray stained for NRP1. Scale bars, 100 μm. Right panel: summary of
NRP1 staining intensity scores across Gleason grades. Scoring scale: no staining (0), low (+1), moderate to high (+2). (b) RNA-sequencing data
from the TCGA PRAD cohort comparing NRP1 mRNA expression in patients with tumors of varying Gleason pattern (primary and secondary,
leftmost 2 panels), pathological T scores (middle panel) and node status/response to primary therapy (rightmost 2 panels). *Po0.05;
**Po0.01; ***Po0.001; ****Po0.0001. PR, partial response; SD, stable disease. (c) Kaplan–Meier curves showing relapse-free survival in 498
PCa patients stratified according to the median levels (high versus low) for NRP1 expression (RNA-seq, log2(x+1) RSEM) in the TCGA PRAD
cohort. (d) NRP1 expression in TJU post-radiotherapy samples. Each sample is annotated in the colored matrix below the plot. ECE, extra-
capsular extension; LNI, lymph node invasion; MET, metastasis; SM, surgical margin; SVI, seminal vesicle invasion. (e) Boxplot showing NRP1
expression in patients positive and negative for BCR. (f) ROC curve for NRP1 expression predicting BCR. (g) Kaplan–Meier curve showing BCR-
free survival for NRP1 high and low expression groups.
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plasticity programs, which enable survival under low androgen
conditions.32 Hence, identifying biomarkers and molecular deter-
minants of the adaptive progression to metastatic castrate-
resistant disease is critical for the development of more effective
treatments. Here, we identify NRP1 as one of a subset of
androgen-suppressed genes persistently overexpressed in CRPC
in both an in vivo human xenograft model of CRPC and
clinical mCRPC.
Although ATTs initially suppress androgen signaling, this

pathway is re-activated in CRPC.8,33 A possible explanation of
the sustained NRP1 overexpression in CRPC despite re-activated
androgen signaling may involve the transcriptional activity of
CRPC-associated AR splice variants.34 A recent report identified
NRP1 to be upregulated by AR variants expressed in 22Rv1 cells,

but not full-length AR, in the absence of androgens.35 In addition,
NRP1 formed part of a 297 gene signature capable of distinguish-
ing localized PCa from CRPC, and was 1 of 34 probes significantly
associated with shorter time to post-RP BCR.35 In concordance, we
report NRP1 to be associated with shorter time to relapse
following primary therapy in the TCGA PRAD cohort and an
independent predictor of PCa recurrence following post-RP
radiation therapy in a 130-patient cohort from the TJU.
We report for the first time that high NRP1 expression in primary

tumors at the time of RP is an independent predictor of clinical
metastasis and cancer-specific mortality in two clinical cohorts
from the Mayo Clinic and JHMI. Further studies will be required to
decipher whether NRP1 is solely a biomarker for identifying
patients at risk of metastatic progression and death from PCa or

Figure 6. NRP1 expression predicts metastasis and PCSM following RP. (a) NRP1 expression in Mayo Clinic patient samples. Each sample is
annotated in the colored matrix below the plot. ADT, androgen deprivation therapy; ECE, extra-capsular extension; LNI, lymph node invasion;
MET, metastasis; RT, radiation therapy; SM, surgical margin; SVI, seminal vesicle invasion. (b) NRP1 expression in patients positive and negative
for METS. (c) ROC curve for NRP1 expression predicting metastasis. (d) NRP1 expression in patients positive and negative for PCSM. (e) ROC
curve for NRP1 expression predicting PCSM.
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actively contributes to metastatic and therapy-resistant disease.
We demonstrate NRP1 is required for the full metastatic potential
of tumor cells using an in vivo Zebrafish model. Although studies
using xeno-transplantation into mice and transgenic models will
be necessary for validation, the Zebrafish model is becoming
increasingly recognized as a rapid, robust and inexpensive assay
that can faithfully recapitulate the metastatic potential of
numerous human cancer cell models.36 Given the relatively short
duration of studies (normally o1 week) that can be performed
using the Zebrafish model, mouse studies will be critical for
deciphering the role of NRP1 in the formation of occult metastases
and their outgrowth over more extended periods.
Collectively, the data reported herein support the rational

therapeutic targeting of NRP1 to inhibit prostate tumor progression.
A recent Genentech-led Phase 1b clinical trial failed to demonstrate
efficacy of the NRP1 antibody MNRP1685A (Vesencumab), targeted
against the vascular endothelial growth factor (VEGF)-binding site of
NRP1, as a mono drug therapy in a mixed cancer patient cohort, which
did not include PCa patients.37 In combination with the VEGF inhibitor
bevacizumab, MNRP1685A administration led to a high incidence of
proteinuria, prompting withdrawal of the drug. As we report for the
first time that NRP1 is expressed in a dynamic manner during the
adaptive response of tumors to ATTs, NRP1-targeted compounds may
prove more efficacious in a PCa context when administered as
adjuvant therapies alongside agents targeting the androgen signaling
axis. In the absence of additional VEGF inhibitors, renal side effects
may be expected to be less pronounced.
Ligands outside the VEGF family, such as transforming growth

factor-β,38 platelet-derived growth factor-BB,39 fibroblast growth
factors-1, -2 and -4 and hepatocyte growth factor,40 also have a role
in mediating the biological effects of NRP1. As such, agents aimed at
more broadly inhibiting NRP1 activity, rather than specific blockade
of the VEGF-binding site, may prove a more effective strategy in
targeting NRP1-mediated PCa progression. Indeed, NRP1 can
promote many aspects of tumorigenesis, such as angiogenesis, cell
survival, migration, invasion and chemo-resistance.19,41,42 Further
studies will be required to elucidate the contribution of various
downstream signaling pathways to the aggressive phenotype
mediated by NRP1 in the PCa setting. However, the therapeutic
potential of targeting NRP1 has been highlighted by recent studies
showing the blockade of NRP1 to inhibit the spread and growth of
experimental models of human medulloblastoma, and non-small
cell lung carcinoma xenografts.43,44

In conclusion, this study provides the first comprehensive clinical
evaluation of NRP1 expression in human PCa. We have identified NRP1
at RP as a prognostic biomarker of shorter time to BCR, metastasis and
cancer-specific mortality, and report that NRP1 functions to enhance
the metastatic potential of PCa cells. We provide the first evidence that
NRP1 expression is upregulated by ATTs, the standard clinical treat-
ment for recurrent and metastatic disease. Collectively, our findings
provide the preclinical data to support the use of anti-NRP1-targeted
therapies as novel co-targeted therapies to be used in an adjuvant
setting alongside current ATT and cytotoxic regimes in the treatment
of men with advanced disease.

MATERIALS AND METHODS
Cell culture
LNCaP, DU145 and PC3 cells were sourced from the American Type Culture
Collection (Manassas, VA, USA). C4-2B and BPH-1 cells were obtained from Dr
Leland Chung, Cedars-Sinai Medical Center, Los Angeles, CA, USA, and Dr
Simon Hayward, Vanderbilt University Medical Center, Nashville, TN, USA,
respectively. LNCaP-AI cells were obtained from Dr Ralph Buttyan, Vancouver
Prostate Centre, Vancouver, BC, Canada. All cell lines undergo mycoplasma
testing on a quarterly basis. LNCaP, DU145, PC3, C4-2B, BPH-1 and LNCaP-AI
cells were grown in RPMI medium with 10% FBS. LAPC4 cells were cultured in
Iscove’s modification of Dulbecco’s medium with 10% FBS. RWPE-1 cells were
grown in keratinocyte medium containing recombinant human epidermal

Table 1. Multivariable Cox proportional hazards analysis of risk factors
for postoperative RT biochemical failure, clinical metastasis and
prostate cancer-specific mortality

Post-radiotherapy BCR

TJU

HR 95% Cl P-value

NRP1 2.30 1.14–4.62 0.019
GSo8 0.53 0.12–2.40 0.410
GS≥ 8 2.85 1.46–5.57 0.002
Lymph node involvement 1.55 0.20–12.27 0.676
Positive surgical margin 0.95 0.45–2.00 0.897
Extra-capsular extension 1.67 0.62–4.54 0.311
Seminal vesicle invasion 1.38 0.71–2.67 0.344
Pre-operative PSA 10–20 ng/ml 1.59 0.69–3.66 0.275
Pre-operative PSA 420 ng/ml 1.64 0.69–3.92 0.261

Metastasis

Mayo Clinic

HR 95% Cl P-value

NRP1 1.73 1.15–2.59 0.008
GSo8 0.36 0.13–0.82 0.026
GSX 8 3.49 2.31–5.30 o0.0001
Lymph node involvement 1.50 0.82–2.76 0.194
Positive surgical margin 0.93 0.61–1.39 0.714
Extra-capsular extension 1.31 0.86–1.99 0.210
Seminal vesicle invasion 1.57 0.98–2.50 0.060
Pre-operative PSA 10–20 ng/ml 0.73 0.44–1.22 0.237
Pre-operative PSA 420 ng/ml 0.80 0.47–1.34 0.392

JHMI post-RP

HR 95% Cl P-value

NRP1 1.91 1.01–3.61 0.048
GSo8 NA NA NA
GSX 8 4.26 2.25–8.08 o0.0001
Lymph node involvement 3.05 1.49–6.25 0.002
Positive surgical margin 1.05 0.53–2.09 0.894
Extra-capsular extension 2.28 1.01–5.15 0.048
Seminal vesicle invasion 2.40 1.20–4.78 0.013
Pre-operative PSA 10–20 ng/ml 1.87 0.93–3.76 0.081
Pre-operative PSA 420 ng/ml 1.11 0.41–3.01 0.840

Prostate cancer-specific mortality

Mayo Clinic

HR 95% Cl P-value

NRP1 1.83 1.14–2.98 0.013
GSo8 0.71 0.20–1.94 0.540
GSX 8 3.52 2.18–5.75 o0.0001
Lymph node involvement 2.33 1.26–4.32 0.007
Positive surgical margin 1.42 0.89–2.29 0.141
Extra-capsular extension 1.46 0.89–2.39 0.131
Seminal vesicle invasion 2.14 1.28–3.59 o0.0001
Pre-operative PSA 10–20 ng/ml 0.82 0.45–1.46 0.500
Pre-operative PSA 420 ng/ml 0.61 0.33–1.10 0.105

JHMI post-BCR

HR 95% Cl P-value

NRP1 2.01 1.05–3.85 0.034
GSo8 NA NA NA
GSX 8 4.53 2.28–9.01 o0.0001
Lymph node involvement 0.97 0.45–2.08 0.930
Positive surgical margin 0.54 0.26–1.11 0.094
Extra-capsular extension 0.77 0.32–1.83 0.552
Seminal vesicle invasion 2.74 1.25–5.98 0.012
Pre-operative PSA 10–20 ng/ml 1.04 0.50–2.16 0.925
Pre-operative PSA 420 ng/ml 1.03 0.37–2.90 0.955

Abbreviations: BCR, biochemical recurrence; CI, confidence interval; GS,
Gleason score; HR, hazard ratio; JHMI, Johns Hopkins Medical Institutions;
NA, not applicable; NRP1, neuropilin-1; PSA, prostate specific antigen; RT,
radiation therapy; TJU, Thomas Jefferson University. Bold values indicate
Po0.05.
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growth factor (5 ng/ml) and bovine pituitary extract (50 ng/ml). shRNA-
transfected PC3 and DU145 cells were maintained in an additional 1 μg/ml
puromycin.

Androgen and anti-androgen treatments
LNCaP cells were seeded into six-well dishes at 9x104 cells per well in
growth medium before medium was replaced with RPMI containing 5%
CSS 72 h later. After 48 h, medium was replaced with fresh RPMI/5% CSS
and cells were treated with 10 μM ENZ or Bic (Selleck Chemicals, Houston,
TX, USA) in the presence of 10 nM DHT or ethanol vehicle control, and RNA
was harvested after 48 h. For AR knockdown, LNCaP cells were cultured in
growth medium for 72 h before being transiently transfected with AR
On-target Plus siRNA (target sequence 5ʹ-CGAGAGAGCUGCAUCAGUU-3ʹ,
GE Dharmacon, GE Healthcare, Lafayette, CO, USA) or nonspecific control
small interfering RNA (GE Dharmacon, GE Healthcare) at a final concen-
tration of 50 nM using Lipofectamine 2000 (Thermo Fisher Scientific,
Waltham, MA, USA). Medium was replaced 48 h post-transfection with
RPMI/5% CSS, with or without 10 nM DHT, and RNA collected 48 h later.

NRP1 shRNA knockdown
NRP1 shRNA pLKO.1 lentiviral vectors with mature anti-sense sequences
5ʹ-AATACTAATGTCATCCACAGC-3ʹ (shNRP1(1)) and 5ʹ-ATATAAGTGCATT
CAAGGCTG-3ʹ (shNRP1(2)), as well as a control sequence targeting firefly
luciferase (shCntrl), were obtained from Thermo Fisher Scientific. Viral
particles were produced as previously described.45

Evaluation of NRP1 protein expression in clinical PCa tissues
A Gleason grade tissue microarray comprising 176 PCa patient samples
was obtained from the Vancouver Prostate Centre Tissue Bank (see
Supplementary Table 2 for a summary of clinicopathological features).
Specimens were obtained from patients following informed consent using
a protocol approved by the Clinical Research Ethics Board of the University
of British Columbia and the BC Cancer Agency. Tissue microarray
construction, IHC using a rabbit monoclonal antibody against human
NRP1 (EPR3113, 2621-1, Epitomics, Burlingame, CA, USA) and evaluation of
staining intensity were performed as previously described.46

Figure 7. High NRP1 expression in RP samples is prognostic of metastatic progression and cancer-specific mortality in a natural history cohort.
Waterfall plots showing NRP1 expression in JHMI patient cohorts in (a) post-RP and (b) post-BCR samples. Each sample is annotated in the
colored matrix below the plot. ECE, extra-capsular extension; LNI, lymph node invasion; MET, metastasis; SM, surgical margin; SVI, seminal
vesicle invasion. Boxplots showing NRP1 expression in patients positive and negative for METS (a) and PCSM (b). Kaplan–Meier curves showing
MET-free (a) and PCSM-free (b) survival for NRP1 high and low expression groups.
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Quantitative PCR
Total RNA was extracted with the RNeasy Mini Kit (Qiagen, Hilden, Germany)
before reverse transcription with SuperScript III Reverse Transcriptase (Thermo
Fisher Scientific). Quantitative PCR was performed using SYBR Green (Applied
Biosystems, Foster City, CA, USA) using ViiA 7 or 7900 HT Fast Real Time PCR
systems (Applied Biosystems). Gene expression was determined by the
comparative Ct method, and normalized to the housekeeping gene RPL32.
Primer sequences are shown in Supplementary Table 4.

Analysis of Mayo Clinic, JHMI and TJU cohorts
Affymetrix Human Exon 1.0 ST arrays were used to analyze NRP1 expression in
RP samples derived from Mayo Clinic (GSE46691), JHMI31 and TJU (GSE72291)
repositories (545, 644 and 130 patients, respectively). Within the JHMI
repository, 361 patients who were positive for BCR post-RP were analyzed.
Patient clinical characteristics and sample preparation methods have been
described previously.30,31 Data were normalized and summarized using the
SCAN algorithm. For grouped analysis, samples were split by the median
expression of NRP1 into groups of low and high expression. The prognostic
value of NRP1 was evaluated using multivariable odds ratios, and area under
the receiver operating characteristics curve for BCR, metastasis and PCSM
endpoints. Metastatic progression was defined by a positive bone or computed
tomography scan. Kaplan–Meier survival analysis curves were generated for the
JHMI cohorts but not for the Mayo cohort because of its nested case–control
study design. All studies analyzed adhered to the PRoBE and REMARK
guidelines for blinded evaluation and analysis of prognostic biomarkers.47,48

Zebrafish metastasis assays
Research was carried in accordance with protocols compliant with the
Canadian Council on Animal Care and with the approval of the Animal Care
Committee at the University of British Columbia. Wild-type zebrafish were
maintained in aquaria according to standard protocols.49 Embryos were
generated by natural pair-wise matings and raised at 28.5 °C on a 14-h
light/10-h dark cycle in a 100 mm2 Petri dish containing aquarium water. In
all, 0.2 mM phenylthiourea was added to the embryos at 10 h after
fertilization to prevent pigment formation.50

PC3 cells were fluorescently labeled 24 h before microinjection with 1.5 μM
CellTracker CM-Dil dye (Thermo Fisher Scientific) according to the manufac-
turer’s instructions. Wild-type embryos were dechorionated at 2 days after
fertilization. Following tricane anesthetization, 50–70 cancer cells were
microinjected into the yolk sacs of 50 animals per treatment group. Embryos
were transferred to 100 mm2 dishes that contained aquaria water with added
phenylthiourea. Embryos were visually assessed for presence of xenografts and
only successfully xenografted embryos were included in the experiment.
Embryos were kept at 35 1C for the duration of the experiment. Metastatic
dissemination outside the yolk sac was assessed 5 days later by observation
using the Zeiss (Oberkochen, Germany) Axio Observer microscope with Zen
2012 software (Carl Zeiss Microscopy GmbH, Jena, Germany). Fixed cells were
used as a control to ensure that observed metastasis was not due to yolk sac
absorption.

Flow cytometry
Cells were grown to 80% confluence, washed twice in phosphate-
buffered saline and detached using non-enzymatic cell dissociation
buffer (Sigma Aldrich, St Louis, MO, USA). After washing and resuspension
(106 cells/ml) in phosphate-buffered saline/5% FBS, 100 μl of cell
suspension was incubated with anti-human NRP1-APC (#446921) or
mouse IgG2a Isotype Control-APC (#20102) (R&D Systems, Minneapolis,
MN, USA) for 1 h on ice, then washed three times in phosphate-buffered
saline/5% FBS. Propidium iodide (3 μl, 100 μg/ml) was added to the cells
immediately before loading on a FACS Canto (BD Bioscience, Franklin
Lakes, NJ, USA) to allow for viable cell gating. Data analysis was
performed using Kaluza (Beckman Coulter, Brea, CA, USA) or Flowjo
(Flowjo LLC, Ashland, OR, USA) software.

Western blotting and immunofluorescence
Western blotting was performed as described previously.45 Primary
antibodies used were NRP1 (#sc-7239, Santa Cruz, Dallas, TX, USA), AR
(#D6F11, Cell Signaling Technology, Danvers, MA, USA) and GAPDH
(#14C10, Cell Signaling Technology).

Invasion and proliferation assays
3D Laminin-rich Extracellular Matrix (lrECM) On-Top Cultures (referred to as 3D
On-top Matrigel assays) were performed with an initial seeding density of 1x103

PC3 cells per well of a 96-well plate and conducted as previously.45 For invasion
assays, 15 000 PC3 or 25 000 DU145 cells were seeded overnight into Matrigel-
coated (100 μg/ml in growth media) wells in a 96-well Image-lock plate (Essen
BioScience Inc., Ann Arbor, MI, USA). Wounds were made through the
monolayer of confluent cells using the 96-pin WoundMaker (Essen BioScience
Inc.) according to the manufacturer’s instructions. Wells were washed twice with
phosphate-buffered saline and matrigel (50 μl, 1 mg/ml in growth media) was
added to each well and allowed to solidify before the initiation of imaging.
Images were captured every 2 h for up to 48 h by the IncuCyte FLR live cell
imaging system (Essen BioSciences Inc.). Wound closure kinetics were
determined using the CellPlayer software module (Essen BioScience Inc.). For
proliferation assays, cells were seeded as described for invasion assays and cell
confluence determined using the same software. Proliferation was also assessed
using the Quant-iT PicoGreen dsDNA Assay Kit (Thermo Fisher Scientific).

Statistical analysis
Data analysis was performed by one-way analysis of variance with Tukey’s
post hoc test for multiple comparisons, unless otherwise stated. Zebrafish
metastasis assay results were analyzed by chi-square test. Statistical
significance was defined as Po0.05. For publicly available microarray
expression data sets, the normalized expression data for NRP1 was
downloaded from the Oncomine database. Kaplan–Meier survival curve
and log rank tests were performed using GraphPad Prism v6 software
(GraphPad Software, Inc., San Diego, CA, USA).
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