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Abstract

Background: Oxidative stress is involved in age-related muscle atrophy, such as sarcopenia. Since Chlorella, a unicellular
green alga, contains various antioxidant substances, we used a mouse model of enhanced oxidative stress to
investigate whether Chlorella could prevent muscle atrophy.

Methods: Aldehyde dehydrogenase 2 (ALDH2) is an anti-oxidative enzyme that detoxifies reactive aldehydes derived
from lipid peroxides such as 4-hydroxy-2-nonenal (4-HNE). We therefore used transgenic mice expressing a dominant-
negative form of ALDH2 (ALDH2*2 Tg mice) to selectively decrease ALDH2 activity in the muscles. To evaluate the
effect of Chlorella, the mice were fed a Chlorella-supplemented diet (CSD) for 6 months.

Results: ALDH2*2 Tg mice exhibited small body size, muscle atrophy, decreased fat content, osteopenia, and kyphosis,
accompanied by increased muscular 4-HNE levels. The CSD helped in recovery of body weight, enhanced oxidative
stress, and increased levels of a muscle impairment marker, creatine phosphokinase (CPK) induced by ALDH2*2.
Furthermore, histological and histochemical analyses revealed that the consumption of the CSD improved skeletal
muscle atrophy and the activity of the mitochondrial cytochrome c oxidase.

Conclusions: This study suggests that long-term consumption of Chlorella has the potential to prevent age-related
muscle atrophy.
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Background
Excessive production of reactive oxygen species (ROS)
causes oxidative damage to DNA, proteins, and lipids.
This damage accumulates with age in various organs, in-
cluding the skeletal muscle, as observed in both humans
[1-4] and animal models [5,6]. Thus, it is hypothesized
that some antioxidants may aid in preventing age-
related disorders, including muscle atrophy, such as
sarcopenia.
We have sought to develop animal models with en-

hanced oxidative stress and various impairments that are
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affected by age [7,8]. Aldehyde dehydrogenases (ALDH)
catalyze the conversion of reactive aldehydes to carbox-
ylates [9]. Mitochondrial ALDH2 is known to oxidize
acetaldehyde produced from ethanol into acetate [10],
and a single nucleotide polymorphism in this gene found
in Asian populations, ALDH2*2, produces a dominant-
negative protein that prevents this activity. We have pre-
viously revealed, through a molecular epidemiological
analysis, that a higher concentration of lipid peroxides
are present in the sera of ALDH2-deficient females than
in those expressing active ALDH2 [11]. Furthermore, we
demonstrated that ALDH2 deficiency is a risk factor for
late-onset Alzheimer’s disease [12], suggesting a role for
this polymorphism in human diseases. Recently, ALDHs
have emerged as an important enzyme in a variety of hu-
man pathologies. ALDH2 dysfunction contributes to a
variety of human diseases including diabetes, cancer,
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cardiovascular diseases [13-15], neurodegenerative dis-
eases, stroke, Fanconi anemia, pain, osteoporosis, and the
aging process [16].
In previous examinations of ALDH2*2, we showed

that mitochondrial ALDH activity was repressed when
murine ALDH2*2 was stably expressed in the neuronal
cell line PC12. Cells expressing ALDH2*2 were also vul-
nerable to 4-hydroxy-2-nonenal (4-HNE), and treatment
with 4-HNE or antimycin A was shown to induce cell
death [17,18]. Additionally, ALDH deficiency enhanced
oxidative stress through a vicious cycle [8].
A Tg mouse model expressing ALDH2*2 specifically in

the brain decreased the ability of mice to detoxify 4-
HNE in cortical neurons and accelerated the accumula-
tion of 4-HNE in the brain [7]. Consequently, these mice
presented with age-related neurodegeneration accom-
panied by memory loss after maturation. Mice deficient
in muscle-specific mitochondrial ALDH2 activity were
also developed by inducing the transgenic expression of
ALDH2*2 under the control of the actin promoter [8].
These model animals will be helpful in investigating the
antioxidant properties of health foods in vivo, as well as
in studies examining the prevention of oxidative stress-
related muscle atrophy.
Sarcopenia is the decline of muscle mass and strength

that occurs with aging [19]. Since the progression of sar-
copenia induces significant physical depression [20-22],
this condition increases the risk of fractures due to fall
and the possibility of becoming bedridden in elderly
people. A central mechanism in the pathogenesis of sar-
copenia is oxidative stress [23], which has been detected
by the accumulation of several oxidative stress markers.
These aldehyde species, which primarily include malon-
dialdehyde (MDA) and 4-HNE, are spontaneously gener-
ated from lipid peroxides [24]. Interestingly, 4-HNE is a
strong electrophile that rapidly reacts with most biomol-
ecules [25].
Chlorella, a unicellular green alga, contains a variety of

nutritional components that are rich in protein, fatty
acids, dietary fiber, chlorophylls, minerals, vitamins, and
carotenoids. Thus, dried Chlorella powder or extracts in
hot water have long been used as a health supplement in
Asia. It has been reported that Chlorella elicits various
immunopharmacological effects [26-28] and functions as
an antioxidant in vitro and in vivo [29-37]. This is likely
because it is rich in carotenoids and other antioxidants,
including lutein, β-carotene, α-tocopherol, and ascorbic
acid. We have already demonstrated that long-term con-
sumption of Chlorella did not significantly affect the
weight of any organs in wild type rats [38], and that
long-term Chlorella consumption prevents oxidative
stress, age-dependent cognitive decline, and central ner-
vous system disorders in Tg mice expressing ALDH2*2
in the brain [39]. Thus, Chlorella supplements have
displayed antioxidant effects in a variety of animal exper-
iments. However, it is unknown whether the consump-
tion of Chlorella has an antioxidant effect in muscle
tissues. Importantly, inflammation may cause sarcopenia
in addition to oxidative stress. Since Chlorella extract
slight decreased the expression of the pro-inflammatory
cytokine IL-6 in mice [40], we here focused on the ef-
fects of oxidative stress.
In this study, we fed Chlorella to mice expressing a

dominant negative, muscle-specific form of mitochon-
drial ALDH2 for 6 months. Our findings suggest that
this supplement has the potential to mitigating skeletal
muscle atrophy.

Methods
Animals and treatment
Tg mice expressing ALDH2*2 in the skeletal muscle were
previously reported [8]. Heterozygous male mice were
mated with female C57BL/6 mice (Kyudo, Fukuoka,
Japan). Genotyping of the resulting mice was performed
by PCR using genomic DNA isolated from the tail tip and
2 sets of combinatorial primers (5′-CGTGCTGGTTATT
GTGCTGTCTCA-3′ and 5′-GAAGGGTTGACGGTGG
GAAATGTT-3′; 5′-TGGCGTGGTCAATATCGTTCCC-
3′ and 5′-GAGCTTGGGACAGGTAATTGGC-3′) in
order to amplify the exogenous ALDH2*2 gene. Sixteen
heterozygous ALDH2*2 Tg male mice were identified and
used in the experiments described in this report. These
mice were divided into 2 groups of 8 mice at 8 weeks of
age. By this time, the two groups had developed a uniform
average of body weight. One group was fed a basic diet
(Control group), while the other group was fed a 1%
Chlorella-supplemented diet (CSD group) for 6 months.
The experimental dietary compositions were based on the
AIN-93 M [41], and are shown in Table 1. Wild type litter-
mates were also fed the basic diet. All animals were kept
on a 12 h light/dark cycle with ad libitum access to water
and food throughout the experimental period, and body
weight and food intake were measured at the end of each
month. This study was approved by the Animal Care and
Use Committee of Chlorella Industry Co., Ltd., according
to the National Institutes of Health published guidelines.

Chlorella powder
The Chlorella powder used to prepare the CSD was
from the Parachlorella beijerinckii CK-5 strain, and was
cultured, dried, and powdered by Chlorella Industry Co.,
Ltd. The general characteristics and composition of the
Chlorella powder is shown in Table 2.

Sample collection
All mice were anesthetized and sacrificed prior to blood
sample collection from the hepatic portal vein. Plasma
was subsequently obtained by centrifugation at 3000 × g



Table 1 Composition of experimental diets supplemented
with Chlorella powder

Ingredients Control and
wild type groups

CSD group

Casein 140.0 138.6

L-Cysteine 1.8 1.8

Corn starch 465.7 460.5

Dextrinized corn starch 155.0 153.5

Sucrose 100.0 99.0

Soybean oil 40.0 39.6

Fiber 50.0 49.5

Vitamin mix (AIN-93-VM)a 10.0 10.0

Mineral mix (AIN-93-MX)a 35.0 35.0

Choline bitartrate 2.5 2.5

Tert-butylhydroquinone 0.008 0.008

Chlorella powder 0 10.0

Total weight (g) 1000 1000

Energy (kJ) 16362 16358

Quantity expressed as g/kg diet.
Control ALDH2*2 mice were fed a basal diet, CSD ALDH2*2 mice a Chlorella-
supplemented diet, and Wild type C57BL6 mice basal diet.
aVitamins and minerals based on AIN-93 M formulation [41].
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for 15 min at 4°C. The liver, kidneys, heart, lung, spleen,
right gastrocnemius muscle, and adipose tissue (epididy-
mal) of each mouse were quickly excised and weighed.
For histological and histochemical studies, the left
gastrocnemius muscle was frozen in hexane with Opti-
mal Cutting Temperature (OCT) Compound (Sakura
Finetek Japan, Tokyo, Japan) at −80°C. The quadricep
muscle was washed with cold phosphate buffered saline
(pH 7.4) and frozen in liquid nitrogen. All samples were
stored at −80°C until use.

Plasma analysis
The plasma activities of creatine phosphokinase (CPK)
and creatine phosphokinase-MB (CKMB) were measured
Table 2 Chlorella powder composition

Component Chlorella powder (per 100 g powder)

Protein 65 g

Carbohydrate 0.9 g

Fat 11.9 g

Dietary Fiber 10.2 g

Ash 6.6 g

Moisture 5.4 g

Lutein 274 mg

α-Carotene 12 mg

β-Carotene 118 mg

Ascorbic acid 46 mg

α-Tocopherol 32.8 mg
using a DRI-CHEM autoanalyzer (FUJIFILM, Tokyo,
Japan).

Bone density measurement
For computed tomography analysis of bone density, the
whole bodies of the mice were scanned using a LaTheta
LCT-100 experimental animal computed tomography
system (Aloka, Tokyo, Japan). Contiguous 1-mm thick
slices were used for quantitative assessment using
LaTheta software (ver 1.00). Bone density was evaluated
quantitatively.

Analysis of urinary oxidative stress
In order to measure urinary oxidative stress markers,
mice were placed in a urine-sampling cage for 12 h at 2
and 4 months after the experiment began, and urine was
collected. Urinary isoprostane levels were determined
using a urinary isoprostane F2t ELISA kit (JaICA,
Fukuroi, Japan), according to the manufacturer’s instruc-
tions. The creatinine concentration of each sample was
measured using a LabAssay Creatinine kit (Wako,
Osaka, Japan). Urinary isoprostane levels were normal-
ized against creatinine concentration.

Measurement of oxidative stress in skeletal muscle
MDA and 4-hydroxyalkenals (HAE) levels in the quadri-
ceps muscles were determined using a Bioxytech LPO-586
assay kit (OxisResearch, Oregon, USA). Briefly, pieces of
the quadriceps muscle were homogenized in phosphate-
buffered saline (pH 7.4) containing 5 mM butylated hy-
droxytoluene. After homogenization, the samples were
centrifuged at 3000 × g for 10 min at 4°C, and the clear su-
pernatants were subjected to the LPO-586 assay. MDA
and HAE levels were assayed using the methanesulfonic
acid solvent procedure according to the manufacturer’s in-
structions. The LPO-586 assay is based on the reaction of
a chromogenic reagent, N-methyl-2-phenylindole, with
MDA and HAE at 45°C. These compounds react with N-
methyl-2-phenylindole to yield a stable chromophore with
a maximal absorbance at 586 nm. The absorbance of the
resultant samples was measured at 586 nm. The protein
concentration of each sample was measured using a Pierce
BCA protein assay kit (Thermo Scientific, Rockford,
USA). MDA and HAE levels were normalized against pro-
tein concentration.

Histological and histochemical studies
Frozen gastrocnemius muscle samples were sliced into
sections (8-μm thick) and mounted on silane-coated
glass slides. Frozen sections were dried and stained with
hematoxylin and eosin (H&E). For enzymatic cyto-
chrome c oxidase histochemical staining, frozen sections
were dried and incubated in 0.1 mol/L sodium phos-
phate (pH 7.4), 0.5 mg/ml 3,3-diaminobenzidin (DAB,
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Wako), 130 μg/ml catalase (Nacalai tesque, Kyoto,
Japan), and 1 mg/ml cytochrome c (Nacalai tesque) at
room temperature for 60 min. The cross-sectional area
of the gastrocnemius muscle cells and the area of stained
cytochrome c oxidase were calculated using the Image J
(ver1.41; National Institutes of Health, Bethesda, MD),
and they are presented as the percent ratio (%) versus
wild type from 3 different points for each mouse.
Statistical analysis
All values shown are the mean ± SD. One-way ANOVA
(Fisher’s PLSD test) followed by contrast testing was used
to compare the data from multiple groups. Relationships
between given variables were examined by linear regres-
sion analysis and the Pearson correlation coefficient. All
experiments were examined in a blinded fashion, and stat-
istical significance was accepted as p <0.05.
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Figure 1 Consumption of Chlorella reduced oxidative stress and musc
ALDH2*2 Tg mice (n =8) were fed a basal diet, while the CSD ALDH2*2 Tg
15-isoprostane levels were measured 2 and 4 months after the initial Chlor
MDA and HAE were measured in the quadriceps muscle (b). The levels of
after initial Chlorella administration. Values are the mean ± SD, *p <0.05 and
Results
Consumption of a Chlorella-supplemented diet reduces
oxidative stress and reverses skeletal muscle impairment
To investigate oxidative stress in the ALDH2*2 Tg mice,
we examined the levels of the urinary oxidative stress
marker isoprostane, 2 and 4 months after initiating CSD
feeding. Although no difference was observed between
the CSD and Control groups after 2 months, the level of
urinary isoprostane was decreased in mice fed the CSD
for 4 months (Figure 1a). In addition, we measured a
second oxidative stress marker, MDA and HAE, in quadri-
ceps muscle after 6 months of Chlorella consumption, and
found that the accumulation of the oxidative stress marker
was notably suppressed in these mice (Figure 1b).
Excess oxidative stress is known to impair muscle. To

evaluate the extent of muscle impairment in the ALDH2*2
Tg mice, we measured the levels of CPK and CKMB ex-
pression in plasma. The ALDH2*2 Tg mice had increased
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le tissue injury in ALDH2*2 Tg mice. Wild type (n =7) and control
mice received a Chlorella-supplemented diet (n =8). Urinary
ella administration (a). After 6 months of consuming the Chlorella diet,
CPK (c) and CKMB (d) detectable in plasma were measured 6 months
**p <0.01: significant vs. Control; #p <0.01: significant vs. Wild type.
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levels of both proteins; however, CPK levels were signifi-
cantly reduced after CSD administration (Figure 1c). A
trend toward reduced of CKMB levels was also observed
(Figure 1d). These results suggest that the consumption of
Chlorella reduces oxidative stress and reverses skeletal
muscle impairment in ALDH2*2 mice (Figure 1).

Effect of Chlorella-supplemented diet consumption on
body size and skeletal muscle atrophy
One month following the initiation of the experimental
diets, wild type mice were observed to have a signifi-
cantly increased body weight compared to ALDH2*2 Tg
mice (Figure 2a), suggesting that muscle-specific ALDH2
deficiency has a negative impact on body size. Compared
to the consumption of a basic diet, CSD consumption
for 4 months resulted in a greater body size in the
ALDH2*2 Tg mice (Figure 2a). Importantly, no differ-
ences in food intake among any of the groups were ob-
served (Figure 2b), indicating that the body weight of
the mice in the CSD group was restored in a food
intake-independent manner.
The weight of the organs and bone density of the ex-

perimental mice were also measured after 6 months of
consuming the respective diets. The weights of both the
gastrocnemius muscles and epididymal fat of the CSD
group were significantly heavier than those of the Con-
trol group (Table 3). In addition, the CSD appeared to
suppress the decline in bone density observed in the
Control group (Table 3). These results suggest that the
consumption of Chlorella is beneficial for the growth of
ALDH2*2 Tg mice.
To examine the effects of CSD consumption on

muscle atrophy, we measured the cross-sectional area of
the gastrocnemius muscle cells in our experimental mice
using H&E staining. The ALDH2*2 Tg mice exhibited a
Figure 2 Effects of Chlorella consumption on body weight gain and fo
beginning at 2 months of age. Wild type (n =7) and control ALDH2*2 Tg m
received a Chlorella-supplemented diet (n =8). Body weights (a) and food i
mean ± SD, *p <0.05: significant vs. Control; ##p <0.01: significant vs. Wild ty
significantly higher cross-sectional area of gastrocnemius
muscle cells after consuming the CSD for 6 months than
the control mice (Figure 3a–d), suggesting that con-
sumption of Chlorella improved skeletal muscle atrophy.
Furthermore, when the correlation between oxidative
stress in quadriceps and gastrocnemius muscle atrophy
was examined, we found that the relative cross-sectional
areas of the gastrocnemius muscle cells were negatively
correlated with the expression level of MDA and HAE
(r = −0.58, p <0.01, Figure 3e).

Protective effects of Chlorella-supplemented diet
consumption on mitochondrial dysfunction in ALDH2*2
Tg mice
To investigate mitochondrial function in skeletal muscle,
we measured cytochrome c oxidase activity in the gastro-
cnemius muscle. When enzymatic histochemical staining
for cytochrome c oxidase was performed, it was found that
notable cytochrome c oxidase activity decline was detect-
able in the gastrocnemius muscle of the ALDH2*2 Tg
Control group, while it was significantly decreased in the
CSD group (Figure 4a–d). This suggests that Chlorella
consumption prevented mitochondrial dysfunction in
gastrocnemius muscle. In addition, the relative level of
cytochrome c oxidase activity was negatively correlated
with the levels of MDA and HAE (r = −0.74, p <0.001,
Figure 4e).

Discussion
The present study demonstrated that long-term intake
of Chlorella reduced oxidative stress, as determined by
changes in oxidative stress markers, including urinary
15-isoprostane and muscle MDA and HAE in transgenic
mice with enhanced oxidative stress. This improvement
resulted in decreased disintegration of muscle, plasma
od intake. All groups were fed the respective diets shown in Table 1,
ice were fed a basal diet (n =8), while the CSD ALDH2*2 Tg mice
ntake (b) were measured at the end of each month. Values are the
pe.



Table 3 Effects of Chlorella consumption on bone density
and organ weights

ALDH2*2 Tg

Control
group

CSD group Wild type
group

Bone density
(mg/cm3)

410.9 ± 24.0# 426.5 ± 21.8 442.0 ± 21.5

Organ weights (mg)

Liver 1230.5 ± 134.6## 1265.2 ± 140.0## 2082.4 ± 391.9

Kidney 224.4 ± 37.6 238.4 ± 25.5 237.9 ± 32.6

Heart 129.3 ± 16.0## 135.1 ± 7.6## 165.5 ± 6.8

Lung 212.8 ± 23.3## 212.2 ± 27.0## 263.8 ± 50.9

Spleen 54.0 ± 6.9## 60.5 ± 9.4## 80.1 ± 11.1

Gastrocnemius
muscle

107.9 ± 10.8## 129.8 ± 19.6*,## 189.0 ± 8.4

Epididymal fat 521.7 ± 265.3## 824.2 ± 144.9*,## 1044.8 ± 174.4

Control ALDH2*2 mice were fed a basal diet (n =8), CSD ALDH2*2 mice a
Chlorella-supplemented diet (n =8), and Wild type C57BL6 mice a basal diet
(n =7). Bone density and organs weight was measured at 8 months of age,
after 6 months of experimental diet consumption. Values are mean ± SD,
*p <0.05: Significant vs. Control; #p <0.05, ##p <0.01: Significant vs. wild type.

Figure 3 Chlorella consumption prevents skeletal muscle atrophy in A
cells were stained with H&E 6 months after the initial administration of Chl
muscle cell size was measured, and is presented as the percent ratio (%) ve
had a significant negative correlation (e). Values are the mean ± SD, *p <0.0
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CPK, and plasma CKMB, and increased bone density,
organ weight, muscle cell size, and total body weight.
Moreover, mitochondrial activity was improved by long-
term intake of Chlorella in the oxidative stress-enhanced
mice.
Oxidative stress in skeletal muscle is associated with

the atrophy, loss of muscle function, and fibers in sarco-
penia [23,42]. Thus, it is important to reduce oxidative
stress in our daily lives. Indeed, epidemiological studies
of community-dwelling older adults have demonstrated
that the low carotenoid level in blood is associated with
low skeletal muscle strength and the development of
walking disabilities [43]. These reports further indicate
that dietary carotenoid intake is efficacious in the pre-
vention age-related muscle disorders.
It is unknown why Chlorella was effective in reducing

oxidative stress. As Chlorella contains various dietary anti-
oxidant substances, including carotenoids and vitamins, it
could be a potential dietary source of these compounds.
Additionally, Chlorella also has a large chloroplast, in
which plastoquinone substitutes for ubiquinone as an
electron carrier in the photosynthetic electron-transport
chain. Plastoquinone has been shown to have greater anti-
oxidant properties than ubiquinone [44] and does not
LDH2*2 Tg mice. The cross-sectional areas of gastrocnemius muscle
orella in the diet. The scale bar indicates 100 μm (a–c). Gastrocnemius
rsus Wild type (d). Gastrocnemius muscle cell size and MDA and HAE
5 and **p <0.01: significant vs. Control.



Figure 4 Effects of Chlorella consumption on mitochondrial cytochrome c oxidase activity in ALDH2*2 Tg mice. Enzymatic histochemical
staining for cytochrome c oxidase in the mitochondria of the gastrocnemius muscle cells 6 months after the initial administration of Chlorella in
the diet. The scale bar indicates 100 μm (a–c). Gastrocnemius muscle cytochrome c oxidase activity was measured and is presented as the
percent ratio (%) versus Wild type (d). A significant negative correlation was observed between gastrocnemius muscle cytochrome c oxidase
activity and MDA and HAE levels in quadriceps muscle (e). Values are the mean ± SD, **p <0.01: significant vs. Control; ##p <0.01: significant vs.
Wild type.
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pose a danger for pro-oxidant effects within a range of
concentrations [45]. Therefore, the effect of Chlorella is
likely synergistic between the plastoquinone and caroten-
oids provided in the CSD, thereby protecting against the
impairments observed in ALDH2*2 Tg mice. Indeed, we
have previously shown that Chlorella consumption re-
duces oxidative stress (4-HNE) in the dentate gyrus of the
hippocampus [39]. In the present study, we have further
demonstrated that the consumption of a CSD markedly
suppresses oxidative stress in the quadriceps muscle, and
that there is a negative correlation between oxidative
stress in quadriceps and gastrocnemius muscle atrophy.
The age-dependent accumulation of mitochondrial

DNA (mtDNA) mutations, which lead to mitochondrial
dysfunction, may be an important contributor to sarco-
penia [46,47]. A causal role for these age-related mtDNA
deletion mutations and mitochondrial dysfunction in
sarcopenia has been supported by findings that these al-
terations induce the loss of cytochrome c oxidase activity
in aged rats, primates, and human skeletal muscle cross
sections [48-52]. Conversely, since the stimulation of
HNE degradation restored the decline in cytochrome c
oxidase activity [53], HNE should inhibit cytochrome c
oxidase activity through the formation of HNE adducts
with cytochrome c oxidase subunits. These findings indi-
cate that the protection of mitochondrial function, espe-
cially with regard to the cytochrome c oxidase activity,
could be important to prevent sarcopenia. As ALDH2
activity is suppressed in ALDH2*2 Tg mice, they cannot
efficiently degrade HNE in muscles [8]. In this study, the
consumption of a CSD maintained cytochrome c oxidase
activity in the gastrocnemius muscle of ALDH2*2 Tg
mice, and a negative correlation between cytochrome c
oxidase activity and MDA and HAE was identified.
Therefore, the consumption of Chlorellamay act to prevent
the accumulation of HNE, thereby preventing mitochon-
drial dysfunction through the protection of cytochrome c
oxidase activity.
As a lack of protein intake and decreased amino acid

muscle protein synthesis leads to a decline in muscle
mass, the intake of dietary protein has been recom-
mended to slow and prevent the progression of sarcope-
nia [54,55]. With a protein content of approximately
65%, the continuous intake of Chlorella may therefore
be useful in both enhancing muscle protein synthesis
and preventing muscle atrophy. In particular, Chlorella
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contains essential amino acids such as the BCAA valine,
leucine, and isoleucine, which are important compo-
nents of actin and myosin-composing muscle, and may
be beneficial in the prevention and treatment of sarcope-
nia [56,57].
Since Chlorella supplement contains various useful

substances, it may not be easy to identify a single sub-
stance that exhibits a beneficial effect against muscle at-
rophy. Supplements with multiple compounds, such as
Chlorella, may be particularly beneficial because of their
synergic effects.
Finally, the present study showed the usefulness of this

ALDH2 deficient mouse for evaluating anti-oxidative
supplements.

Conclusions
This study demonstrates that long-term consumption of
Chlorella in the diet has beneficial effects on body
weight, and prevents oxidative stress, muscle atrophy,
and mitochondrial dysfunction in ALDH2*2 Tg mice.
This suggests that Chlorella intake may be useful in the
treatment of sarcopenia.
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