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We propose a mathematical model describing tumor-immune interactions under immune suppression. These days evidences
indicate that the immune suppression related to cancer contributes to its progression.Themathematical model for tumor-immune
interactions would provide a new methodology for more sophisticated treatment options of cancer. To do this we have developed
a system of 11 ordinary differential equations including the movement, interaction, and activation of NK cells, CD8+T-cells,
CD4+T cells, regulatory T cells, and dendritic cells under the presence of tumor and cytokines and the immune interactions. In
addition, we apply two control therapies, immunotherapy and chemotherapy to the model in order to control growth of tumor.
Using optimal control theory and numerical simulations, we obtain appropriate treatment strategies according to the ratio of the
cost for two therapies, which suggest an optimal timing of each administration for the two types of models, without and with
immunosuppressive effects. These results mean that the immune suppression can have an influence on treatment strategies for
cancer.

1. Introduction

Cancer is a leading cause of death worldwide. Cancer is a
term used for diseases in which abnormal cells divide without
control and are able to invade some tissues. The possibility
that cancers can be eradicated by specific immune responses
has been the impetus for the field of tumor immunology.The
existence of immune surveillance, which was proposed by
Macfarlane Burnet in the 1950s, has been demonstrated by the
incidence of some types of tumors in immunocompromised
experimental animals and humans [1].

Chemotherapy and immunotherapy are typical treat-
ment methods of cancer. Chemotherapy directly targets
the transformed tumor cell. But chemotherapy has some
general side effects such as hair loss, a sore mouth, vomiting,
and diarrhea [2]. Immunotherapy is treatment method that
uses body’s own immune system to help fighting cancer.
There are such many treatment methods for cancer. It is
important to know how to combine these treatment methods
as well as to find treatment methods for cancer treatment.
Although the immune system is very complex, we may
suggest more effective treatment strategies for cancer control

through mathematical models associated with the immune
system. So, identifying a mathematical model of tumor-
immune interactions thatmediate the immune responses and
immune suppression would provide a new strategy for more
sophisticated treatment methods.

There are amount of papers that deal with mathemati-
cal models about tumor-immune interaction. In Kuznetsov
et al. [3], a mathematical model describing the cytotoxic
T lymphocyte response to the growth of an immunogenic
tumor was proposed. Kirschner and Panetta [4] presented a
mathematicalmodel describing the dynamics between tumor
cells, immune-effector cells, and IL-2. They explained both
short-tumor oscillations in tumor sizes and long-term tumor
relapse. In de Pillis et al. [5], they proposed a mathematical
model which was based on de Pillis and Radunskaya’s model
[6] and includes tumor cells and three immune cells as well as
two drug concentrations in the bloodstream and the model
described bifurcation-like behavior to be reproduced under
particular realistic conditions. In addition, they showed
that combination therapy has more effects than only one
therapy for tumor control through numerical simulations.
The model in [7] extended de Pillis’ model [6] and identified
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appropriate values for the parameters of the new model
according to recent empirical data. de Pillis’ paper [8] dealt
with optimal control problem for the model of tumor-
immune interactions with chemotherapy.They characterized
the optimal controls related to drug therapy, including a
quadratic control, a linear control, and state constraint.
Also, Engelhart et al. [9] introduced four different cancer
mathematical models of chemotherapy from the literature
and comparedwith results of optimal control on theirmodels.
Here we note that the above-mentioned all models describe
tumor-immune interactions without immune suppression.
Although the immune system response tumor cells, the
fact that each year many people die from cancer suggests
that immune response to tumor cells is often ineffective.
In fact, an immunosuppressive effect is known to be one
of the main causes of such phenomenon so that there are
several mechanisms by which tumor cells appear to evade
the immune system [1, 10]. The paper of Vaage [11] gave that
the immune system plays a significant role in removing the
tumors of cancer and pointed out that it does not always
work. Chouaib et al. [12] found out that immune suppression
obstructs the immune system in removing tumors. Recently,
Robertson-Tessi et al. [13] proposed a mathematical model of
tumor-immune interactions. They showed only existence of
optimal antigenicity maximizing the immune response.

So even though considering immunosuppressive effects
in the tumor model is important, mathematical modeling for
tumor-immune interactions under immune suppression is
still rare. Here we focus on finding optimal treatment strate-
gies for tumor-immune models under immune suppression.

For this goal, combining the ideas of [7, 13], we consider
an improved tumor dynamic model including three types
of immune response: NK cell as innate immune response;
CD8+T cell, CD4+T cell, and IL-2 as adaptive immune
response; and regulatory T cell, TGF-𝛽, and IL-10 as a role of
immune suppression. Actually we have developed a system of
11 ordinary differential equations describing the movement,
interaction, and activation of tumor-immune system under
immune suppression. We set up a controlled tumor immune
system incorporating two control measures: immunotherapy
and chemotherapy. In addition, we establish the existence
of an optimal control for the control system and also drive
an optimal control and the optimality system using optimal
control techniques. Using the numerical simulations, we sug-
gest the optimal treatment strategies on the base of time for
the control systemunder immunosuppressive effects.We find
out that if the cost of chemotherapy is more expensive than
that of immunotherapy, then the optimal treatment strategy
for the model without immunosuppressive effects needs to
be taken for a longer time for chemotherapy comparing
immunotherapy. On the other hand, when the model has
immunosuppressive effects and the cost of chemotherapy is
more expensive than that of immunotherapy, the optimal
treatment strategy for themodel needs to be taken for a longer
time for immunotherapy comparing chemotherapy.

The rest of this paper is organized as follows. In Section 2,
we give the mathematical model for the tumor-immune
system and describe the parameters used in the equations
with optimal control problem. The necessary conditions for

an optimal control and the corresponding states are derived
using Pontryagin’smaximumprinciple. In Section 3, we show
that the efficacy of immunotherapy and chemotherapy using
numerical simulation and the resulting optimality system
and the parameter sensitivity analysis are numerically solved.
Finally, discussion and conclusions are given in Section 4.

2. Mathematical Modeling and
Optimal Control Problem for a
Tumor-Immune System

If a tumor cell formed in our body, firstly by innate immune
response, NK cells kill the tumor cells. By the adaptive
immune response, after dendritic cells knew about tumor
cell’s information, dendritic cells convey information about
tumor to other T cells. CD4+T cells and CD8+T cells acti-
vated each other by cytokine IL-2. By influence of immune
suppression, regulatory T cells and tumor cell limit functions
of other T cells by cytokine IL-10 and TGF-𝛽. Next, CD8+T
cells directly kill tumor cells by adaptive immune response [1]
(see Figure 1).

In this section, we describe the above-mentioned three
important immune responses and they are represented in
Figure 1. Our baseline model [13] describes adaptive immune
response and influence of immune suppression, but they do
not include effects of the innate immune response. Although
de Pillis’ model [7] includes the adaptive immune response
and the innate immune response, they did not consider
the immune suppression to their model. Motivated by these
two papers, we make mathematical model describing tumor-
immune interactions which include three immune responses,
chemotherapy, and immunotherapy by using mathematical
model.

This model is based on Robertson-Tessi’s model [13].
Their model used 12 biological variables: nine cell types and
three cytokines. All three types of T cells are specific to the
tumor antigen and each of the three T-cell populations is
broken into three subpopulations. The memory T cell (𝑀

𝐸
,

𝑀
𝐻
, and 𝑀

𝑅
) is a pool of T cell precursors, which are

activated by dendritic cells. There is a short-lived activation
phase (𝐴

𝐸
, 𝐴
𝐻
, and 𝐴

𝑅
) where T cell proliferation occurs.

The fully functional T cell phase (𝐸, 𝐻, 𝑅) consists of the
cells that kill the tumor cells, produce cytokines, and suppress
the immune response. The dendritic cell population has
two subpopulations. The unlicensed state, 𝑈(𝑡), is a mature
dendritic cell that collects antigen from the tumor and then
interacts with helper cells. After licensing, the dendritic cell,
𝐷(𝑡), is free to interact with all T cells, causing them to
activate. For update to our baseline model, firstly, we assume
logistic model for growth of tumor. Since experimental data
of tumor growth for the kinds of tumor is different, there are
many growth curves to describe tumor growth. So we use
more a simple logistic growth curve than the tumor growth
curve in Robertson-Tessi’s model [13]. Also, by substitute 𝑇
for𝑇∗ in [13], we exclude effects of spatial access to the tumor
cells. In Robertson-Tessi’s model [13], all three types of T cells
are activated in the same basic way.Thememory T cells enter
a brief activation phase where proliferation is rapid, and then
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Figure 1: Tumor and immune response to chemotherapy and immunotherapy.

they become fully functional T cells.Thus, wemay omit states
of𝐴
𝐸
,𝐴
𝐻
, and𝐴

𝑅
because the stages of𝐴

𝐸
,𝐴
𝐻
, and𝐴

𝑅
only

activate stages of 𝐸, 𝐻, and 𝑅, respectively.
Secondly, we add −𝑐

3
𝐸
𝑇
𝑇 for describing CD8+T cell

death by exhaustion of tumor-killing resources in the third
equation of the system (1) [7]. Thirdly, we include the
state of NK cells and describe innate immune response
[7]. Finally, for describing death of cells due to chemother-
apy, we include state of chemotherapy concentration and
chemotherapy-induced cell death term [5]. The completed
model is described by the following system of differential
equations:

𝑑𝑇

𝑑𝑡
= 𝑎𝑇 (1 − 𝑏𝑇) − 𝑐

1
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−
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1
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1
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𝑇
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1

+ 𝐷
𝐿
)
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𝐸
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𝑢
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(𝑡) ,
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𝑈
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(𝑡) .

(1)

Here𝑇(𝑡) represents number of tumor cells. And immune
system is partitioned into the innate immune response (𝑁(𝑡)
NKcell numbers), adaptive immune response (𝐸

𝑇
(𝑡) (CD8+T

cell numbers), 𝐷
𝑈

(𝑡) (unlicensed dendritic cell numbers),
𝐷
𝐿
(licensed dendritic cell numbers), 𝐻

𝑇
(𝑡) (CD4+T cell

numbers), 𝐼
2
(𝑡) (IL-2)), and immune suppression (𝐺

𝑇
(𝑡)

(regulatory T cell numbers), 𝑆(𝑡) (TGF-𝛽), 𝐼
10

(𝑡) (IL-10)).
When we inject chemotherapy, tumor cells are killed but

other cells are damaged also. Among the many methods
of immunotherapy, we use method injecting CD8+T cells
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directly. 𝑀(𝑡) is chemotherapy drug concentration in the
bloodstream. The parameters V

𝐸
(𝑡) and V

𝑀
(𝑡) represent

amounts of chemotherapy and immunotherapy, respectively
[7].

For the immunochemotherapy, we follow amount of
dosage suggested by the manufacturers of the drug Adria.
We use the upper end of the dosing range to arrive at V

𝑀
=

2.3869mg/L per every 21 days for chemotherapy and the
amount of injected CD8+T cells number is V

𝐿
= 1.77 × 1010.

Since the units of parameters are different in two models
[7, 13], we have converted ng/mL into IU/L by using the
specific activity of IL-10 (3 × 106 IU/mg) and TGF-𝛽 (2 ×
107 IU/mg). 𝑖

1
= 0.3 ng/mL is taken from [13]. We arrive

at our value for 𝑖
1
by employing the specific activity of IL-

2 ((1.8 × 107)/1.1 IU/mg) to convert molar concentration to
IU/L [7]. So we have

0.3 ng
1mL

×
1mg

106 ng
×

1000mL
1 L

×
1.8 × 107 IU

1.1mg
= 4909 IU/L.

(2)

We summarized the model’s term descriptions and value of
parameters in Table 1.

In this work, we introduce two control functions 𝑢
𝐸
(𝑡)

and 𝑢
𝑀

(𝑡) representing amounts of immunotherapy and
chemotherapy, respectively. The parameters 𝜔

1
and 𝜔

2
are

weight factors. We assume that number of injected CD+8 T
cells for immunotherapy is 175000000 during 50 days. So we
put the values of 𝜔

1
is 3500000. And we assume that amounts

of chemotherapy are 25 during 50 days. So we put the values
of 𝜔
2
to be 0.5.

Next we consider a cost functional as follows:

F (𝑢
𝐸
, 𝑢
𝑀

) = ∫
𝑡𝑓

0

𝐴𝑇 (𝑡) + 𝐵𝑢
𝐸
(𝑡)
2 + 𝐶𝑢

𝑀
(𝑡)
2𝑑𝑡. (3)

This functional includes the number of tumor cells, amounts
of chemotherapy, and amounts of immunotherapy. In words,
we are minimizing the number of tumor cells, amounts
of chemotherapy, and amounts of immunotherapy. In the
objective cost functional, the quantities𝐴, 𝐵, and 𝐶 represent
the weight constants of tumor cell numbers, for immunother-
apy and chemotherapy, respectively. The costs associated
with immunotherapy and chemotherapy are described in
the terms 𝐵𝑢

𝐸
(𝑡) and 𝐶𝑢

𝑀
(𝑡), respectively. Our goal is to

minimize the cost functional (3), which is called the optimal
control problem. That is, the optimal control problem is to
seek optimal control functions (𝑢∗

𝐸
(𝑡), 𝑢∗
𝑀

(𝑡)) such that

F (𝑢∗
𝐸
, 𝑢∗
𝑀

) = min {F (𝑢
𝐸
, 𝑢
𝑀

) , (𝑢
𝐸
, 𝑢
𝑀

) ∈ 𝑈} (4)

is subject to the system (1) and appropriate initial conditions
are given at 𝑡 = 0, where the control set is defined as

𝑈 = {𝑢 = (𝑢
𝐸
, 𝑢
𝑀

) | 𝑢
𝑖
(𝑡) is Lebesgue measurable,

0 ≤ 𝑢
𝑖
(𝑡) ≤ 1, 𝑡 ∈ [0, 𝑇] for 𝑖 = 𝐸, 𝑀} .

(5)

Pontryagin’s maximum principle is used to solve this
optimal control problem and the derivation of the necessary
conditions. First we prove the existence of an optimal control
for problem (4) and then derive the optimality system.

Theorem 1. Given that the cost functional F(𝑢
𝐸
, 𝑢
𝑀

) =

∫
𝑡𝑓

0
𝐴𝑇(𝑡)+𝐵𝑢

𝐸
(𝑡)2+𝐶𝑢

𝑀
(𝑡)2𝑑𝑡 and the control set𝑈 given by

(5) is measurable, there exists on optimal control 𝑢∗ = (𝑢∗
𝐸
, 𝑢∗
𝑀

)
such thatF(𝑢∗

𝐸
, 𝑢∗
𝑀

) = min{F(𝑢
𝐸
, 𝑢
𝑀

), (𝑢
𝐸
, 𝑢
𝑀

) ∈ 𝑈}.

Proof. To prove the existence of an optimal control, we use
the result in [14]. Note that the control and the state variable
are nonnegative values. In this minimizing problem, the
necessary convexity of the objective functional in 𝑢

𝐸
, 𝑢
𝑀
are

satisfied. The set of all the control variables (𝑢
𝐸
, 𝑢
𝑀

) ∈ 𝑈 is
also convex and closed by definition. The optimal system is
bounded which determines the compactness needed for the
existence of the optimal control. In addition, the integrand in
functional (3), 𝐴𝑇(𝑡) + 𝐵𝑢

𝐸
(𝑡)2 + 𝐶𝑢

𝑀
(𝑡)2, is convex on the

control set𝑈. Also we can easily see that there exist a constant
𝛿 > 1 and numbers 𝜙

1
, 𝜙
2
such that

F (𝑢
𝐸
, 𝑢
𝑀

) ≥ 𝜙
1
(𝑢2
𝐸

+ 𝑢2
𝑀

)
𝛿/2

− 𝜙
2
, (6)

because the state variables are bounded, which completes the
existence of an optimal control.

In order to find an optimal solution of the system, first we
should find the Lagrangian and Hamiltonian for the optimal
control problem (4). The Lagrangian of the control problem
is given by

𝐿 = 𝐴𝑇 (𝑡) + 𝐵𝑢
𝐸
(𝑡)
2 + 𝐶𝑢

𝑀
(𝑡)
2. (7)

We seek for the minimal value of the Lagrangian. To do
this, we define the Hamiltonian function 𝐻 for the system,
where 𝜆

𝑖
, 𝑖 = 1, . . . , 11, are the adjoint variables:

𝐻 = 𝐴𝑇 (𝑡) + 𝐵𝑢
𝐸
(𝑡)
2 + 𝐶𝑢

𝑀
(𝑡)
2

+ 𝜆
1
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𝑇
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𝑇
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1
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𝑇
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1
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𝛼
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𝐼
2
𝐷
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2
)) (𝑖
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1
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𝑇
𝑇
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Table 1: Equation terms and parameter descriptions.

State Term Parameter Description

𝑇(𝑡)

𝑎𝑇(1 − 𝑏𝑇) 𝑎 = 0.431 (Day−1), 𝑏 = 1.02 × 10−9 [5] Tumor growth term
𝑐
1
𝑇𝑁 𝑐

1
= 3.177 × 10−13 (Cells−1Day−1) [7] NK cells-induced tumor death

𝑑𝑇𝐸

𝐸
𝑇

+ 𝑒𝑇
𝑑 = 0.9 (Day−1) 𝑒 = 1.2 [13] CD8+T cells-induced tumor death

1

(1 + 𝑔
1
(𝐺
𝑇
/𝐸
𝑇
))(1 + (𝑆/𝑠

1
))

𝑔
1

= 1.2 [13] Suppression of CD8+T cell activity due to
TGF-𝛽 and regulatory T cell

𝑘
𝑇
(1 − 𝑒−𝑀)𝑇 𝑘

𝑇
= 0.9 (Day−1) [7] Chemotherapy-induced tumor death

𝑁(𝑡)

𝑏
1 𝑏

1
= 3121875 (Day−1) [7] Production of NK cell

𝑑
𝑁

𝑁 𝑑
𝑁

= 0.0125 (Day−1) [7] Turnover of NK cell

𝑐
2
𝑇𝑁 𝑐

2
= 3.177 × 10−13 (Cells−1Day−1) [7] NK death by exhaustion of tumor killing

resources
𝑝
𝑁

𝑁𝐼
2

𝑞
𝑁

+ 𝐼
2

𝑝
𝑁

= 0.0668 (Day−1), 𝑞
𝑁

= 250360
(IU/L) [7] Stimulatory effect of IL-2 on NK cell

𝑘
𝑁

(1 − 𝑒−𝑀)𝑁 𝑘
𝑁

= 0.6 (Day−1) [5] Chemotherapy-induced NK cell death

𝐸
𝑇
(𝑡)

𝛼
1
𝐼
2
𝐷
𝐿
𝑚
𝐸

(1 + (𝑆/𝑠
2
))(𝑖
1

+ 𝐼
2
)(𝑑
1

+ 𝐷
𝐿
)

𝛼
1

= 16 (Day−1), 𝑠
2

= 580000 (IU/L)
𝑖
1

= 4909 (IU/L), 𝑑
1

= 579579,
𝑚
𝐸

= 526800 [13]
Proliferation of CD8+T cells

𝑐
3
𝐸
𝑇
𝑇 𝑐

3
= 3.42 × 10−10 (Cells−1Day−1) [7] CD8+T cell death by exhaustion of tumor

killing resources
𝑘
𝐸𝑇

(1 − 𝑒−𝑀)𝐸
𝑇

𝑘
𝐸𝑇

= 0.6 (Day−1) [5] Chemotherapy-induced tumor death

𝐷
𝑈

(𝑡)

𝑝𝑇

(1 + (𝐼
10

/𝑖
2
))(1 + (𝐺

𝑇
/𝑔
2
))

𝑝 = 0.1 (Day−1), 𝑖
2

= 1200 (IU/L)
𝑔
2

= 2 × 107 (cell) [13]
Proliferation of mature unlicensed dendritic
cell

𝛾
1
𝐷
𝑈

1 + (𝐷
𝑈

/𝑚
𝐻

)
𝛾
1

= 0.5 (Day−1), 𝑚
𝐻

= 1053600 [13] Licensing of dendritic cell upon encounter with
CD4+T cell

𝑑
𝐷𝑈

𝐷
𝑈

𝑑
𝐷𝑈

= 0.14 (Day−1) [13] Turnover of CD8+T cell

𝑘
𝐷𝑈

(1 − 𝑒−𝑀)𝐷
𝑈

𝑘
𝐷𝑈

= 0.05 (Day−1) [5] Chemotherapy-induced mature unlicensed
dendritic cell death

𝐷
𝐿
(𝑡) 𝑑

𝐷𝐿
𝐷
𝐿

𝑑
𝐷𝐿

= 0.5 (Day−1) [13] Turnover of CD8+T cell

𝐻
𝑇
(𝑡)

𝛼
2
𝐼
2
(𝐷
𝐿

+ 𝐷
𝑈

)𝑚
𝐻

(1 + (𝑆/𝑠
2
))(𝑖
1

+ 𝐼
2
)(𝑑
1

+ 𝐷
𝐿

+ 𝐷
𝑈

)
𝛼
2

= 1.9 (Day−1) [13] Proliferation of CD4+T cell

𝛾
2
𝐻
𝑇
𝑆

𝑠
3

+ 𝑆
𝛾
2

= 0.022 (Day−1), 𝑠
3

= 34000 (IU/L)
[13]

Converting of CD4+T cell to regulatory T cell
by TGF-𝛽

𝑑
𝐻𝑇

𝐻
𝑇

𝑑
𝐻𝑇

= 0.1 (Day−1) [13] Turnover of CD4+T cell
𝑘
𝐻𝑇

(1 − 𝑒−𝑀)𝐻
𝑇

𝑘
𝐻𝑇

= 0.6 [5] Chemotherapy-induced CD4+T cell death

𝐺
𝑇
(𝑡)

𝛼
3
𝐼
2
𝐷
𝐿
𝑚
𝐺

(𝑖
1

+ 𝐼
2
)(𝑑
1

+ 𝐷
𝐿
)

𝛼
3

= 3.6 (Day−1), 𝑚
𝐺

= 175900 [13] Proliferation of regulatory T cell

𝑑
𝐺𝑇

𝐺
𝑇

𝑑
𝐺𝑇

= 0.1 (Day−1) [13] Turnover of regulatory T cell
𝑘
𝐺𝑇

(1 − 𝑒−𝑀)𝐺
𝑇

𝑘
𝐺𝑇

= 0.6 [5] Chemotherapy-induced regulatory T cell death

𝑆(𝑡)

𝑝
1
𝐺
𝑇

𝑝
1

= 3.6 × 10−4 (IU/LCells−1Day−1)
[13] Production of TGF-𝛽 by regulatory T cell

𝑝
2
𝑇

𝑝
2

= 2.2 × 10−3 (IU/LCells−1Day−1)
[13] Production of TGF-𝛽 by tumor cell

𝑑
𝑆
𝑆 𝑑

𝑆
= 14.3 (Day−1) [13] Turnover of TGF-𝛽

𝐼
2
(𝑡)

𝛼
4
𝐻
𝑇

(1 + (𝐼
10

/𝑖
3
))(1 + (𝑆/𝑠

4
))

𝛼
4

= 0.278 (IU/LCells−1Day−1),
𝑖
3

= 2250 (IU/L), 𝑠
4

=18000 (IU/L) [13] Production of IL-2

𝑑
𝐼2

𝐼
2

𝑑
𝐼2

= 12.5 (Day−1) [13] Turnover of IL-2

𝐼
10

(𝑡)

𝑝
3
𝐺
𝑇

𝑝
3

= 4.2 × 10−5 (IU/LCells−1Day−1)
[13] Production of IL-10 by regulatory T cell

𝑝
4
𝑇

𝑝
4

= 3.9 × 10−7 (IU/LCells−1Day−1)
[13] Production of IL-10 by tumor cell

𝑑
𝐼10

𝐼
10

𝑑
𝐼10

= 20 (Day−1) [13] Turnover of IL-10
𝑀(𝑡) 𝑑

𝑀
𝑀 𝑑

𝑀
= 0.9 (Day−1) [5] Excretion and elimination of medicine toxicity
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+ 𝜆
5

[
𝛾
1
𝐷
𝑈

1 + (𝐷
𝑈

/𝑢
1
)

− 𝑑
𝐷𝐿

𝐷
𝐿
]

+ 𝜆
6

[
𝛼
2
𝐼
2

(𝐷
𝐿

+ 𝐷
𝑈

) 𝑚
𝐻

(1 + (𝑆/𝑠
2
)) (𝑖
1

+ 𝐼
2
) (𝑑
1

+ 𝐷
𝐿

+ 𝐷
𝑈

)
−

𝛾
2
𝐻
𝑇
𝑆

𝑠
3

+ 𝑆

−𝑑
𝐻𝑇

𝐻
𝑇

− 𝑘
𝐻𝑇

(1 − 𝑒−𝑀) 𝐻
𝑇
]

+ 𝜆
7

[
𝛾
2
𝐻
𝑇
𝑆

𝑠
3

+ 𝑆
+

𝛼
3
𝐼
2
𝐷
𝐿
𝑚
𝐺

(𝑖
1

+ 𝐼
2
) (𝑑
1

+ 𝐷
𝐿
)

−𝑑
𝐺𝑇

𝐺
𝑇

− 𝑘
𝐺𝑇

(1 − 𝑒−𝑀) 𝐺
𝑇
]

+ 𝜆
8

[𝑝
1
𝐺
𝑇

+ 𝑝
2
𝑇 − 𝑑
𝑠
𝑆]

+ 𝜆
9

[
𝛼
4
𝐻
𝑇

(1 + (𝐼
10

/𝑖
3
)) (1 + (𝑆/𝑠

4
))

− 𝑑
𝐼2

𝐼
2
]

+ 𝜆
10

[𝑝
3
𝐺
𝑇

+ 𝑝
4
𝑇 − 𝑑
𝐼10

𝐼
10

]

+ 𝜆
11

[−𝑑
𝑀

𝑀 + V
𝑀

+ 𝜔
2
𝑢
𝑀

(𝑡)] .

(8)

In order to derive the necessary conditions, we use
Pontryagain’s maximum principle [15] as follows.

If (𝑥, 𝑢) is an optimal solution of an optimal control
problem, then there exists a nontrivial vector function 𝜆 =
(𝜆
1
, 𝜆
2
, . . . , 𝜆

𝑛
) satisfying the following inequalities:

𝑑𝑥

𝑑𝑡
=

𝜕𝐻 (𝑡, 𝑥, 𝑢, 𝜆)

𝜕𝜆
,

0 =
𝜕𝐻 (𝑡, 𝑥, 𝑢, 𝜆)

𝜕𝑢
,

𝑑𝜆

𝑑𝑡
= −

𝜕𝐻 (𝑡, 𝑥, 𝑢, 𝜆)

𝜕𝑥
.

(9)

We now drive the necessary conditions that optimal
control functions and corresponding states must satisfy. In
the following theorem, we present the adjoint system and
control characterization.

Theorem 2. Given an optimal control 𝑢∗ = (𝑢∗
𝐸
, 𝑢∗
𝑀

) and a
solution 𝑦∗ = (𝑇∗, 𝑁∗, 𝐸∗

𝑇
, 𝐷∗
𝑈

, 𝐷∗
𝐿
, 𝐻∗
𝑇
, 𝐺∗
𝑇
, 𝑆∗, 𝐼∗
2
, 𝐼∗
10

, 𝑀∗) of
the corresponding state system (1), there exists adjoint variables
𝜆
𝑖
, 𝑖 = 1, . . . , 11, satisfying

𝜆󸀠
1

(𝑡) = −
𝜕𝐻

𝜕𝑇
= −𝐴

− 𝜆
1

[𝑎 − 2𝑎𝑏𝑇 − 𝑐
1
𝑁

−
𝑑𝐸2
𝑇

(1 + 𝑔
1

(𝐺
𝑇
/𝐸
𝑇
)) (1 + (𝑆/𝑠

1
)) (𝐸
𝑇

+ 𝑒𝑇)
2

−𝑘
𝑇

(1 − 𝑒−𝑀) ]

− 𝜆
2

[−𝑐
2
𝑁] − 𝜆

3
[−𝑐
3
𝐸
𝑇
]

− 𝜆
4

[
𝑝

(1 + (𝐼
10

/𝑖
2
)) (1 + (𝐺

𝑇
/𝑔
2
))

]

− 𝜆
8

[𝑝
2
] − 𝜆
10

[𝑝
4
] ,

𝜆󸀠
2

(𝑡) = −
𝜕𝐻

𝜕𝑁
= −𝜆
1

[−𝑐
1
𝑇]

− 𝜆
2

[−𝑑
𝑁

− 𝑐
2
𝑇 +

𝑝
𝑁

𝐼
2

𝑞
𝑁

+ 𝐼
2

− 𝑘
𝑁

(1 − 𝑒−𝑀)] ,

𝜆󸀠
3

(𝑡) = −
𝜕𝐻

𝜕𝐸
𝑇

= −𝜆
1

[ −
𝑑𝑇

1 + (𝑆/𝑠
1
)

× (
𝑔
1
𝐸2
𝑇
𝐺 + 𝑒𝐸2

𝑇
𝑇 + 2𝑒𝑔

1
𝑇𝐺
𝑇
𝐸
𝑇

(𝐸
𝑇

+ 𝑒𝑇)
2

(𝐸
𝑇

+ 𝑔
1
𝐺
𝑇
)
2

)]

− 𝜆
3

[−𝑐
3
𝑇 − 𝑘
𝐸𝑇

(1 − 𝑒−𝑀)] ,

𝜆󸀠
4

(𝑡) = −
𝜕𝐻

𝜕𝐷
𝑈

= −𝜆
4

[−
𝛾
1

(1 + (𝐷
𝑈

/𝑢
1
))
2

− 𝑑
𝐷𝑈

− 𝑘
𝐷𝑈

(1 − 𝑒−𝑀)]

− 𝜆
5

[
𝛾
1

(1 + (𝐷
𝑈

/𝑢
1
))
2
]

− 𝜆
6

[
𝛼
2
𝐼
2
𝑚
𝐻

𝑑
1

(1 + (𝑆/𝑠
2
)) (𝑖
1

+ 𝐼
2
) (𝑑
1

+ 𝐷
𝐿

+ 𝐷
𝑈

)
2
] ,

𝜆󸀠
5

(𝑡) = −
𝜕𝐻

𝜕𝐷
𝐿

= −𝜆
3

[
𝛼
1
𝐼𝑚
𝐸
𝑑
1

(1 + (𝑆/𝑠
2
)) (𝑖
1

+ 𝐼
2
) (𝑑
1

+ 𝐷
𝐿
)
2
]

− 𝜆
5

[−𝑑
𝐷𝐿

]

− 𝜆
6

[
𝛼
2
𝐼𝑚
𝐻

𝑑
1

(1 + (𝑆/𝑠
2
)) (𝑖
1

+ 𝐼
2
) (𝑑
1

+ 𝐷
𝐿
)
2
]

− 𝜆
7

[
𝛼
3
𝐼𝑚
𝐺
𝑑
1

(1 + (𝑆/𝑠
2
)) (𝑖
1

+ 𝐼
2
) (𝑑
1

+ 𝐷
𝐿
)
2
] ,

𝜆󸀠
6

(𝑡) = −
𝜕𝐻

𝜕𝐻
𝑇

= −𝜆
6

[−
𝛾
2
𝑆

𝑆
3

+ 𝑆
− 𝑑
𝐻𝑇

− 𝑘
𝐻𝑇

(1 − 𝑒−𝑀)]

− 𝜆
7

[
𝛾
2
𝑆

𝑆
3

+ 𝑆
]

− 𝜆
9

[
𝛼
4

(1 + (𝐼
10

/𝑖
3
)) (1 + (𝑆/𝑠

4
))

] ,
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𝜆󸀠
7

(𝑡) = −
𝜕𝐻

𝜕𝐺
𝑇

= −𝜆
1

[
𝑑𝑇𝐸2
𝑇
𝑔
1

(𝐸
𝑇

+ 𝑒𝑇) (𝐸
𝑇

+ 𝑔
1
𝐺
𝑇
)
2

(1 + (𝑆/𝑠
1
))

]

− 𝜆
4

[−
𝑝𝑇𝑔
2

(1 + (𝐼
10

/𝑖
2
)) (𝑔
2

+ 𝐺
𝑇
)
2
]

− 𝜆
7

[−𝑑
𝐺𝑇

− 𝑘
𝐺𝑇

(1 − 𝑒−𝑀)]

− 𝜆
8

[𝑝
1
] − 𝜆
10

[𝑝
3
] ,

𝜆󸀠
8

(𝑡) = −
𝜕𝐻

𝜕𝑆
= −𝜆
1

[
𝑑𝑇𝐸2
𝑇
𝑠
1

(𝐸
𝑇

+ 𝑒𝑇) (𝐸
𝑇

+ 𝑔
1
𝐺
𝑇
) (𝑠
1

+ 𝑆)
2
]

− 𝜆
3

[
𝛼
1
𝐼
2
𝐷
𝐿
𝑚
𝐸
𝑠
2

(𝑖
1

+ 𝐼
2
) (𝑑
1

+ 𝐷
𝐿
) (𝑠
2

+ 𝑆)
2
]

− 𝜆
6

[−
𝛼
2
𝐼
2

(𝐷
𝐿

+ 𝐷
𝑈

) 𝑚
𝐻

𝑠
2

(𝑖
1

+ 𝐼
2
) (𝑑
1

+ 𝐷
𝐿

+ 𝐷
𝑈

) (𝑠
2

+ 𝑆)
2

−
𝛾
2
𝐻𝑠
3

(𝑠
3

+ 𝑆)
2
]

− 𝜆
7

[
𝛾
2
𝐻
𝑇
𝑠
3

(𝑠
3

+ 𝑆)
2
] − 𝜆
8

[−𝑑
𝑆
]

− 𝜆
9

[−
𝛼
4
𝐻
𝑇
𝑠
4

(1 + (𝐼
10

/𝑖
3
)) (𝑠
4

+ 𝑆)
2
] ,

𝜆󸀠
9

(𝑡) = −
𝜕𝐻

𝜕𝐼
2

= −𝜆
2

[
𝑝
𝑁

𝑁𝑞
𝑁

(𝑞
𝑁

+ 𝐼
2
)
2
]

− 𝜆
3

[
𝛼
1
𝐷
𝐿
𝑚
𝐸
𝑖
1

(1 + (𝑆/𝑠
2
)) (𝑑
1

+ 𝐷
𝐿
) (𝑖
1

+ 𝐼
2
)
2
]

− 𝜆
6

[
𝛼
2

(𝐷
𝐿

+ 𝐷
𝑈

) 𝑚
𝐻

𝑖
1

(1 + (𝑆/𝑠
2
)) (𝑑
1

+ 𝐷
𝐿

+ 𝐷
𝑈

) (𝑖
1

+ 𝐼
2
)
2
]

− 𝜆
7

[
𝛼
3
𝐷
𝐿
𝑚
𝐺
𝑖
1

(𝑑
1

+ 𝐷
𝐿
) (𝑖
1

+ 𝐼
2
)
2
] − 𝜆
9

[−𝑑
𝐼2

] ,

𝜆󸀠
10

(𝑡) = −
𝜕𝐻

𝜕𝐼
10

= −𝜆
4

[−
𝑝𝑇𝑖
2

(1 + (𝐺
𝑇
/𝑔
2
)) (𝑖
2

+ 𝐼
10

)
2
]

− 𝜆
9

[−
𝛼
4
𝐻
𝑇
𝑖
3

(1 + (𝑆/𝑠
4
)) (𝑖
3

+ 𝐼
10

)
2
] − 𝜆
10

[−𝑑
𝐼10

] ,

𝜆󸀠
11

(𝑡) = −
𝜕𝐻

𝜕𝑀
= −𝜆
1

[−𝑘
𝑇
𝑒−𝑀𝑇] − 𝜆

2
[−𝑘
𝑁

𝑒−𝑀𝑁]

− 𝜆
3

[−𝑘
𝐸𝑇

𝑒−𝑀𝐸
𝑇
]

− 𝜆
4

[−𝑘
𝐷𝑈

𝑒−𝑀𝐷
𝑈

] − 𝜆
6

[−𝑘
𝐻𝑇

𝑒−𝑀𝐻
𝑇
]

− 𝜆
7

[−𝑘
𝐺𝑇

𝑒−𝑀𝐺
𝑇
]

(10)

with transversality conditions

𝜆
𝑖
(𝑡end) = 0, 𝑖 = 1, 2, . . . , 11. (11)

Furthermore, the control functions 𝑢∗
𝐸
, 𝑢∗
𝑀
are given by

𝑢∗
𝐸

= min {1, max {0, 𝑅
𝐸
}} 𝑤ℎ𝑒𝑟𝑒 𝑅

𝐸
=

−𝜆
3
𝜔
1

2𝐵
,

𝑢∗
𝑀

= min {1, max {0, 𝑅
𝑀

}} 𝑤ℎ𝑒𝑟𝑒 𝑅
𝑀

=
−𝜆
11

𝜔
2

2𝐶
.

(12)

Proof. To determine the adjoint equations and the transver-
sality conditions we use the Hamiltonian (8). The adjoint
system results from Pontryagin’s maximum principle [15] are
as follows:

𝜆󸀠
1

(𝑡) = −
𝜕𝐻

𝜕𝑇
, 𝜆󸀠
2

(𝑡) = −
𝜕𝐻

𝜕𝑁
, . . . , 𝜆󸀠

11
(𝑡) = −

𝜕𝐻

𝜕𝑀
(13)

with 𝜆
𝑖
(𝑡
𝑓
) = 0.

To get the characterization of the optimal control given
by (12), solving the equations,

𝜕𝐻

𝜕𝑢
𝐸

= 0,
𝜕𝐻

𝜕𝑢
𝑀

= 0 (14)

on the interior of the control set and using the property of the
control space 𝑈, we can derive the desired characterization
(12).

Here we call formulas (12) for 𝑢∗ the characterization of
the optimal control. The optimal control and the state are
found by solving the optimality system, which consists of
the system (1), the adjoint system (10), initial conditions at
𝑡 = 0, boundary conditions (11), and the characterization
of the optimal controls (12). To solve the optimality system,
we use the initial and transversality conditions together with
the characterization of the optimal control (𝑢∗

𝐸
, 𝑢∗
𝑀

) given
by (12). In addition, the second derivative of the Lagrangian
with respect to 𝑢

𝐸
, 𝑢
𝑀
, respectively, are positive, which shows

that the optimal problem is minimum at controls 𝑢∗
𝐸
, 𝑢∗
𝑀
. By

substituting the values of 𝑢∗
𝐸
, 𝑢∗
𝑀
in the control system (1), we

get the following system:

𝑑𝑇∗

𝑑𝑡
= 𝑎𝑇∗ (1 − 𝑏𝑇∗) − 𝑐

1
𝑇∗𝑁∗

−
𝑑𝑇∗𝐸∗

𝑇

𝐸∗
𝑇

+ 𝑒𝑇∗
1

(1 + 𝑔
1

(𝐺∗
𝑇
/𝐸∗
𝑇
)) (1 + (𝑆∗/𝑠

1
))

− 𝑘
𝑇

(1 − 𝑒−𝑀
∗

) 𝑇∗,
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𝑑𝑁∗

𝑑𝑡
= 𝑏
1

− 𝑑
𝑁

𝑁∗ − 𝑐
2
𝑇∗𝑁∗ +

𝑝
𝑁

𝑁∗𝐼∗
2

𝑞
𝑁

+ 𝐼∗
2

− 𝑘
𝑁

(1 − 𝑒−𝑀
∗

) 𝑁∗,

𝑑𝐸∗
𝑇

𝑑𝑡
=

𝛼
1
𝐼∗
2
𝐷∗
𝐿
𝑚
𝐸

(1 + (𝑆∗/𝑠
2
)) (𝑖
1

+ 𝐼∗
2
) (𝑑
1

+ 𝐷∗
𝐿
)

− 𝑐
3
𝐸∗
𝑇
𝑇∗ − 𝑘

𝐸𝑇
(1 − 𝑒−𝑀

∗

) 𝐸∗
𝑇

+ min {1,max {0, 𝑅
𝐸
}} ,

𝑑𝐷∗
𝑈

𝑑𝑡
=

𝑝𝑇∗

(1 + (𝐼∗
10

/𝑖
2
)) (1 + (𝐺∗

𝑇
/𝑔
2
))

−
𝛾
1
𝐷∗
𝑈

1 + (𝐷∗
𝑈

/𝑢
1
)

− 𝑑
𝐷
∗

𝑈

𝐷∗
𝑈

− 𝑘
𝐷
∗

𝑈

(1 − 𝑒−𝑀
∗

) 𝐷∗
𝑈

,

𝑑𝐷∗
𝐿

𝑑𝑡
=

𝛾
1
𝐷∗
𝑈

1 + (𝐷∗
𝑈

/𝑢
1
)

− 𝑑
𝐷𝐿

𝐷∗
𝐿
,

𝑑𝐻∗
𝑇

𝑑𝑡
=

𝛼
2
𝐼∗
2

(𝐷∗
𝐿

+ 𝐷∗
𝑈

) 𝑚
𝐻

(1 + (𝑆∗/𝑠
2
)) (𝑖
1

+ 𝐼∗
2
) (𝑑
1

+ 𝐷∗
𝐿

+ 𝐷∗
𝑈

)

−
𝛾
2
𝐻∗
𝑇
𝑆∗

𝑠
3

+ 𝑆∗
− 𝑑
𝐻𝑇

𝐻∗
𝑇

− 𝑘
𝐻𝑇

(1 − 𝑒−𝑀
∗

) 𝐻∗
𝑇
,

𝑑𝐺∗
𝑇

𝑑𝑡
=

𝛾
2
𝐻∗
𝑇
𝑆∗

𝑠
3

+ 𝑆∗
+

𝛼
3
𝐼∗
2
𝐷∗
𝐿
𝑚
𝐺

(𝑖
1

+ 𝐼∗
2
) (𝑑
1

+ 𝐷∗
𝐿
)

− 𝑑
𝐺𝑇

𝐺∗
𝑇

− 𝑘
𝐺𝑇

(1 − 𝑒−𝑀
∗

) 𝐺∗
𝑇
,

𝑑𝑆∗

𝑑𝑡
= 𝑝
1
𝐺∗
𝑇

+ 𝑝
2
𝑇∗ − 𝑑

𝑠
𝑆∗,

𝑑𝐼∗
2

𝑑𝑡
=

𝛼
4
𝐻∗
𝑇

(1 + (𝐼∗
10

/𝑖
3
)) (1 + (𝑆∗/𝑠

4
))

− 𝑑
𝐼2

𝐼∗
2
,

𝑑𝐼∗
10

𝑑𝑡
= 𝑝
3
𝐺∗
𝑇

+ 𝑝
4
𝑇∗ − 𝑑

𝐼
∗

10

𝐼∗
10

,

𝑑𝑀∗

𝑑𝑡
= − 𝑑

𝑀
𝑀∗ + min {1,max {0, 𝑅

𝑀
}}

(15)
with 𝐻∗ at (𝑡, 𝑇∗, 𝑁∗, 𝐸∗

𝑇
, 𝐷∗
𝑈

, 𝐷∗
𝐿
, 𝐻∗
𝑇
, 𝐺∗
𝑇
, 𝑆∗, 𝐼∗
2
, 𝐼∗
10

, 𝑀∗);

𝐻∗ = 𝐴𝑇∗ + 𝐵min {1,max {0, 𝑅
𝐸
}}
∗2

+ 𝐶min {1,max {0, 𝑅
𝑀

}}
∗2

+ 𝜆
1

𝑑𝑇∗

𝑑𝑡
+ 𝜆
2

𝑑𝑁∗

𝑑𝑡
+ 𝜆
3

𝑑𝐸∗
𝑇

𝑑𝑡

+ 𝜆
4

𝑑𝐷∗
𝑈

𝑑𝑡
+ 𝜆
5

𝑑𝐷∗
𝐿

𝑑𝑡
+ 𝜆
6

𝑑𝐻∗
𝑇

𝑑𝑡

+ 𝜆
7

𝑑𝐺∗
𝑇

𝑑𝑡
+ 𝜆
8

𝑑𝑆∗

𝑑𝑡
+ 𝜆
9

𝑑𝐼∗
2

𝑑𝑡

+ 𝜆
10

𝑑𝐼∗
10

𝑑𝑡
+ 𝜆
11

𝑑𝑀∗

𝑑𝑡
.

(16)

To find out the optimal control and state, we will numer-
ically solve the above system (15) and (16).

3. Numerical Simulations

In this section, we give the numerical results for the effects
of chemotherapy and immunotherapy, and optimal control
strategy on the tumor-immunemodel. In our simulations, we
consider two initial tumor sizes but keep all other initial state
values:

𝑁 (0) = 2.5 × 108, 𝐸
𝑇

(0) = 5.268 × 105,

𝐷
𝑈

(0) = 4.725 × 107, 𝐷
𝐿

(0) = 10,

𝐻
𝑇

(0) = 1.0536 × 106, 𝐺
𝑇

(0) = 1.795 × 105,

𝐼
2

(0) = 1173, 𝑆 (0) = 0,

𝐼
10

(0) = 0, 𝑀 (0) = 0.

(17)

Initial conditions of NK cells, CD8+T cells, and IL-2 are
from [7]. We note that initial conditions of CD4+T cells and
regulatory T cells are derived by initial condition of CD8+T
cells. Since the typical ratio of CD8+T cells to CD4+T cells to
regulatory T cells is approximately 3 : 6 : 1 [1], we have

𝐻
𝑇

(0) = 5.268 × 105 × 2 = 1.0536 × 106,

𝐺
𝑇

(0) = 5.268 × 105 ×
1

3
= 1.795 × 105.

(18)

We assume initial conditions of 𝐷
𝐿
, 𝑆, 𝐼
2
, and 𝐼

10
. Our

normal dendritic cell counts are in agreement with those
in the product insert of Miltenyi Biotec’s blood dendritic
cell enumeration kit, which tabulated a total mean dendritic
cell count in normal volunteers of 2.8 × 107 cells/L [16].
In [17], they report that melanoma patients have more
circulating dendritic cell per milliliter of blood compared
with normal controls. Their mean dendritic cell count for
normal volunteers is 64 cells/mL of whole blood, whereas
their melanoma patients had mean dendritic cell counts
of 108 cells/mL for stage 4 diseases, respectively. So we
calculated initial conditions of dendritic cells as follows:

𝐷
𝑈

(0) = 2.8 × 107 cells/L ×
108 cells/mL
64 cells/mL

= 4.725 × 107 cells/L.

(19)

In Figure 2(a), with no therapy, the immune system is not
able to destroy the tumor cells with initial tumor size of
𝑇(0) = 108 cells as well as 𝑇(0) = 107 cells. Figure 2(b) with
immunotherapy and Figure 2(c) with chemotherapy show
the results of the system (1). In both Figures 2(b) and 2(c),
tumor cells are only decreased by the immune system when
the initial tumor cell number 𝑇(0) = 107.

Finally, Figure 2(d) displays the effects of combined
therapy on initial tumor sizes𝑇(0) = 107 cells and𝑇(0) = 108

cells. In this case, the tumor is rapidly destroyed in two cases.
For the case of exception immunosuppressive effects, we

assume that initial values of regulatory T cell, IL-10, and
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Figure 2: (a) No treatment, (b) immunotherapy, (c) chemotherapy, (d) immunotherapy, and chemotherapy.
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Figure 3: Optimal controls when initial value of tumor cells is 107, (a) 𝐴 = 1, 𝐵 = 1, 𝐶 = 1, (b) 𝐴 = 1, 𝐵 = 1000, 𝐶 = 10, and (c) 𝐴 = 1,
𝐵 = 10, 𝐶 = 1000.

TGF-𝛽 and values of parameters 𝛼
3
, 𝛾
2
, 𝑝
1
, 𝑝
2
, 𝑝
3
, and 𝑝

4

are all zeroes. We simulate the optimal controlled model
in different scenarios. Firstly, we divide into two cases of
the initial value of tumor cells, 107 in Figure 3 and 108 in
Figure 4. Secondly, Figures 3 and 4 divided into two cases:
the model with or without immunosuppressive effects. The
optimality system is solved by using the Runge-kutta fourth-
order scheme. The optimal strategy is obtained by solving
the state system, the adjoint system, and the transversality
conditions. We use Forward-Backward method [18–21] to
solve the optimal system.

In our numerical simulation, first we start to solve the
state system (1) using the Runge-kutta fourth-order forward
in time with a guess for the controls over the simulation
time. Then, using the current iteration of the state equations
in the system (1), the adjoint equations in the system (10)

are solved by a backward method with the transversality
conditions (11). We update the controls by using a convex
combination of the controls in the previous iterations if the
values of unknowns at the previous iteration are very close
to the ones at the present iteration. In Figures 3 and 4, (a)
represents scenarios for the case when cost for two therapies
is the same ratio. (b) represents scenarios for the case when
the cost of immunotherapy is more expensive than the cost
of chemotherapy. (c) represents scenarios for the case when
the cost of chemotherapy is more expensive than the cost of
immunotherapy. According to these scenarios, we certify that
when the model has immunosuppressive effects, the optimal
treatment strategy may change based on treatment cost.

In Figures 3(c) and 4(c), our simulation results show
that if the cost of chemotherapy is more expensive than
that of immunotherapy, then the optimal treatment strategy
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Figure 4: Optimal controls when initial value of tumor cells is 108, (a) 𝐴 = 1, 𝐵 = 1, 𝐶 = 1, (b) 𝐴 = 1, 𝐵 = 1000, 𝐶 = 10, and (c) 𝐴 = 1,
𝐵 = 10, 𝐶 = 1000.

for the model without immunosuppressive effects needs to
be taken for a longer time for chemotherapy comparing
immunotherapy. On the other hand, when the model has
immunosuppressive effects and the cost of chemotherapy is
more expensive than that of immunotherapy, the optimal
treatment strategy for themodel needs to be taken for a longer
time for immunotherapy comparing chemotherapy. In other
words, the optimal treatment strategy may be changed by
immunosuppressive effects.

In order to find the parameter factors that exert a strong
impact on model outcome, we use the numerical parameter
sensitivity analysis. For the sensitivity analysis, one parameter
value in the model is increased and decreased by 20 percent
and the other parameter values are fixed. After 5 days, we
plot tumor sizes depending on the model parameters. In

Figure 5, the solid red line and blue line represent change
rates of tumor cell numbers when a special parameter value
was decreased 20 percent and when parameter value was
increased 20 percent, respectively. From this we can check
that during 5 days, tumor size is highly sensitive to parameters
𝑎 (tumor growth), 𝑑 (strength of immune system), and 𝛼

1

(rate of IL-2 and DC induced CD8+T cell activation) in order
of list.

4. Discussion and Conclusions

We constructed a mathematical model describing tumor-
immune interactions under immune suppression. From
this model, we suggested a treatment protocol for each
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Figure 5: Numerical parameter sensitivity.

of chemotherapy and immunotherapy. We investigated the
dynamics which effectiveness and efficiency of two therapies
by changing of initial tumor cell numbers. We use optimal
control techniques and numerical simulation to find a com-
bined therapy strategy for treatment of the tumor. By using
Pontryagin’s maximum principle, we derived the necessary
conditions of optimality for the control system.

To analyse the parameter sensitivity, we plotted the
percentage change in tumor size from day zero to day
five as a result of changing each of the model parameters
by 20% in both directions. From such sensitivity analysis,
we found out some special parameters that have a strong
influence on tumor growth. Our optimal control experiments
demonstrated how chemotherapy and immunotherapymight
be combined for more effective treatment. We showed that
combined therapy is more effective than each therapy; that is,
the number of tumor cells decreases in special parameter sets.
In addition, we found out that if the cost of chemotherapy
is more expensive than that of immunotherapy, then the
optimal treatment strategy for the model without immuno-
suppressive effects needs to be taken for a longer time
for chemotherapy comparing immunotherapy. On the other
hand, when the model has immunosuppressive effects and
the cost of chemotherapy is more expensive than that of
immunotherapy, the optimal treatment strategy for themodel
needs to be taken for a longer time for immunotherapy
comparing chemotherapy.

Even though the methodology of this paper is standard,
we provided a key process to develop the optimal control
problem related to the cancer model. Based on the parameter
sensitive analysis, we formulated an optimal control problem
related to the tumor-immune interaction under immune
suppression, which is a fresh idea in the optimal control prob-
lems.Moreover, this paper gives theoretical and experimental
results in the sense of mathematical analysis but if we would
have any field data for some cancer treatment and patients,
then our results will be applied to the cancer model as well as
some other disease models very well.
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