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The molecular mechanisms of olfaction, or the sense of
smell, are relatively underexplored compared with other sen-
sory systems, primarily because of its underlying molecular
complexity and the limited availability of dedicated predictive
computational tools. Odorant receptors (ORs) allow the
detection and discrimination of a myriad of odorant molecules
and therefore mediate the first step of the olfactory signaling
cascade. To date, odorant (or agonist) information for the
majority of these receptors is still unknown, limiting our un-
derstanding of their functional relevance in odor-induced
behavioral responses. In this study, we introduce OdoriFy, a
Web server featuring powerful deep neural network–based
prediction engines. OdoriFy enables (1) identification of
odorant molecules for wildtype or mutant human ORs (Odor
Finder); (2) classification of user-provided chemicals as odor-
ants/nonodorants (Odorant Predictor); (3) identification of
responsive ORs for a query odorant (OR Finder); and (4)
interaction validation using Odorant–OR Pair Analysis. In
addition, OdoriFy provides the rationale behind every predic-
tion it makes by leveraging explainable artificial intelligence.
This module highlights the basis of the prediction of odorants/
nonodorants at atomic resolution and for the ORs at amino
acid levels. A key distinguishing feature of OdoriFy is that it is
built on a comprehensive repertoire of manually curated in-
formation of human ORs with their known agonists and non-
agonists, making it a highly interactive and resource-enriched
Web server. Moreover, comparative analysis of OdoriFy pre-
dictions with an alternative structure-based ligand interaction
method revealed comparable results. OdoriFy is available freely
as a web service at https://odorify.ahujalab.iiitd.edu.in/olfy/.

The sense of smell allows an organism to sense its sur-
roundings by recognizing and processing the information from
diverse chemical clues present within the environment. These
clues are largely composed of thousands of structurally diverse
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odorant molecules that mediate vital behavioral responses,
such as social communication, identification and quality
assessment of food (1), and the recognition of prey and
predators (2, 3). Olfactory receptors, the functional units of an
olfactory system, are the key drivers of odor perception as they
contribute to the first critical step of odorant detection (3–7).
In humans, these specialized classes of receptors are primarily
localized in the olfactory epithelia of the olfactory mucosa.
Similar to other vertebrates, the human olfactory epithelia
contain multiple cell types such as immature and mature ol-
factory sensory neurons, sustentacular cells, horizontal basal
cells, microvillar cells, Bowman’s gland cells, globular basal
cells, and olfactory ensheathing glia (8–11). Among these, the
olfactory sensory neurons provide direct functional relevance
since they harbor the receptors that are responsible for the
recognition and discrimination of odorant molecules. Notably,
each mature olfactory sensory neuron follows the “one-
neuron-one-receptor” rule, that is, each neuron expresses a
single functional receptor (9, 12, 13). The axons emanating
from the olfactory sensory neurons expressing the same re-
ceptor converge to a common target region of the olfactory
bulb (14–18). The mammalian olfactory system is composed of
distinct evolutionarily conserved families of chemosensory
receptors. These include odorant receptors (ORs), trace
amine–associated receptors (8), vomeronasal type 1 and 2
receptors (9), formyl peptide receptors (10), guanylyl cyclases
(GUCY2D and GUCY1B2) (11), and the membrane-spanning
4-pass A receptors (12). However, in humans, except for
ORs, which constitute the largest gene family, comprising
approximately 400 functional OR genes and 600 pseudogenes
(6, 19, 20), other gene families collectively contain only a mi-
nor fraction of functional receptors (13, 14). For instance, the
human genome contains only six functional and single-copy
trace amine–associated receptor genes (21, 22). Humans also
lack vomeronasal-specific formyl peptide receptors and vom-
eronasal type 2 receptors (21–23). Moreover, only five func-
tional vomeronasal type 1 receptors have been reported to
date; however, their direct functional importance in phero-
mone detection is highly debatable (24). This is also supported
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OdoriFy: An AI-based Web server for human olfaction
by the fact that humans lack functional TRPC2 genes that
encode a channel protein, which mediates specific signal
transduction in vomeronasal receptors (25). A recent
transcriptomics study of human olfactory mucosa revealed
the expression of guanylyl cyclases (GUCY2D/GC-D+ or
GUCY1B2) as well as membrane-spanning 4-pass A tran-
scripts (26). However, the study lacks companion immuno-
histological data, leaving uncertainty about the synthesis of
associated proteins. Numerous studies suggest that olfactory
receptors adopt a combinatorial coding strategy to enable the
identification of a myriad of structurally distinct odorant
molecules (3–7). In contrast to other gene families, because of
its large number of functional genes, the family of ORs pre-
sents a strong case of machine learning–based exploration and
identification of their agonists and nonagonists (27). Notably,
we use the term agonists for chemicals that are known to
interact and activate an OR. Similarly, nonagonists refer to
those chemicals that fail to elicit a functional activation
response in the receptor–ligand interaction assays. In case, the
given chemical activates an OR and possesses an odor percept,
we use the term odorants for those chemicals.

Similar to other chemoreceptors, ORs primarily reside on
the cilia of the olfactory sensory neurons of the olfactory
epithelium. Olfactory signal transduction initiates on the cilia
upon odorant or agonist binding to its cognate receptor.
Mechanistically, the interaction between an odorant molecule
at the binding pocket of an OR triggers conformational
changes, resulting in the dissociation of GDP from the Gα
subunit (28). These biochemical reactions subsequently lead to
the binding of GTP, which further activates adenylyl cyclase III
(29). Activated adenylyl cyclase elevates the cellular cAMP
levels leading to the opening of cyclic nucleotide–gated
channels (29, 30). Channel opening further triggers the de-
polarization of the ciliary membrane because of the influx of
cations. This signal gets further amplified by the opening of
calcium-activated chloride channels because of increased
intracellular calcium ions (31, 32).

Recent reports utilizing the next-generation sequencing
techniques, coupled with high-throughput in vitro functional
validations, revealed instances of ectopic expression and
functionalities of these ORs outside the nasal cavity (33–36).
For instance, under healthy conditions, the OR expression has
been reported in multiple organs (37). A handful of ORs ex-
presses in the liver and skeletal muscle, whereas the testis
expresses more than 60 ORs (38, 39). Interestingly, in patho-
logical states such as cancer, selective OR expression has been
linked to tumor initiation and progression (33, 36, 39–41).
OR51E2, a cancer-associated OR, has shown promising roles
as a biomarker potent to guide anticancer therapies (34, 36,
42, 43). The functional experiments involving activation of
OR51E2 by nonanoic acid (agonist) in lymph node carcinoma
of the prostate cells trigger an antiproliferative response and
induction of cellular senescence (44), indicating the thera-
peutic or diagnostic potential of ORs. A recent bioinformatics
analysis utilizing 49 small conditional RNA-Seq datasets
revealed the expression of ORs in malignant cells of distinct
cancer types at the single-cell resolution (33). Both in the nasal
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epithelium as well as other tissues, receptor activation is
triggered by agonist binding, highlighting the importance of
deciphering the entire spectrum of receptor–agonist in-
teractions (36).

While ORs constitute a highly conserved family of func-
tional genes, odorants are rather chemically diversified
(45–47). In general, odorants belong to a class of volatile and
structurally diverse chemical compounds with distinct physi-
cochemical properties that impart a preferential binding
affinity to their cognate chemosensory receptors (48, 49).
However, because of their enormous chemical diversity, efforts
are still ongoing to understand the chemical basis of odorant
molecules (50). Initial understanding has been that odorants
possessing similar functional groups harbor similar perception
properties, for example, esters are associated with a fruity
smell or a floral smell, whereas thiols induce a rotten smell
(51). However, with the increasing number of odorant mole-
cules, it has become apparent that the underlying olfactory
mechanisms are more complex than previously anticipated. In
recent years, machine learning–based approaches have been
implemented in the field of chemosensory research, particu-
larly in predicting the perception response of an odorant or
tastant (41, 52–55). Despite initial interest, the overall adop-
tion of such approaches is still underappreciated. This could be
primarily because of the copious amount of effort and exper-
tise required to compile, preprocess, and structurize large
volumes of interaction data. To circumvent this gap, we
introduce OdoriFy, a comprehensive Web server for deep
neural network–based prediction of human odorant–receptor
interaction. OdoriFy is built on a comprehensive repertoire of
manually curated olfactory information, constituting 5003
odorants, 857 nonodorants, and 6153 interaction pairs (agonist
receptor: 679; nonagonist receptor: 5474), making it one of the
largest curated data resources to date. In total, OdoriFy con-
tains four prediction engines, that is, Odorant Predictor, Odor
Finder, OR Finder, and Odorant–OR Pair Analysis that
collectively allow prediction of odorant status, identification of
responsive ORs for the given odorant(s), and prediction of
putative odorants for user supplemented wildtype or mutant
OR protein sequences. In addition to these, OdoriFy also
contains modules of explainable artificial intelligence that
enable the highlighting of key decision-making structural el-
ements of the predicted odorants or ORs at the atomic or
amino acid levels, respectively.
Results

OdoriFy: A comprehensive artificial intelligence–driven Web
server to explore human olfaction

OdoriFy is an open-source Web server with deep neural
network–based prediction models coupled with explainable
artificial intelligence functionalities. It is developed with the
goal of providing researchers a one-stop destination to decode
chemical interactions in the context of olfaction. OdoriFy is
capable of identifying agonists for human ORs (Odor Finder),
prediction of odorant molecules (Odorant Predictor), identi-
fication of responsive ORs for the user-supplied chemicals (OR



OdoriFy: An AI-based Web server for human olfaction
Finder), and Odorant–OR Pair Analysis. The graphical user
interface provides users with a highly automated and hassle-
free experience while identifying potential agonists for their
OR of interest or validating the presence of odorant properties
in the user-supplied chemicals. In the case of Odorant Pre-
dictor module, the users can submit query chemicals in the
form of SMILES either via the upload function (in comma-
separated variables) or by directly copying in the input win-
dow. To ease user experience in converting their query
chemicals into the SMILES format, OdoriFy provides a direct
link to the OPSIN Web server (56). Odorant Predictor returns
hyperlinked tabular results that include information about the
chemical status of being an odorant or nonodorant, its pre-
diction probability, and the highlighted decision determining
atoms (interpretable artificial intelligence functionality). The
OR Finder prediction engine also takes chemicals as input in
the SMILES format. Another companion module, OR Finder,
provides two distinct testing methods, that is, rapid and
normal testing, where the former is faster but comparatively
less accurate as compared with the latter. The output format of
OR Finder prediction engine is the same as that of Odorant
Predictor, except it also provides the FASTA sequences of the
predicted cognate ORs against the user queried chemicals and
Figure 1. Deep neural network architectures used to built prediction mode
used to build models for the OdoriFy prediction engines. The indicated two d
Odorant Predictor, Odor Finder, OR Finder, and Odorant–OR Pair Analysis. OR
information on the decision-making amino acids of the OR
sequences. Odor Finder allows users to predict the interacting
odorants for the user-supplied wildtype or mutated ORs. It
allows users to submit the FASTA sequences of their ORs of
interest, either using the text window or via the upload button.
Users can also manipulate the number of top predicted
odorants (default set to 5). The prediction output format is
similar to that of the aforementioned prediction engines. Last,
for the Odorant–OR Pair Analysis, users can submit the
matched OR FASTA sequence along with the query chemical,
and OdoriFy returns the interaction probabilities along with
the other information as discussed previously for the other
search engines. Notably, OdoriFy outputs can be downloaded
as a single zip file by using the Download Zip button. Of note,
all the prediction engines allow users to obtain their results via
electronic mail.
OdoriFy supports four distinct olfactory prediction engines

All the supported prediction engines in OdoriFy are sub-
stantiated at the backend by two independent deep-learning
models (Fig. 1). The first model is exclusive to the Odorant
Predictor, whereas the second one supports the remaining
ls for OdoriFy. A schematic representation of the deep learning architecture
istinct models provide backend support to four prediction engines, namely
, odorant receptor.
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OdoriFy: An AI-based Web server for human olfaction
three prediction engines. Notably, these distinct models are
built using two independent deep neural network architec-
tures, namely Transformer-CNN (57) (Odorant Predictor) and
BiLSTM-based methods on One-Hot encoding data (OR
Finder, Odor Finder, and Odorant–OR Pair Analysis). By using
compiled datasets (refer to Experimental procedures section),
we first built the Odorant Predictor, by using the default pa-
rameters of the Transformer-CNN workflow (57) (Fig. 1, right
panel). Moreover, we also utilized its inbuilt functionality for
the model interpretation. The second model implemented in
OdoriFy is built on BiLSTM-based architecture (Fig. 1, left
panel). In brief, the input data were randomly split into a
training (80% data) and testing (20% data) dataset. One-Hot
encoding was performed on the OR amino acid sequences
and SMILES of both agonists and nonagonists. BiLSTM is
applied to the One-Hot encoded data with a dropout rate of
0.5, and the linear transformation is set to 100 each to prevent
model overfitting. Post this step, both the resultant vectors of
constant size were concatenated and used for model training.
Captum library (58) was used for providing interpretation
capabilities at the amino acid (for ORs) and atomic (odorants/
nonodorants) levels.
Odorant Predictor allows identification and explanation of
odorants

In the case of Odorant Predictor, we compiled, refined, and
iteratively checked and generated a bonafide list of known
odorant and nonodorant molecules from the literature or da-
tabases, collectively accounting for 5003 odorant and 857
nonodorant molecules (Fig. 2B and Table S1). First, to un-
derstand the chemical diversity of odorants and nonodorants
in the compiled dataset, we converted them into atom pair
fingerprints using the ChemmineR package (59). Atom pair
fingerprints describe the properties of atoms and molecules in
the form of a numerical vector. Using these atom pair fin-
gerprints as features, we next performed principal component
(PC) analysis and visualized the chemical diversity of the
bonafide odorants and nonodorants in a three-dimensional
space (PC1 versus PC2 versus PC3) (Fig. 2C). Careful inter-
rogation revealed a larger degree of chemical heterogeneity
between these molecule classes. Further examination of the
input odorants and nonodorants at the functional group level
revealed a relatively higher enrichment of certain functional
groups such as ethers, esters, and aldehyde among the odor-
ants, which are in line with the previous reports (60, 61)
(Fig. 2D and Fig. S2B). Finally, for the model building, we used
Transformer-CNN (57), a computational framework for
quantitative structure–activity (property) relationship
modeling and interpretation. Transformer-CNN (57) took
SMILES as inputs and converted them into embeddings using
the One-Hot encoding method and subsequently generated
the predictive model (refer to Experimental procedures sec-
tion). The Odorant Predictor model outputs the AUC-ROC
value of 0.945 on the unseen testing dataset, suggesting the
remarkable capability of the model to distinguish between the
classes (Fig. 2E). Other parameters of model performance,
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such as balanced accuracy, Cohen’s kappa, F1 score, precision,
and recall, also indicated a high model performance (Fig. 2F
and Fig. S2A). Of note, the model interpretability module of
Transformer-CNN (57) provides the putative explanation of
the model classification criteria at the atomic level (Fig. 2, A
and G, Figs. S1A, and S2, C and D).

OdoriFy allows prediction of odorant–OR interaction

To investigate the potential of deep neural networks in
predicting the OR–odorant interactions, we first collated a
wealth of information about known agonists/nonagonists for
the tested ORs from the public domain (Fig. 3A and Table S2).
Next, to ensure the quality of the compiled dataset, we care-
fully removed all the redundant and contradictory entries. We
further filtered our dataset by first passing them through the
Odorant Predictor engine to preselect only the odorant mol-
ecules for the downstream model building (probability cutoff
> 0.5) (Fig. S3A). Functional group analysis further revealed
heterogeneity in the compiled dataset, with comparable
enrichment for the individual functional groups between both
the agonists and nonagonists. Of note, none of the bonafide
agonists or nonagonists in our dataset contained functional
groups like RCCH and ROPO3 (Fig. 3B). Leveraging the
refined dataset, we next built the prediction model using deep
neural network techniques involving BiLSTM and linear
transformation (Fig. 3, C and D and Fig. S3B). Improving the
model performance by hyperparameter tuning revealed the
optimal SMILES and OR lengths of 75 and 315, respectively.
Moreover, the number of optimal hidden layers was identified
to be 50 for both the SMILES and OR sequences. Notably, to
resolve the class imbalance issue, we implemented an
upsampling approach to augment the number of odorants and
applied an iterative process with 100 steps, where at each step,
the model was trained on randomly split data and its perfor-
mance was estimated on the unseen testing data (20%). The
best performing model harbored an AUC-ROC value of 0.876
on the unseen testing dataset, suggesting the remarkable ca-
pabilities of the model to distinguish between the classes
(Fig. 3E). Moreover, other parameters for model performance
assessment were also within the acceptable range (Fig. S3, C
and D). Finally, we used this as a base model for the OR Finder,
Odor Finder, and Odorant–OR Pair Analysis prediction en-
gines (Fig. 3F). Taken together, by leveraging one of the largest
and highly heterogeneous wealth of known information about
human OR–odorants/nonodorants interaction data, coupled
with a deep learning–based approach, we built a high-
performance prediction model that allows prediction/testing
of OR-(non)odorant interaction.

OdoriFy supports multifacet investigation of odorant–OR
interactions

One of the key distinguishing features of the OdoriFy Web
server is that it allows the submission of multiple inputs for
prediction and validation of the OR–odorant interactions. In
the case of OR Finder, it takes SMILES of the odorant as an
input and returns a list of ORs, along with their interaction



Figure 2. Odorant Predictor allows rapid classification of user-supplemented chemicals into odorant or nonodorants. A, a schematic representation
of the critical steps involved in the Odorant Predictor work cycle. Odorant Predictor takes chemical information in SMILES as an input and returns the
classification of these chemicals into odorants and nonodorants. B, bar plot depicting the number of known odorants and nonodorants in the input dataset
used to build the prediction model. C, principal component analysis (PCA) on the atom pair fingerprints of known odorants and nonodorants computed
using the ChemmineR Bioconductor package. The plot depicts the chemical heterogeneity of odorants and nonodorants along with the three principal
components (PC1, PC2, and PC3). D, bar graph representing the relative abundance of 12 prominent functional groups (de)enriched in known odorants and
nonodorants, collectively describing the relative composition of the functional groups in the input dataset. Of note, the functional group estimation was
performed using the ChemmineR package. E, AUC plot representing the performance of the best model in classifying the odorants and nonodorants on the
training (blue) and testing (orange) datasets. F, box plot representing the distribution of 100 random iterations of the key metrics collectively describing the
model performance on the testing (unseen) dataset. The metrics include model accuracy, balanced accuracy, AUC-ROC, Cohen’s kappa, F1 score, precision,
and recall. G, colored chemical structures representing the relative contribution of the highlighted atoms in the classification decision. The green and
red colors represent the highest and lowest contribution thresholds, respectively. The respective odorant status along with prediction probabilities
are mentioned below each molecule. AUC-ROC, area under the curve receiver operating characteristic; SMILES, Simplified Molecular-Input Line-Entry
System.

OdoriFy: An AI-based Web server for human olfaction
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Figure 3. A unified deep neural network–based prediction model supports Odor Finder, OR Finder, and Odorant–OR Pair Analysis. A, bar plot
depicting the proportion of human class I and II ORs with the information on known agonists (green) and/or nonagonists (red). The absolute count of known
agonist and nonagonist-OR pairs available for each class is mentioned above each bar in numerics. B, bar graph representing the relative abundance of the
12 prominent functional groups enriched in the bonafide agonists and nonagonists, collectively describing the functional group composition of the input
dataset. The functional groups were computed using ChemmineR, a Bioconductor package. Asterisk indicates the absence of the indicated functional group.
C, the line plot depicts the increase in balanced accuracy over epochs for training and testing datasets where blue and orange colors represent training and
testing data, respectively. D, the line plot representing the loss across epochs for training and testing datasets. E, AUC plot representing the performance of
the model in classifying the agonists and nonagonists on the training and test dataset. F, schematic representation highlighting a common backend model
for the indicated prediction engines. AUC, area under the curve; OR, odorant receptor.

OdoriFy: An AI-based Web server for human olfaction
probabilities (Fig. 4A and Fig. S1B). Of note, the probability
values signify the confidence of interaction between the user-
supplied odorant and the predicted ORs. Moreover, it also
distinctly highlights the atoms of the input odorant molecule
featuring their relevance in the decision making by the model
(Fig. 4A, Figs. S1B, and S4, A and B). A similar explanation is
also provided for the predicted interacting OR, where each
amino acid has been provided with a distinct score that
quantitatively implies its relative importance in decision
making (Figs. S1B and S4, C and D). A similar set of func-
tionalities has been implemented in the Odor Finder predic-
tion engine, but instead of chemicals (SMILES format) as
input, it takes OR sequences in the FASTA format (Fig. 4B and
Fig. S1B). Moreover, it returns a list of potential interacting
odorant molecules, along with their interaction probabilities.
Importantly, similar to the OR Finder, Odor Finder also
returns explainability at the atomic level for the odorant
6 J. Biol. Chem. (2021) 297(2) 100956
molecules (Figs. S1C and S5, A and B) and amino acid level for
the ORs (Figs. S1C and S5, C and D). Finally, to further
enhance the user experience, OdoriFy also allows users to test
whether a given set of OR–odorant pairs interacts or not
(Fig. 4C, Figs. S1D, and S6). This functionality is provided in
Odorant–OR Pair Analysis, a separate prediction engine
implemented in the OdoriFy Web server. Taken together,
OdoriFy harbors a conglomerate of artificial intelligence–
driven prediction engines and allows multifacet investigation
of odorant–OR interactions.
OdoriFy synergizes with the structure-based OR–ligand
interaction method and outperforms other prediction tools

An alternative to the prediction-based methods for OR–
odorant interaction is the conventional protein structure–
based ligand interaction analysis by molecular docking. To



Figure 4. OdoriFy facilitates multifacet investigation of OR–odorant prediction methods. Schematic representation depicting the functional workflow
of the indicated prediction engines, namely (A) OR Finder, (B) Odor Finder, (C) Odorant–OR Pair Analysis supported by OdoriFy. In all the prediction engines,
the user-supplied input passes through the backend supported model, which in turn outputs the prediction results with both the graphical and textual
interfaces. In addition to this, it also provides interpretability results both at the atomic (odorant/nonodorant) and amino acid (ORs, if applicable) levels. The
green and red colors represent the contribution of the highlighted atoms toward binding and nonbinding, respectively. Notably, in the case of chemicals,
the model first confirms the odorant validation by using Odorant Predictor, and only if it qualifies, then it projects the chemical to the other models for the
downstream prediction. OR, odorant receptor.

OdoriFy: An AI-based Web server for human olfaction
date, there is no experimentally resolved structure of any
mammalian OR present in the Protein Data Bank (62). As an
alternative approach, modeling by the fold recognition
method, followed by the molecular dynamics simulation, is a
widely adopted technique for the prediction of stable OR
structures, and once obtained, dynamic docking is performed
J. Biol. Chem. (2021) 297(2) 100956 7
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between the computationally predicted OR structures and
putative odorant molecules. To test whether the OdoriFy
predicted values for odorant–OR interactions are meaningful,
we performed a comparative analysis with one of the broadly
tuned human ORs, OR1A1. Recently, we built a stable struc-
ture of OR1A1 (41) using the fold recognition method using
GPCR-I-TASSER and further refined it using the molecular
dynamics approach (GROMACS, University of Groningen
Royal Institute of Technology Uppsala University (63))
(Fig. S8). To crossverify OdoriFy predictions, we selected eight
top (high probability) and bottom (low probability) predicted
agonists and nonagonists, respectively, and performed dy-
namic docking (64) within the predicted active site of OR1A1
protein (Fig. 5, A and B). For the positive and negative con-
trols, we took five known agonists and nonagonists of OR1A1.
Our results highlight a significant inverse correlation between
binding energies (obtained using docking) and predictive
interaction probabilities (obtained using OdoriFy) of agonists
and nonagonists, suggesting higher degree of synergy between
these two alternative methods (Fig. 5C). Of note, we have not
observed any significant (p > 0.05; Mann–Whitney U test)
differences in the binding energies of OR1A1 among the
known/predicted agonists or nonagonists indicating the
robustness of the structure-based method (Fig. 5D). We next
asked whether OdoriFy prediction models perform competi-
tively as compared with the existing tools. To achieve this, we
utilized an independent, held-out validation dataset from our
curated interactions. We tested this validation dataset as an
input query on two other prediction models, that is, ODOR-
actor (65) and DeepOlf (66). Of note, the comparative analysis
was only feasible for computing the model precision because of
the functional limitations associated with DeepOlf (66) and
ODORactor (65) (Fig. S7). Nevertheless, our analysis revealed
that OdoriFy outperformed both these alternative methods
under stringent conditions (Top-K hits with K ≤ 2). However,
it showed comparable results with ODORactor (65) with lesser
stringent conditions (allowing top three hits) (Fig. 5E).
Discussion

In this work, we introduce OdoriFy, a comprehensive Web
server equipped with four different prediction engines, that is,
Odorant Predictor, Odor Finder, OR Finder, and Odorant–OR
Pair Analysis. These four prediction engines collectively allow
validation of odorant status, prediction of responsive ORs for
given odorants, prediction of putative odorants for user-
supplied ORs, and verification of OR–odorant pair interac-
tion. Importantly, all the aforementioned prediction engines
also support modules of explainable artificial intelligence,
allowing the user to decode the underlying features for the
model classification/prediction at the atomic (odorant or
nonodorant) and amino acid levels (ORs). Of note, machine/
deep learning–based approaches have been used in the past to
build prediction models for OR–odorant interactions as well
as for the odorant/nonodorant classification (65, 66). Notably,
both ODORactor (65) as well as recently introduced DeepOlf
(66) utilizes manually designed molecular descriptors for
8 J. Biol. Chem. (2021) 297(2) 100956
model building as well as for predictions, whereas, OdoriFy
models utilize One-Hot encoding/BiLSTM-based techniques.
Moreover, the implementation of explainable artificial intelli-
gence components is also exclusive to OdoriFy. Content-rich
interface and a high degree of customizability are among the
key features of OdoriFy. For instance, OR Finder supports both
the normal (slower but more accurate) and rapid (faster but
less accurate) testing of user-supplied odorants. The Odor
Finder module supports user-defined K values (top K inter-
acting odorants for the query OR sequence), whereas this
parameter is fixed in the case of ODORactor (65) and requires
changes in the source code of DeepOlf (66). OdoriFy is a
secure SSL-certified Web server and supports batch search and
returns results via electronic mail. Of note, in addition to the
aforementioned advancements, OdoriFy is comparably more
accurate since the models are trained on large amounts of
ground truth data using state-of-the-art deep learning tech-
niques. Despite possessing multiple advantageous features,
OdoriFy has certain technical limitations. First, unlike
ODORactor (65) and DeepOlf (66), OdoriFy does not support
the chemical exploration of the mouse olfactory system since it
is exclusively built on human data. Second, OdoriFy utilizes
RDKit (http://www.rdkit.org/RDKit_Overview.pdf) to parse
and convert SMILES and therefore does not support SMILES
containing ionic bonds with a period (.). Finally, OdoriFy does
not support input SMILES with multiple letter symbols such as
(Br) for Bromine.

We believe that OdoriFy will provide the much-required
computational framework in the field of chemosensory
research to accelerate the ongoing efforts for ORs deorpha-
nization. It provides a virtual means to prioritize odorants for
the in vivo/in vitro interaction assays, as opposed to the hit and
trial methods. Moreover, OdoriFy functionalities also allow
decoding of the molecular basis of odorant–OR interactions,
that is, to link the OR amino acid motifs to that of odorant
substructures, which has been a challenging task to date. These
results provide chemosensory researchers with the key amino
acids of the OR protein sequence that contribute to the
ligand–receptor interactions and therefore assist the muta-
genesis experiments for the in vitro/in vivo validations.
The odorant/nonodorant dataset that laid the foundation of
the Odorant Predictor engine could be utilized to demarcate
the boundaries of odorant space, that is, to determine the total
number of odorants that humans can detect and discriminate.
Importantly, this dataset could also be used to identify the set
of key physicochemical properties of the odorants using
feature selection/reduction techniques, which could further
enhance our basic understanding of odorant chemistry and
therefore foster the synthesis of new synthetic odorants (47).
OdoriFy server and its associated datasets can be used to
explore the relationship between odorant structure and its
perception. Earlier studies linked odorant perceptual di-
mensions to odorant structural dimensions (46, 67, 68). Of
note, OdoriFy lacks perceptual information, but the publicly
available perceptual datasets could be easily overlaid leading to
the multidimensional information-linking odorants with their
cognate receptors and perceptual properties (69). In addition
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Figure 5. Crossvalidation of the top predicted agonists/nonagonists of OR1A1 using an orthogonal structure–based approach. A, the micrograph
depicts the interaction of OR1A1 protein with its agonist Kojibiose inside the binding pocket of a three-dimensional OR1A1 protein structure. B, Lig plot
highlighting the key amino acids within the binding pocket that are predicted to be interacting with a known agonist Kojibiose (left) and nonagonist
acetaldehyde (right). C, scatter plot describing the relationship between predicted OR1A1 agonists (indicated in green) and nonagonists (indicated in red)
with the binding energies obtained using AutoDock. D, box plot representing the distribution of the binding energies for the known and predicted agonists
and nonagonists. Mann–Whitney U test was used for statistical analysis, where ns represents nonsignificant, whereas ** represents p ≤ 0.01. E, bar plot
representing the comparative performance of OdoriFy, ODORactor, and DeepOlf in precisely predicting the top n hits for the input SMILES/ligands. SMILES,
Simplified Molecular-Input Line-Entry System.
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to this, OdoriFy can be used to shed light on the evolutionary
aspects of olfaction. The majority of the human ORs are
pseudogenes and therefore do not directly contribute to
odorant detection (20, 70). Odor Finder engine can be used to
predict the potential odorants for these pseudogenes. Notably,
such an approach requires other computational methods to
convert pseudo OR genes into computationally corrected and
evolutionary-directed functional genes. An emerging frontier
in olfaction is that the overall odor perception is not only
triggered by an odorant binding to its cognate receptor but
also involves parallel inhibition of other ORs by the same
odorant, thereby reinforcing OR inhibition as a fundamental
phenomenon to odor encoding (71, 72). OdoriFy harbors the
largest compendium of known OR–odorant interactions. Such
a large volume of data could be used to dissect the molecular
basis of OR inhibition using the heterologous expression–
based assays or computer-aided OR–odorant interactions.
Moreover, OdoriFy could also contribute to the identification
of endogenous ligands for the extranasal ORs. A recent report
linked the prostate cancer–associated OR, that is, OR51E2
with the testosterone metabolite 19-hydroxyandrostenedione
(73). This seminal work suggests that the extranasal ORs
could be potentially activated by the endogenous metabolites.
OR Finder prediction engine harbors functionalities to link
the extranasal ORs to that of user-provided metabolites (73).
Last and most importantly, the underlying deep learning
frameworks of OdoriFy could be translated into other sub-
domains of chemoinformatics research such as in silico drug
design (74).

Experimental procedures

Deep neural networks in chemoinformatics

Machine learning, a subset of artificial intelligence, allows
extraction of meaningful patterns or inferences from the
provided dataset (termed as training data) and therefore
permits the execution of complex tasks like classification or
prediction on the unseen data (testing dataset). Deep learning
techniques are an efficient and latest subfield of machine
learning. A deep neural network is the hierarchical (layered)
organization of neurons that are interconnected to other
neurons. The transfer of information or signals occurs between
neurons and therefore leads to a complex network that learns
with feedback mechanisms. The usage of deep learning–based
methods has been a recent phenomenon in chemoinformatics
(75, 76). The present work utilizes novel deep learning
architectures in olfaction and therefore allows classification of
chemicals into odorants and nonodorants and identification of
putative cognate ORs for the query odorants or vice versa.

Data compilation

The training data for four different OdoriFy prediction en-
gines, namely Odor Finder, OR Finder, Odorant Predictor, and
Odorant–OR Pair Analysis were manually compiled from
published studies till March 2020, retrieved by PubMed search.
Since the performance of machine learning–based classifica-
tion/prediction models largely depends on the input dataset
10 J. Biol. Chem. (2021) 297(2) 100956
used for the model training, we followed stringent multiphase
steps to ensure the data quality. For this, the initial data
compilation and its crossvalidation were performed in three
phases. In the first phase, all articles citing interaction infor-
mation relating to ORs, alongside the information about their
known agonists and nonagonists, were downloaded from
PubMed, and each of the filtered publications was thoroughly
read and the details of the interactions were manually
extracted and compiled. In the second phase, the information
was reverified and filtered for contradicting entries by a
separate team. In the last phase, all the interactions were
manually verified by all the authors. A total of 679 agonist-OR
pairs and 5474 nonagonist-OR pairs were collated.

Similar data sanity checks were carried out for the dataset
used for the Odorant Predictor classification model, which al-
lows verification of odorant properties in user-supplied chem-
icals. To obtain the training and testing datasets, we compiled
the bonafide odorants and nonodorant molecules from two
independent repositories, namely PubChem (https://pubchem.
ncbi.nlm.nih.gov/) and “thegoodscentscompany” (http://www.
thegoodscentscompany.com/). To ensure its validity, we fol-
lowed all the aforementioned sanity checks. Initial data filtering
steps were performed to remove the redundant and conflicting
entries. Finally, we obtained a total of 5003 odorants and
857 nonodorants that we subsequently used for training the
deep learning model. For describing these chemical moieties in
the form of a line notation, we used a Simplified Molecular-
Input Line-Entry System (SMILES) representation. Further-
more, to avoid discrepancies between various SMILES
subformats, we used the OPSIN tool (56) (https://opsin.ch.cam.
ac.uk/) for the uniform conversion of chemicals into SMILES.

Prediction engines

The graphical user interface of OdoriFy supports four
classification/prediction tasks, ranging from the validation of
odorant properties in query chemicals to the identification of
their cognate ORs.

Odorant Predictor

The architecture of the Odorant Predictor module is based
on Transformer-CNN (57). Transformer-CNN with the
default settings was used for the model generation. The input
data were formatted as per the authors’ recommendations.
One of the key features of Transformer-CNN is that it allows
augmentation of the SMILES for training and inference,
thereby enabling the construction of robust models even with
smaller datasets. In the case of Odorant Predictor, the model
was built using the quantitative structure–activity (property)
relationship workflow, an inbuilt function in Transformer-
CNN (57). The interpretability of the model at the substruc-
ture level was performed using the layerwise relevance
propagation method (77). Layerwise relevance propagation
method is an explanation algorithm used in tandem with
neural networks to evaluate and allow the propagation of
relevance from the last layer to the input layer. With this
approach, the most relevant features can be identified. To
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build and test the accuracy of the prediction model and avoid
training data biases, we performed an iterative process
(100 times), in which each cycle involves the random splitting
of total data into training (80%) and testing (20%) sets, fol-
lowed by model building and its performance evaluation. Of
note, the performance of each individual model was computed
using the standard parameters such as accuracy, balanced
accuracy, Cohen’s kappa score, precision, recall, the area under
the curve of receiver operating characteristic (AUC-ROC), and
F1 score. Accuracy is described as the proportion of correct
ðÞþ–:=−0123456789 ¼ #@$ABCDEFGHIJKLMNOPQRSTUVWXYZ½\�abcdefghijklmnopqrstuvwxyz

ˇ

predictions by the model. However, accuracy alone as a mea-
sure of model performance may be misleading when exposed
to an unequal number of samples in each class, a problem
commonly regarded as the class imbalance problem. These
limitations can be overcome by the use of balanced metrics that
control for class imbalance. Precision provides information on
the proportion of positive predictions that are true positives,
whereas the recall parameter provides information on the
proportion of the true positives that are correctly predicted. F1
score is the harmonic mean of precision and recall. The AUC-
ROC provides information about how well the model can
distinguish between the classes. The higher the value of AUC-
ROC (toward 1), the higher is the capability of the underlying
model to distinguish between the classes. Cohen’s kappa score
compares the accuracy of the model while controlling for the
hypothetical scenario of random classification.

Odor Finder, OR Finder, and Odorant–OR Pair Analysis

The model underpinning Odor Finder, OR Finder, and
Odorant–OR Pair Analysis was built using PyTorch, a python-
based deep learning toolkit (78). Of note, a single model was
used at the back end that supports each of these prediction
engines. The input datasets used for model building constitute
protein sequences associated with the ORs, SMILES of their
agonists/nonagonists, and the resultant activation status (1 =
activation; 0 = nonactivation). For building and testing the
efficacy of the model, we followed a similar strategy of iteration
and model performance estimation as discussed previously for
the Odorant Prediction model. Notably, the input dataset was
first filtered through Odorant Predictor to remove any non-
odorants from the data. Importantly, the majority of the
agonists-OR pairs (643 of 679) and nonagonists-OR pairs
(5390 of 5474) in the dataset qualified for odorant properties
(prediction probability cutoff > 0.5) and therefore were used
for the downstream model building. In the case of the
Odorant–OR Pair Analysis prediction engine, the input data
were randomly split into training (80%) and testing (20%)
datasets. The former dataset was used for model building,
whereas the latter was used for the performance estimation.
Notably, the odorant–OR interaction data contained a higher
number of nonagonists, as compared with agonists. To
circumvent this, we oversampled the minority class using
Resample from the sklearn python package to ensure equal
contribution from both classes. The OR sequences and their
respective agonists and nonagonists SMILES from both the
datasets were One-Hot encoded (conversion of a sequence of
symbols into bit vectors) using the following strategy. One-Hot
encoding of the receptor sequence was done by taking
26 capital letters and one special character
(ABCDEFGHIJKLMNOPQRSTUVWXYZ

ˇ

), and One-Hot
encoding of SMILES was done for the following 77 characters:
Two independent Bidirectional Long Short-Term Memory
(BiLSTM) networks were applied on the One-Hot encoded
vectors of SMILES and receptor sequence, respectively. Both
these individual layers were then passed through the linear
layers of the network, and their resulting vectors were
concatenated. This was followed by hidden layers with rectified
linear unit activation functions and Softmax as the output
layer. We used dropout to prevent model overfitting. Hyper-
parameter tuning using grid search revealed the optimal
lengths for SMILES and OR, which are 75 and 315, respec-
tively. For both SMILES and OR sequences, 50 turned out to
be the optimal number for hidden layers. All our model per-
formance measurements were carried out on bootstrapped
training and validation datasets, generated by random
sampling.

OR finder identifies the potential responsive ORs for the
query odorant/SMILES. For this, instead of searching the
entire dataset to fetch the user-supplied SMILES, and return
their cognate receptors, we narrowed our search space by
applying this search function on a subset of dataset SMILES,
which are structurally similar SMILES to the user query. This
was achieved using the Tanimoto similarity metric for
fingerprinting and computing the molecular similarity using
RDKit (http://www.rdkit.org/RDKit_Overview.pdf) (https://
github.com/rdkit/rdkit). After obtaining the limited set of
OR sequences, we calculated their binding probabilities with
the query SMILES by BiLSTM-based model (discussed previ-
ously). In addition to this approach, we also employed a brute
force approach wherein we predicted the binding nature of the
query SMILES with each unique receptor sequence available in
our manually curated database. This step checks the potential
binding of the input SMILES with all human ORs and returns
the top K ORs (10 ≥ K ≥ 1), along with the information about
their protein sequences and binding probabilities. It is un-
doubtedly slower but theoretically more accurate and more
comprehensive than similarity-based prediction methodology
(discussed previously) (79, 80). Of note, the prediction model
was trained on both the mutant and wildtype ORs; however, in
the case of OR Finder, the prediction engine only checks for
binding with wildtype receptors (i.e., ~400 unique human
ORs). The output of the OR finder provides a list of potential
J. Biol. Chem. (2021) 297(2) 100956 11
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ORs along with their binding probabilities for the user-
provided odorants.

In the Odor Finder prediction engine, which enables the
identification of odorant molecules for wildtype or mutant hu-
man ORs, we used the aforementioned brute force approach for
scanning ourdatabase.Ofnote, the underlyingmodel usedhere is
the same as the one we used for the Odorant–OR Pair Analysis.
Outputs of each prediction engine are then converted into
comma-separated values (CSVs) and displayed to users. We
implemented an interpretability module for each prediction en-
gine to gain insights into the “why” of a prediction. Our inter-
pretability module returns the positively and negatively
contributing atoms with shades of green and red, respectively.
The interpretability module is built on the integrated gradients,
which provide a visual representation of the importance of the
input features contributing to the model’s prediction (Captum:
https://github.com/pytorch/captum) (58, 78). Such approaches
have been extensively used in the drug discovery domain, senti-
ment analysis, natural language processing, image classifications,
and so on. For substructure analysis and highlighting atoms, we
used the RDkit Python library (http://www.rdkit.org/RDKit_
Overview.pdf) that draws molecules and colors them individu-
ally according to their relevance in the model’s predictions.

Implementation of the frontend

OdoriFy is built on the open-source cascading style sheets
framework, utilizing the widely popular bootstrap with Pop-
per.js, and jQuery (https://jquery.com/), javascript library. Apart
from providing an overall theme to the Web server, advanced
techniques such as lazy loading of style sheets/images and
rendering minified HTML have been used to ensure fast loading
times. Given an anticipated load of requests on the Web server
and possible security threats, instead of processing an uploaded
CSV on the server side, the parsing happens on the client side
via Papa Parse.js (https://github.com/mholt/PapaParse). As a
CSV is uploaded, each row of the CSV is processed using
papaparse.js, based on the prediction engine. For Odorant
Predictor and OR Finder, the desired CSV consisting of a single
column with SMILES in each row is required. For Odor Finder,
the desired CSV consists of two columns of FASTA rows, the
first column being the FASTA header and the other column, the
receptor sequence. Odorant–OR Pair Analysis on the other
hand requires an additional column of SMILES in its input CSV
file. For populating the results on the frontend and achieving
maximum possible modularity while creating the views, Django
templating has been used to render the pages with the context
being received from the Django controller (version 3.1.5;
https://www.djangoproject.com/). The contact form parameters
are received using a get request and then using simple mail
transfer protocol, an acknowledgment mail is sent to the user
assuring that their query will be processed as soon as possible.

Data availability

OdoriFy is an open-source tool with multiple prediction
engines. It is provided as a Web server (https://odorify.
ahujalab.iiitd.edu.in). Moreover, the source code of OdoriFy
12 J. Biol. Chem. (2021) 297(2) 100956
can be obtained from https://github.com/the-ahuja-lab/
Odorify-webserver. The source code of the embeddings
needed to train the model is available at https://github.com/
the-ahuja-lab/Odorify.

Supporting information—This article contains supporting
information.
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