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Background
Nonlinear oscillation problems are important in physical sciences, mechanical struc-
tures and engineering structures. Nonlinear vibration of oscillation systems are modeled 
by nonlinear differential equations. It is almost difficult to get exact solution for such 
nonlinear differential equations. Several methods have been used to solve weakly (small 
parameters, so-called perturbation parameters) nonlinear differential equations. Among 
all, most widely used technique is perturbation method (Marion 1970; Krylov and 
Bogoliubov 1947; Bogoliubov and Mitropolskii 1961; Nayfeh 1973; Nayfeh and Mook 
1979; Nayfeh 1981). The perturbation method is not applied when a small parameter is 
absent in a nonlinear problem. Nonlinear of planar, large-amplitude free vibrations of a 
slender, inextensible cantilever beam carrying a lumped mass with rotary inertia at an 

Abstract 

Based on a new trial function, an analytical coupled technique (a combination of 
homotopy perturbation method and variational method) is presented to obtain the 
approximate frequencies and the corresponding periodic solutions of the free vibra-
tion of a conservative oscillator having inertia and static non-linearities. In some of the 
previous articles, the first and second-order approximations have been determined by 
the same method of such nonlinear oscillator, but the trial functions have not been 
satisfied the initial conditions. It seemed to be a big shortcoming of those articles. The 
new trial function of this paper overcomes aforementioned limitation. The first-order 
approximation is mainly considered in this paper. The main advantage of this present 
paper is, the first-order approximation gives better result than other existing second-
order harmonic balance methods. The present method is valid for large amplitudes 
of oscillation. The absolute relative error measures (first-order approximate frequency) 
in this paper is 0.00 % for large amplitude A = 1000, while the relative error gives two 
different second-order harmonic balance methods: 10.33 and 3.72 %. Thus the present 
method is suitable for solving the above-mentioned nonlinear oscillator.
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intermediate position along its span is one of the problems that does not contain small 
parameter. In general, such problem is not always possible to get exact solution because 
of their complexity and thus the analytical approximate techniques must be needed to 
solve such problem. Moreover, there have been many strongly nonlinear problems aris-
ing in both science and engineering. To eliminate the limitations of classical perturba-
tion technique, many analytical techniques such as variational iterative method (He et al. 
2010; Herisanu and Marinca 2010a, b), variational method (He 2007; Kaya et al. 2010; 
Khan et  al. 2011), energy balance method (EBM) (He 2002, 2006), homotopy analysis 
method (Liao 2003) used to solve strongly nonlinear problems. Recently, Khan et  al. 
(2013) generalized the standard homotopy analysis method to solve nonlinear oscilla-
tors with rational terms. Moreover, Khan and Mirzabeigy (2014) has been improved He’s 
energy balance method, especially the second-order approximation is considered here.

The homotopy perturbation method (HPM) (He 1999, 2004; Rafei et  al. 2007; Ganji 
and Sadighi 2006; Ghorbani and Nadjafi 2007) is another effective technique for solving 
strongly nonlinear problems. The homotopy perturbation method was first introduced 
by He (1999). Generally, it is a method which is a combination of the classical pertur-
bation method and the homotopy method in topology (He 2000). The solution proce-
dure of HPM is very simple, only a few iteration steps lead to accurate approximations. 
Recently, some authors (Wang et al. 2012; Khan et al. 2014; Aminikhaha and Hemmat-
nezhad 2011; Akindeinde 2015; Suleman and Wu 2015) have been improved and modi-
fied the homotopy perturbation method. Moreover, another modified version of HPM 
named as optimal homotopy perturbation method (OHPM) (Marinca and Herisanu 
2010, 2011; Herisanu and Marinca 2012) have also been used for solving strongly nonlin-
ear systems. Furthermore, some authors (Akbarzade 2010; Khan et al. 2012; Akbarzade 
and Khan 2012) have developed an analytical approximate technique coupling of the 
homotopy perturbation method and variational method in order to get high accuracy. 
Khan et al. (2012) obtained fourth-order approximations of strongly nonlinear problems, 
but the solution procedures of third and fourth-order approximations are very labori-
ous process. On the contrary, some authors (Akbarzade and Khan 2012; Hamdan and 
Dado 1997; Wu et al. 2003; Herisanu and Marinca 2010a, b) have investigated the free 
vibration of a conservative oscillator having inertia and static non-linearity. In the previ-
ous articles (Hamdan and Dado 1997; Wu et  al. 2003), the second-order approximate 
frequencies as well as the corresponding periodic solutions of such nonlinear oscillator 
were determined by using harmonic balance method. The results of Hamdan and Dado 
(1997) and Wu et  al. (2003) are valid for weak nonlinearities and small amplitudes of 
oscillation. Moreover, in terms of large amplitudes, the results of the researchers (Ham-
dan and Dado (1997) and Wu et al. (2003) do not provide better outcome. On the other 
hand, the solution procedure of the article (Herisanu and Marinca 2010a, b) is very labo-
rious. One of the shortcomings of the articles (Akbarzade 2010; Akbarzade and Khan 
2012) is their trial functions do not satisfy the initial conditions.

In this paper, an analytical coupled method [a combination of homotopy perturbation 
method (He 2004) and variational method (He 2007)], along with a new trial function, 
has been presented to obtain the approximate frequency and the corresponding periodic 
solution of the strongly nonlinear oscillation of a conservative oscillator having inertia and 
static non-linearities (Akbarzade and Khan 2012; Hamdan and Dado 1997; Wu et al. 2003; 
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Herisanu and Marinca 2010a, b). The new trial function of the present paper has satisfied 
the initial conditions. The results obtained in this paper (first-order approximate frequen-
cies) are much better result for large values of amplitude than other existing results (Ham-
dan and Dado 1997; Wu et al. 2003). The method is very easy and straightforward.

Formulation and solution method
Consider the nonlinear oscillator (Hamdan and Dado 1997; Wu et  al. 2003; Herisanu 
and Marinca 2010a, b)

subject to the initial conditions

By considering the nonlinear oscillator, Eq.  (1), the following homotopy can be 
constructed:

where p ∈ [0, 1] and ω is an unknown angular frequency of the nonlinear oscillator 
which is further to be determined. When p = 0, Eq. (3) becomes the linearized equation, 
u′′ + ω2u = 0. When p = 1, it turns out to be the original one.

Let us consider that the periodic solution to Eq. (1) may be written as a power series in 
p:

Substituting Eq. (4) into Eq. (3) and equating the coefficients of p0 and p1, we obtain

and

The solution of Eq.  (5) is u0 = A cosω t, where ω will be determined from the vari-
ational formulation for u1, which reads:

In previous article (Akbarzade and Khan 2012), a trial function was chosen in the fol-
lowing form:
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The accuracy of the first-order approximate solution, Akbarzade and Khan (2012) was 
chosen the trial function in the following form:

Here, we observe that the trial functions Eqs. (8)–(9) are not satisfied the initial con-
ditions u1(0) = 0, u′

1
(0) = 0 when substitutes t = 0 in the Eqs.  (8)–(9). It is the main 

shortcomings of the article Akbarzade and Khan (2012).
In this paper, the limitation of the article Akbarzade and Khan (2012) has been 

removed by choosing a simple new trial function in the following form:

The new trial function given in Eq.  (10) is satisfied the initial conditions 
u1(0) = 0, u′

1
(0) = 0. The trial function given in Eq. (10) makes the solution rapidly con-

verges; furthermore, the determination of first-order approximation is very easy.
Substituting u1 into functional Eq. (7), we obtain the following result:

Setting:

Solving Eq. (12), we obtain the first approximate frequency as a function of amplitude 
as

where ω0 is the first-order analytical approximate frequency.
Therefore, the first-order approximate solution of Eq. (1) becomes

where ω is given in Eq. (13).
Thus, the determination of first-order approximation is very easy and straightforward. 

On the other hand, the determination of second-order approximation of the article 
(Herisanu and Marinca 2010a, b) is very laborious process; thus, seems to be complex.

Results and discussion
An analytical coupled technique [combining of the homotopy perturbation method (He 
2004) and variational method (He 2007)], along with a simple new trial function, has 
been presented to determine the approximate frequency and the corresponding periodic 
solution of the above-mentioned nonlinear oscillator given by Eq.  (1). Recently, some 
authors (Akbarzade and Khan 2012; Hamdan and Dado 1997; Wu et al. 2003; Herisanu 
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(11)J (A,B,ω) =
Bπ

(
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and Marinca 2010a, b) have determined the approximate frequencies and the periodic 
solutions of such nonlinear oscillator. They (Akbarzade and Khan 2012; Hamdan and 
Dado 1997; Wu et al. 2003; Herisanu and Marinca 2010a, b) were obtained second-order 
approximation because their first-order approximation did not provide better result. On 
the other hand, the solution procedures of the article (Herisanu and Marinca 2010a, b) 
are not easy and it is very laborious process also. In this situation, the first-order approx-
imation of the present paper gives significantly better result than other existing second-
order approximations (Hamdan and Dado 1997; Wu et al. 2003).

To verify the efficiency and accuracy of the present method, the approximate frequen-
cies have been obtained for several amplitudes when α = β = 1 and α = β = 2 and have 
been compared those results with other existing harmonic balance methods (Hamdan 
and Dado 1997; Wu et al. 2003). All results are shown respectively in Tables 1 and 2. The 
absolute relative errors of the present paper (first-order frequencies) have been com-
pared with the numerical frequency and give less than 0.00  % in the limit as A → ∞ 
whereas the absolute relative errors of the first and second-order analytical approxima-
tions (obtained by Hamdan and Dado 1997) give less than 13.40 and 10.33 %, respec-
tively. On the other hand, the absolute relative errors of the first and second-order 
analytical approximations (obtained by Wu et al. 2003) give less than 13.40 and 3.72 %, 

Table 1  Comparison between  the numerical frequency ω, the approximate frequency 
obtained by  present method (given in  Eq.  13) and  other existing frequencies (Hamdan 
and Dado 1997; Wu et al. 2003) for α = β = 1 as well as several large amplitudes

The absolute relative error has been also computed

A Numerical 
frequency  
ωe

Hamdan and Dado (1997) 
(error%)

Wu et al. (2003)  
(error%)

Present method 
(error%)  
ω0

ω0 ω1 ω0 ω1

5 1.34288 1.20953 1.24841 1.20953 1.32217 1.37581

9.93 7.04 9.93 1.54 2.45

10 1.38928 1.22074 1.26285 1.22074 1.35084 1.40388

12.13 9.10 12.13 2.77 1.05

15 1.40138 1.22295 1.26570 1.22295 1.35672 1.40955

12.73 9.68 12.73 3.19 0.58

20 1.40632 1.22373 1.26671 1.22373 1.35883 1.41158

12.98 9.92 12.98 3.38 0.38

25 1.40883 1.22409 1.26718 1.22409 1.35981 1.41252

13.11 10.05 13.11 3.48 0.26

30 1.41029 1.22429 1.26743 1.22429 1.36035 1.41304

13.19 10.13 13.19 3.54 0.20

50 1.41261 1.22458 1.26781 1.22458 1.36113 1.41379

13.31 10.25 13.31 3.65 0.08

100 1.41375 1.22470 1.26797 1.22470 1.36147 1.41411

13.37 10.31 13.37 3.70 0.03

200 1.41408 1.22473 1.26801 1.22473 1.36155 1.41419

13.39 10.33 13.39 3.72 0.00

500 1.41419 1.22474 1.26802 1.22474 1.36157 1.41421

13.40 10.33 13.40 3.72 0.00

1000 1.41421 1.22474 1.26802 1.22474 1.36157 1.41421

13.40 10.33 13.40 3.72 0.00
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respectively. Thus, the convergent rate of the present method is very faster than Hamdan 
and Dado (1997); Wu et al. (2003).

Next, the approximate solution of Eq.  (1) has been determined by using present 
method and harmonic balance method (Wu et  al. 2003) for α = β = 1, A = 10 and 
shown in Fig. 1. Finally, the approximate solution of Eq. (1) has been determined by using 
present method and harmonic balance method (Wu et al. 2003) for α = β = 2, A = 10 
and shown in Fig.  2. All figures include numerical solution obtained by fourth order 
Runge–Kutta method.

From all the figures, we see that the first-order approximate solution obtained by har-
monic balance method deviates from numerical solution. Moreover, the second-order 
approximate solution obtained by harmonic balance method does not better agree-
ment with the corresponding numerical solution. On the other hand, the first-order 
approximate solution obtained by present method gives excellent agreement with the 
corresponding numerical solution. Therefore, the present method is suitable for solving 
Eq.  (1) than Akbarzade and Khan (2012); Hamdan and Dado (1997); Wu et al. (2003); 
Herisanu and Marinca (2010a, b) for strong nonlinearity as well as large amplitudes of 
oscillation.

Table 2  Comparison between  the numerical frequency ω, the approximate frequency 
obtained by  present method (given in  Eq.  13) and  other existing frequency (Hamdan 
and Dado 1997; Wu et al. 2003) for α = β = 2 as well as several large amplitudes

The absolute relative error has been also computed

A Numerical 
frequency  
ωe

Hamdan and Dado  
(1997) (error%)

Wu et al. (2003)  
(error%)

Present method 
(error%)  
ω0

ω0 ω1 ω0 ω1

5 1.37132 1.21687 1.25786 1.21687 1.34073 1.39406

11.26 8.27 11.26 2.23 1.66

10 1.40006 1.22272 1.26541 1.22272 1.35613 1.40898

12.67 9.61 12.67 3.14 0.64

15 1.40707 1.22384 1.26685 1.22384 1.35913 1.41187

13.02 9.96 13.02 3.41 0.34

20 1.40986 1.22424 1.26736 1.22424 1.36020 1.41289

13.17 10.11 13.17 3.52 0.22

25 1.41127 1.22442 1.26760 1.22442 1.36069 1.41337

13.24 10.18 13.24 3.59 0.15

30 1.41207 1.22452 1.26773 1.22452 1.36096 1.41363

13.28 10.22 13.28 3.62 0.11

50 1.41335 1.22466 1.26791 1.22466 1.36135 1.41400

13.35 10.29 13.35 3.68 0.05

100 1.41397 1.22472 1.26799 1.22472 1.36152 1.41416

13.39 10.32 13.39 3.71 0.01

200 1.41414 1.22474 1.26801 1.22474 1.36156 1.41420

13.40 10.33 13.40 3.72 0.00

500 1.41420 1.22474 1.26802 1.22474 1.36157 1.41421

13.40 10.33 13.40 3.72 0.00

1000 1.41421 1.22474 1.26802 1.22474 1.36158 1.41421

13.40 10.34 13.40 3.72 0.00
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Conclusion
In this paper, a simple analytical technique has been presented to solve of nonlinear 
oscillations of planar, flexural large amplitudes free vibration of a slender, inextensible 
cantilever beam carrying a lumped mass with rotary inertia at an intermediate position 
along its span. Generally, the first-order approximation is considered in this paper. The 
first-order approximation gives rapidly converges to the corresponding numerical solu-
tion. The present method gives better result than other existing results for large ampli-
tudes of oscillation. It has been proved that the present method is very effective and 
convenient and provides more accurate result for solving strongly nonlinear oscillators.
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Fig. 1  Comparison of the analytical approximate periodic solution obtained by present method (denoting 
by circles line) with numerical solution obtained by fourth order Runge–Kutta method (denoted by solid line) 
and also with the first-order (denoted by cross lines) as well as second-order (denoted by dash line) approxi-
mations obtained by harmonic balance method (Wu et al. 2003) for α = β = 1, A = 10

-15

-12

-9

-6

-3

0

3

6

9

12

15

0 3 6 9 12 15t

u

Fig. 2  Comparison of the analytical approximate periodic solution obtained by present method (denoting 
by circles line) with numerical solution obtained by fourth order Runge–Kutta method (denoted by solid line) 
and also with the first-order (denoted by cross lines) as well as second-order (denoted by dash line) approxi-
mations obtained by harmonic balance method (Wu et al. 2003) for α = β = 2, A = 10
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