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Objectives: To investigate the value of morphological feature and signal intensity ratio
(SIR) derived from conventional magnetic resonance imaging (MRI) in distinguishing
primary central nervous system lymphoma (PCNSL) from atypical glioblastoma (aGBM).

Methods: Pathology-confirmed PCNSLs (n = 93) or aGBMs (n = 48) from three
institutions were retrospectively enrolled and divided into training cohort (n = 98) and
test cohort (n = 43). Morphological features and SIRs were compared between PCNSL
and aGBM. Using linear discriminant analysis, multiple models were constructed with
SIRs and morphological features alone or jointly, and the diagnostic performances were
evaluated via receiver operating characteristic (ROC) analysis. Areas under the curves
(AUCs) and accuracies (ACCs) of the models were compared with the radiologists’
assessment.

Results: Incision sign, T2 pseudonecrosis sign, reef sign and peritumoral leukomalacia
sign were associated with PCNSL (training and overall cohorts, P < 0.05). Increased T1
ratio, decreased T2 ratio and T2/T1 ratio were predictive of PCNSL (all P < 0.05). ROC
analysis showed that combination of morphological features and SIRs achieved the best
diagnostic performance for differentiation of PCNSL and aGBM with AUC/ACC of 0.899/
0.929 for the training cohort, AUC/ACC of 0.794/0.837 for the test cohort and AUC/ACC
of 0.869/0.901 for the overall cohort, respectively. Based on the overall cohort, two
January 2022 | Volume 12 | Article 8111971

https://www.frontiersin.org/articles/10.3389/fonc.2022.811197/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.811197/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.811197/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.811197/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.811197/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.811197/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:cgbtd@126.com
mailto:ylf8342@163.com
https://doi.org/10.3389/fonc.2022.811197
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2022.811197
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2022.811197&domain=pdf&date_stamp=2022-01-31


Han et al. Differentiation Between PCNSL and aGBM

Frontiers in Oncology | www.frontiersin.org
radiologists could distinguish PCNSL from aGBM with AUC/ACC of 0.732/0.724 for
radiologist A and AUC/ACC of 0.811/0.829 for radiologist B.

Conclusion: MRI morphological features can help differentiate PCNSL from aGBM.
When combined with SIRs, the diagnostic performance was better than that of
radiologists’ assessment.
Keywords: primary central nervous system lymphoma, glioblastoma, magnetic resonance imaging, signal intensity
ratio, morphological feature
INTRODUCTION

Preoperative distinguishing primary central nervous
system lymphoma (PCNSL) from glioblastoma (GBM) is of
highly clinical relevance because treatment strategies for the
two diseases vary substantially. In patients with GBM,
surgical resection followed by concurrent chemoradiation is
the first-line treatment, whereas patients with PCNSL
usually undergo stereotactic biopsy followed by high-dose
methotrexate (1, 2). Moreover, preoperative application of
steroids may affect the histopathologic diagnosis of PCNSL (2).
Therefore, reliable preoperative differentiation of both entities
is important.

Conventional magnetic resonance (MR) imaging features
allow distinguishing PCNSL from typical GBM for most
patients because PCNSL in an immunocompetent patient
usually manifests as a homogeneously enhanced mass lesion
on contrast-enhanced T1-weighted (T1CE) images. And typical
GBM usually exhibits an irregular rim-like enhancement with
necrosis (3, 4). However, this enhancement pattern is not reliable
in cases of atypical glioblastoma (aGBM) with no visible necrosis,
which complicates the discrimination between aGBM and
PCNSL (5, 6).

Both conventional and advanced MR techniques have been
reported to be helpful in differentiating PCNSL from GBM (7–
12). However, most of these studies enrolled all GBM patients,
which can be differentiated from PCNSL based on findings of
conventional MRI in most cases. A few studies on differentiating
PCNSL from aGBM involve advanced imaging sequences or
radiomics strategy (5, 6, 13, 14). Despite great advances, these
techniques are associated with increased costs and
postprocessing time and may not be routinely adopted by
every patient in clinical practice. In contrast, T2-weighted
imaging (T2WI), T1-weighted imaging (T1WI), and T1CE
imaging are almost always available. Systematic evaluation of
MRI morphological features of PCNSL and aGBM is, however,
lacking. As an important supplement to subjective analysis, easily
obtained quantitative parameters can further provide diagnostic
information. Considering the pathophysiological difference
between PCNSL and aGBM may be reflected in the form of
signal intensity ratio (SIR), whether SIR analysis is effective in
distinguishing aGBM from PCNSL remains largely unknown.

Here, we endeavored to compare morphological features and
analyze SIR based on conventional MR sequences (T1WI, T2WI,
and T1CE) to develop a quick and easy tool for differentiation of
PCNSL and aGBM.
2

MATERIALS AND METHODS

Ethics review board approvals from three institutions were
obtained, and written informed consent was waived for this
retrospective study.

Patients
Potentially eligible patients from Tangdu Hospital (from January
2012 to June 2021), XDGroupHospital (from January 2015 toMay
2021), andWest China Hospital (from January 2016 to June 2021)
were identified with pathologically proven PCNSL or GBM.

Inclusion criteria were as follows: 1) no prior treatment
history before MR examination, including biopsy, surgery,
radiotherapy, chemotherapy, or corticosteroid treatment;
2) pretreatment MRI with conventional sequences available,
including axial T1WI, T2WI, and T1CE imaging; 3) no
hemorrhage inside the tumor based on T1WI and T2WI; 4) all
PCNSL patients were immunocompetent. The exclusion criteria
were as follows: 1) typical GBM with visible necrosis; 2) poor
image quality with motion artifacts or susceptibility;
3) intracranial metastasis from systemic lymphoma. Atypical
GBM was defined as solid enhancement with no visible necrosis
based on axial T2WI and T1CE imaging, which were evaluated by
two independent raters (YY and GX, with 5 and 10 years of
experience in neuro-oncology imaging, respectively). When
discrepancy exists, consensus was reached through discussion
with a senior radiologist (G-BC, with 27 years of experience in
brain tumor diagnosis).

According to the inclusion and exclusion criteria, 98 patients
(center 1, n = 72; center 2, n = 26) with pathologically proven
PCNSL (n = 66) or aGBM (n = 32) were consecutively enrolled
and comprised the training cohort. Another cohort of 43 patients
from center 3 with a diagnosis of PCNSL (n = 27) or aGBM (n =
16) comprised the external test cohort. The flow diagram for
patient selection is shown in Figure 1.

MR Image Acquisition
MRI scans were performed at three institutions with different
protocols and various scanners. The routine sequences included
axial T1WI, T2WI, and T1CE imaging. The detailed MRI
parameters are provided in Table S1 in the Supplementary
Material. All patient names were de-identified prior to analysis.

Image Analysis
Qualitative morphological features, which were characterized
based on the criteria outlined in Table 1, were analyzed
January 2022 | Volume 12 | Article 811197
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independently by two neuroradiologists (YY and GX), who were
blinded to the final results. The inconsistency between them was
resolved by discussion with a third senior neuroradiologist (G-
BC). Notably, reef sign, peritumoral leukomalacia sign, and T2

pseudonecrosis sign were defined in our study for the first time
(representative cases, see Supplementary Material Figure S1).

ITK-SNAP software (version 3.8.0; http://itksnap.org) was
used for SIR analysis (15). The abovementioned two
neuroradiologists independently placed region of interest
(ROI) for further consistency testing. The details of ROI
placement strategy are shown in Figure S2 and Table S2 in
Supplementary Material. Finally, four quantitative parameters,
including T2 ratio (rT2), T1 ratio (rT1), T1CE ratio (rT1CE), and
rT2/rT1 ratio (T2/T1), were obtained for each patient. The
calculation formula is as follows:

rT2 = mean signal intensity of the lesion (SIlesion) on T2WI
mean signal intensity of contralateral normal white
matter (SIcontrol)

rT1 = SIlesion on T1WI/SIcontrol
rT1CE = SIlesion on T1CE/SIcontrol
T2/T1 = rT2/rT1
Frontiers in Oncology | www.frontiersin.org 3
Radiologist’s Assessment
Two neuroradiologists (LZ and L-FY, with 10 and 17 years’
experience in radiology, respectively) independently reviewed
the images. All radiologists had no prior knowledge of exact
number of each entity and the final results. They can only have
access to conventional MR images (T1WI, T2WI, and T1CE).
Diagnosis was based on subjective analysis according to their
clinical experience. The final diagnosis was recorded using a 4-
point scale (1 = definite GBM; 2 = likely GBM; 3 = likely PCNSL;
and 4 = definite PCNSL). To assess intra-observer agreement,
radiologists reevaluated images after a 2-month washout period.

Statistical Analysis
All statistical analyses were performed with SPSS 20.0 software
(IBM Corp., Chicago, IL, USA) and R software version 3.6.1
(http://www.R-project.org). The normal distribution of data was
investigated with Kolmogorov–Smirnov test. Numerical
variables with normal distribution were denoted as mean and
standard deviation. Continuous and categorical variables were
compared using two-sample t-test and Fisher’s exact test,
respectively. The intraclass correlation coefficient (ICC) was
FIGURE 1 | Flow diagram for patient selection.
January 2022 | Volume 12 | Article 811197
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used to test the consistency of SIRs between the two radiologists.
Intra-observer agreements of radiologist’s assessment were
evaluated with Cohen’s kappa coefficient. Linear discrimination
analysis (LDA)models for distinguishing aGBM fromPCNSLwere
constructed with SIRs and morphological features alone or jointly.
Receiver operating characteristic (ROC) analysis was performed to
determine the performanceof radiologists’ assessment anddifferent
models in the training, test, and overall cohorts, and accuracy
(ACC) and area under the curve (AUC) were obtained. P < 0.05
indicated a significant difference.
RESULTS

Demographic Characteristics
Patient demographic characteristics are summarized inTable 2. In
this study, 93 PCNSLs (47men, 46women;mean age, 58.49 ± 12.56
years) and 48 aGBMs (29 men, 19 women; mean age, 55.12 ± 10.9
years) were enrolled. There were no significant differences in age
and gender distribution between the two diseases (allP > 0.05). The
vastmajority of patients (83 out of 93 PCNSLs and47 of 48 aGBMs)
received surgical resection. Patients in the PCNSL group were
pathologically confirmed as diffuse large B-cell lymphoma.
Despite the diversity of clinical symptoms, headache, dizziness, or
nausea was the most common initial symptom for patients with
aGBM (44.1%, 41 out of 93) or PCNSL (41.7%, 20 out of 48).

Comparison of MRI Morphological
Features Between Primary Central
Nervous System Lymphoma
and Atypical Glioblastoma
MRI morphological features for both groups are shown in
Table 3. Incision sign, reef sign, T2 pseudonecrosis sign, and
Frontiers in Oncology | www.frontiersin.org 4
peritumoral leukomalacia sign were detected in the PCNSL
group but none in the aGBM group. Among them, reef sign
and peritumoral leukomalacia sign were statistically different in
both training (all P < 0.001) and test cohorts (reef sign, P = 0.003;
peritumoral leukomalacia sign, P = 0.018). Similarly, significant
statistical differences between the two groups were observed in
incision sign and T2 pseudonecrosis sign based on the training
cohort (all P < 0.001), whereas the differences in the test cohort
were not statistically significant. Accounting for the small sample
size of the test cohort, in order to increase the statistical power,
we combined the training and test cohorts and performed
statistical analysis on the overall cohort again. The results
showed that incision sign and T2 pseudonecrosis sign were
significantly different between the two groups (all P < 0.001).
In addition, PCNSL was more likely to involve both
supratentorial and infratentorial compartment than aGBM
based on the overall cohort (P = 0.036). There were no
significant differences in lesion type, streak-like edema,
butterfly sign, angular sign, and involvement of structures
between the PCNSL and aGBM groups (all P > 0.05).

Comparison of Signal Intensity Ratios
Between Primary Central Nervous System
Lymphoma and Atypical Glioblastoma
The rT2, rT1, T2/T1, and rT1CE values calculated for PCNSLs and
aGBMs are summarized in Table 4. T2/T1 and rT2 values in
aGBMs were significantly higher than those in PCNSLs in both
the training and test cohorts (all P < 0.001). The rT1 value in
aGBMs was significantly lower than that in PCNSLs (training
cohort, P < 0.001; test cohort, P = 0.048). The rT1CE value of
PCNSLs was slightly higher than that of aGBMs, but the
difference was not statistically significant (all P > 0.05). The
representative cases are shown in Figures 2, 3.
TABLE 1 | MRI morphological feature definition.

Variable Classification criteria

Localization
Only supratentorial The location of the tumor is supratentorial
Only infratentorial The location of the tumor is infratentorial
Supra- and infratentorial The location of the tumor is both infratentorial and supratentorial

Lesion type
Solitary demarcated Solitary tumor with demarcated boundary
Multiple demarcated Multiple tumor with demarcated boundary
Solitary infiltrative Solitary tumor with infiltrative boundary
Multiple infiltrative Multiple tumor with infiltrative boundary

Streak-like edema The shape of peritumoral edema is streak-like
Incision sign Based on the T1CE images (axial, sagittal, or coronal plane), there are 1–2 umbilical concave or striated defects on the edge of the

enhanced lesion
Reef sign Single or multiple reef-like foci present as hypointensity on T1WI, hyperintensity on T2WI, and brighter signal within contrast-enhanced

area of the lesion
Butterfly sign Lesion involving the corpus callosum can infiltrate transcallosally, appearing as a symmetric “butterfly” appearance on T1CE imaging
Angular sign The irregular enhancement lesions protrude to a certain direction, showing a sharp angle appearance
Peritumoral leukomalacia sign The area adjacent to the tumor shows hypointensity on T1WI, hyperintesity on T2WI, and no contrast enhancement on T1CE imaging
T2 pseudonecrosis sign On T2WI, the edge of the tumor is isointense to slightly hyperintense (gray matter as reference), accompanied by hyperintensity within

the tumor. After the injection of contrast agent, the entire tumor shows significant and uniform enhancement
Involvement of structures
Central structures Involvement of basal ganglia, thalamus, or brainstem
Cortex Involvement of cortex
Subventricular zone Involvement of subventricular zone
Corpus callosum Involvement of corpus callosum
January 2022 | Volume 12 | Article 811197
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Efficacy Analysis of Diagnostic
Models and Radiologists’ Assessment in
Differentiating Primary Central
Nervous System Lymphoma
From Atypical Glioblastoma
Table 5 exhibits the diagnostic performance of different models
and radiologists’ assessment. For univariate quantitative
parameters analyses, compared to models 4 (rT2) and 6 (rT1),
model 5 (T2/T1) achieved higher efficacy, with an AUC of 0.805
[95% confidence interval (CI), 0.718–0.893] for the training cohort,
0.719 (95% CI, 0.593–0.844) for the test cohort, and 0.822 (95%CI,
0.752–0.892) for the overall cohort, for distinguishing PCNSL from
aGBM. Formultiple variable combination analysis, models 2 and 3
were constructed with quantitative (rT2 + T2/T1 + rT1) and
qualitative parameters (localization + incision sign + reef sign +
peritumoral leukomalacia sign + T2 pseudonecrosis sign),
respectively. The diagnostic performance of model 2 is better than
that ofmodel 3, with anAUCof 0.826 (95%CI, 0.709–0.885) for the
training cohort, 0.778 (95%CI, 0.624–0.877) for the test cohort, and
0.833 (95% CI, 0.754–0.892) for the overall cohort, for
distinguishing PCNSL from aGBM. When all the quantitative
and qualitative parameters were combined, model 1 achieved the
highest diagnostic efficiency, with anAUCof 0.899 (95%CI, 0.828–
0.969) for the training cohort, 0.794 (95% CI, 0.666–0.922) for the
test cohort, and 0.869 (95% CI, 0.807–0.932) for overall cohort.

For radiologist’s assessment, the diagnostic performance of
radiologist B with more experience (AUC = 0.811, ACC = 0.829,
sensitivity = 0.857, and specificity = 0.831) was better than that of
radiologist A (AUC = 0.732, ACC = 0.724, sensitivity = 0.736,
and specificity = 0.710).

Reproducibility of Signal
Intensity Ratio Measurement and
Radiologist’s Assessment
Table 6 shows that both inter-reader agreement for SIR
measurement and intra-reader agreement for radiologist’s
assessment achieved good performance, with ICC/Kappa value
Frontiers in Oncology | www.frontiersin.org 5
ranging from 0.796 to 0.913. For SIR measurements, inter-reader
agreement was highest for the measurement of rT2 (ICC =
0.913). Regarding reproducibility of radiologist’s assessment,
experienced radiologist B (Kappa = 0.903) showed higher intra-
reader agreement than that of radiologist A (Kappa = 0.796).
DISCUSSION

Differentiating PCNSL from aGBM (with no visible necrosis) is
challenging. In the present study, we found that T2

pseudonecrosis sign, incision sign, reef sign, and peritumoral
leukomalacia sign were closely related to PCNSL. Compared to
radiologist’s assessment, model 1, which combined the SIRs and
MRI morphological features, achieved the best diagnostic
performance in distinguishing PCNSL from aGBM.

During the past decades, various MR modalities and different
analysis strategies were explored to differentiate PCNSL from
GBM (7–10, 13, 14, 16, 17), whereas the present study focused on
SIR analysis of conventional MR sequences mainly based on the
following four considerations. First, in clinical practice, T1WI,
T2WI, and T1CE imaging are routinely obtained for patients
across different hospitals (18). In contrast, advanced MRI
techniques, such as diffusion-weighted imaging (DWI) and
perfusion-weighted imaging (PWI), are performed when
necessary, which require additional expense and time.
Furthermore, no unified standard was established for
differential diagnosis. For example, although several prior
studies have confirmed the efficiency of DWI in distinguishing
PCNSL from GBM, overlapping of parameters makes accurate
differential diagnosis challenging (19–21). Likewise, PWI is
another commonly used technique, and its quantitative
measurement reproducibility leads to the lack of a unified
threshold to distinguish the two entities (22, 23). Second,
radiomics approach can be used for differential diagnosis of
PCNSL and GBM. Despite promising results, a recent systematic
review suggested that conclusions derived from radiomics should
TABLE 2 | Baseline demographics of patients.

Variable Training cohort (n = 98) Test cohort (n = 43) Overall cohort (n = 141)

PCNSL (n = 66) aGBM (n = 32) P PCNSL (n = 27) aGBM (n = 16) P PCNSL (n = 93) aGBM (n = 48) P

Age (mean ± SD) 60.3 ± 11.15 57.4 ± 9.84 0.236 55.16 ± 8.21 53.16 ± 8.21 0.528 58.49 ± 12.56 55.12 ± 10.9 0.119
Gender (N/%) 1.000 0.116 0.289
Male 54.5% (36/66) 56.3% (18/32) 40.7% (11/27) 43.8% (11/16) 50.5% (47/93) 60.4% (29/48)
Female 45.5% (30/66) 43.7% (14/32) 59.3% (16/27) 56.2% (5/16) 49.5% (46/93) 39.6% (19/48)

Symptoms (N/%) NA NA NA
Headache/dizziness/nausea 48.5% (32/66) 34.4% (11/32) 33.3% (9/27) 56.2% (9/16) 44.1% (41/93) 41.7% (20/48)
Visual disturbances 4.5% (3/66) 3.1% (1/32) 0 6.3% (1/16) 3.2% (3/93) 4.2% (2/48)
Seizure 12.1% (8/66) 18.8% (6/32) 11.1% (3/27) 18.7% (3/16) 11.8% (11/93) 18.7% (9/48)
Dysesthesia or hypesthesia 10.6% (7/66) 12.5% (4/32) 29.7% (8/27) 12.5% (2/16) 16.1% (15/93) 12.5% (6/48)
Paresis 6.1% (4/66) 21.8% (7/32) 14.8% (4/27) 0 8.6% (8/93) 14.6% (7/48)
Phatic disorder 9.1% (6/66) 0 0 0 6.5% (6/93) 0
Psychiatric symptoms 9.1% (6/66) 9.4% (3/32) 11.1% (3/27) 6.3% (1/16) 9.7% (9/93) 8.3% (4/48)

Pathologic procedure NA NA NA
Biopsy 87.9% (58/66) 96.9% (31/32) 92.6% (25/27) 100% (16/16) 89.2% (83/93) 97.9% (47/48)
Resection 12.1% (8/66) 3.1% (1/32) 7.4% (2/27) 0 10.8% (10/93) 2.1% (1/48)
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TABLE 3 | MRI morphological features in PCNSL and aGBM.

rt (n = 43) Overall cohort (n=141)

BM (n = 16) P PCNSL (n = 93) aGBM (n = 48) P

0.716 0.036
7.5% (14/16) 93.5% (87/93) 89.6% (43/48)
2.5% (2/16) 2.2% (2/93) 10.4% (5/48)

0 4.3% (4/93) 0
0.111 0.974

7.5% (6/16) 40.9% (38/93) 43.8% (21/48)
0 0 0

2.5% (10/16) 36.6% (34/93) 35.4% (17/48)
0 22.5% (21/93) 20.8% (10/48)

1.000 0.470
1.2% (5/16) 39.8% (37/93) 33.3% (16/48)
8.8% (11/16) 60.2% (56/93) 66.7% (32/48)

0.069 <0.001
0 20.4% (19/93) 0

00% (16/16) 79.6% (74/93) 100% (48/48)
0.003 <0.001

0 41.9% (39/93) 0
00% (16/16) 58.1% (54/93) 100% (48/48)

0.520 1.000
6.3% (1/16) 11.8% (11/93) 12.5% (6/48)
3.7% (15/16) 88.2% (82/93) 87.5% (42/48)

0.386 1.000
6.3% (1/16) 15.1% (14/93) 14.6% (7/48)
3.7% (15/16) 84.9% (79/93) 85.4% (41/48)

0.018 <0.001
0 30.1% (28/93) 0

00% (16/16) 68.9% (65/93) 100% (48/48)
0.279 < 0.001

0 19.4% (18/93) 0
00% (16/16) 80.6% (75/93) 100% (48/48)

0.704 0.121
1.3% (5/16) 27.9% (26/93) 16.7% (8/48)
1.3% (5/16) 11.8% (11/93) 20.8% (10/48)
.25% (1/16) 9.7% (9/93) 14.6% (7/48)
8.8% (3/16) 23.7% (22/93) 12.5% (6/48)
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Variable Training cohort (n = 98) Test coho

PCNSL (n = 66) aGBM (n = 32) P PCNSL (n = 27) a

Localization (N/%) 0.090
Only supratentorial 94% (62/66) 90.6% (29/32) 92.6% (25/27) 8
Only infratentorial 1.5% (1/66) 9.4% (3/32) 3.7% (1/27)
Supra- and infratentorial 4.5% (3/66) 0 3.7% (1/27)

Lesion type (N/%) 0.180
Solitary demarcated 30.3% (20/66) 46.9% (15/32) 66.7% (18/27)
Multiple demarcated 0 0 0
Solitary infiltrative 37.9% (25/66) 21.9% (7/32) 33.3% (9/27) 6
Multiple infiltrative 31.8% (21/66) 31.2% (10/32) 0

Streak-like edema (N/%) 0.391
Yes 43.9% (29/66) 34.4% (11/32) 29.6% (8/27)
No 56.1% (37/66) 65.4% (21/32) 70.4% (19/27) 6

Incision sign (N/%) 0.008
Yes 19.7% (13/66) 0 22.2% (6/27)
No 80.3% (53/66) 100% (32/32) 77.8% (21/27) 1

Reef sign (N/%) <0.001
Yes 42.4% (28/66) 0 40.7% (11/27)
No 57.6% (38/66) 100% (32/32) 59.3% (16/27) 1

Butterfly sign (N/%) 0.353
Yes 10.6% (7/66) 15.6% (5/32) 14.8% (4/27)
No 89.4% (59/66) 84.4% (27/32) 85.2% (23/27) 9

Angular sign (N/%) 0.556
Yes 13.6% (9/66) 18.7% (6/32) 18.5% (5/27)
No 86.4% (57/66) 81.3% (26/32) 81.5% (22/27) 9

Peritumoral leukomalacia sign (N/%) <0.001
Yes 30.3% (20/66) 0 29.6% (8/27)
No 69.7% (46/66) 100% (32/32) 70.4% (19/27) 1

T2 pseudonecrosis sign (N/%) 0.004
Yes 21.2% (14/66) 0 14.8% (4/27)
No 78.8% (52/66) 100% (32/32) 85.2% (23/27) 1

Involvement of structures (N/%) 0.072
Central structures 27.3% (18/66) 9.4% (3/32) 29.6% (8/27)
Cortex 10.6% (7/66) 15.6% (5/32) 14.8% (4/27)
Subventricular zone 9.1% (6/66) 18.8% (6/32) 11.1% (3/27)
Corpus callosum 22.7% (15/66) 9.4% (3/32) 25.9% (7/27)

The bold P value suggests a significant difference between the variables in the two cohorts.
PCNSL, primary central nervous system lymphoma; aGBM, atypical glioblastoma.
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be interpreted with caution due to the suboptimal quality of the
studies (17). In contrast, the traditional analysis method is time-
saving and easy for clinical implementation and interpretation.
Third, clinical experience of radiologists suggests that PCNSL
has slightly higher T1WI and lower T2WI signal intensity than
GBM. However, visual judgment is subjective, and precise
quantitative assessment is needed, especially for those that
cannot be differentiated by the naked eye. Although T1 and T2

mapping can accurately quantify T1 and T2 values of tissue, they
are not performed as routine sequences due to long scanning
time and complex postprocessing. In contrast, signal intensity of
Frontiers in Oncology | www.frontiersin.org 7
the lesion is easily obtained from T1WI and T2WI but is
susceptible to many factors, including the characteristics of the
tissue itself (T1 value, T2 value, and proton density) and MRI
equipment and scanning parameters (field strength, repetition
time, and echo time). Therefore, in this study, the SIR was used
as a quantitative parameter to eliminate the influence of different
MRI scanners and imaging parameters on the results. Similar to
our study design, the SIR also showed potential for differential
diagnosis in other scenarios (12, 24–26). However, different from
previous studies, we used an external test cohort to further clarify
the actual diagnostic performance of the SIR. Fourth, our study
TABLE 4 | Quantitative MR signal intensity ratio comparisons between PCNSL and aGBM.

Variable Training cohort (n = 98) Test cohort (n = 43) Overall cohort (n = 141)

PCNSL
(n = 66)

aGBM
(n = 32)

P PCNSL
(n = 27)

aGBM
(n = 16)

P PCNSL
(n = 93)

aGBM
(n = 48)

P

rT2 1.259 ± 0.113 1.690 ± 0.364 <0.001 1.297 ± 0.139 1.645 ± 0.239 <0.001 1.269 ± 0.121 1.675 ± 0.326 <0.001
rT1 0.629 ± 0.176 0.464 ± 0.118 <0.001 0.658 ± 0.131 0.570 ± 0.138 0.048 0.638 ± 0.164 0.499 ± 0.134 <0.001
T2/T1 2.159 ± 0.625 3.839 ± 1.163 <0.001 2.028 ± 0.384 3.049 ± 0.851 <0.001 2.121 ± 0.567 3.576 ± 1.125 <0.001
rT1CE 2.431 ± 0.564 2.198 ± 0.475 0.532 2.295 ± 0.489 2.065 ± 0.724 0.269 2.418 ± 0.741 2.298 ± 0.569 0.473
January 2022 | V
olume 12 | Article 8
The bold P value suggests a significant difference between the variables in the two cohorts.
PCNSL, primary central nervous system lymphoma; aGBM, atypical glioblastoma.
FIGURE 2 | (A–C) A 68-year-old woman with primary central nervous system lymphoma (PCNSL) presented with left hemiparesis for 1 month. MRI showed a left
frontal lobe lesion with iso- to slight hyperintensity on T2WI (A), slight hypointensity on T1WI (B), and marked homogeneous enhancement on T1CE imaging (C) (take
gray matter for reference). The quantitative parameters showed that rT1, rT2, T2/T1, and rT1CE were 0.65, 1.20, 1.82, and 1.87, respectively. The case was correctly
diagnosed as PCNSL by models 1, 2, 4, and 5 and radiologist B while wrongly classified as glioblastoma (GBM) by radiologist A. (D–F) A 43-year-old woman with
GBM presented with seizure. MRI showed a left frontal lobe lesion with isointensity on T2WI (D), slight hypointensity on T1WI (E), and marked homogeneous
enhancement on T1CE imaging (F) (take gray matter for reference). The quantitative parameters showed that rT1, rT2, T2/T1, and rT1CE were 0.66, 1.46, 2.25 and
2.11, respectively. The case was correctly diagnosed as GBM by models 1, 2, 4, 5, and 6 and radiologist B while wrongly classified as PCNSL by radiologist A.
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did not involve complex image preprocessing, including image
registration, brain extraction, and standardization. ITK-SNAP
software used in our study can realize simultaneously quantitative
measurement of T1WI and T2WI signal intensity in the same ROI
without image registration. The entire analysis was limited to the
time required to identify lesions and electronically locate ROIs.
From the clinical point of view, this approachmay be a highly cost-
effective quantitative analysis tool.

Most previous studies enrolled all PCNSL and GBM cases,
regardless of sign of intratumoral necrosis as a powerful
indicator to distinguish the two entities, and their inclusion
criteria could partially explain the higher ACC (7, 8, 10, 27).
Therefore, we reasoned that confining our study to PCNSL and
aGBM cases is closer to the clinical diagnostic dilemma in order
to seek more powerful imaging signs to identify the two entities.
In our study, four morphological features were closely associated
with PCNSL, including incision sign, T2 pseudonecrosis sign,
reef sign, and peritumoral leukomalacia sign. Among them, the
diagnostic value of incision sign has been confirmed in a
Frontiers in Oncology | www.frontiersin.org 8
previous study (28). T2 pseudonecrosis sign, reef sign, and
peritumoral leukomalacia sign, defined by the present study for
the first time, were observed only in PCNSL and not in aGBM.
For T2 pseudonecrosis sign, the mismatch between
heterogeneous T2WI signals and homogeneous enhancement is
the diagnostic core, which may be related to the degree of tumor
infiltration along the white matter fiber bundles. The reef sign
was defined as single or multiple foci that presented as
hypointensity on T1WI, hyperintensity on T2WI, and brighter
signal within contrast-enhanced area of the lesion. Although the
corresponding pathological mechanism of this sign is still
unclear, it may be related to the leakage of contrast medium in
the tumor area (29). Peritumoral leukomalacia sign was defined
as an area manifested as hypointensity on T1WI and
hyperintensity on T2WI in the region adjacent to the tumor.
The possible explanation is that the PCNSL cells are closely
arranged and cluster along vascular channels, which destroy the
blood supply of the adjacent brain parenchyma, resulting in
encephalomalacia (30). The above four imaging signs were
FIGURE 3 | (A–C) A 60-year-old woman with primary central nervous system lymphoma (PCNSL) presented with right hemiparesis for 3 months. MRI demonstrated
the lesion was located in the left basal ganglia and thalamus with slight hyperintensity on T2WI (A), hypointensity on T1WI (B), and marked heterogeneous
enhancement on T1CE imaging (C) (take gray matter for reference). The quantitative parameters showed that rT1, rT2, T2/T1, and rT1CE were 0.83, 1.34, 1.62, and
1.23, respectively. The case was correctly diagnosed as PCNSL by models 1, 2, 4, 5, and 6 and radiologist B while wrongly classified as glioblastoma (GBM) by
radiologist (A). (D–F) A 23-year-old woman with GBM presented with nausea and vomiting for 2 months. MRI showed a vermis lesion with slight hyperintensity on
T2WI (D), hypointensity on T1WI (E), and obvious homogeneous enhancement on T1CE imaging (F) (take gray matter for reference). The quantitative parameters
showed that rT1, rT2, T2/T1, and rT1CE were 0.57, 1.91, 3.35, and 2.73, respectively. The case was correctly diagnosed as GBM by models 1, 2, 4, and 5 while
wrongly classified as PCNSL by the two radiologists.
January 2022 | Volume 12 | Article 811197
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statistically significant between PCNSL and aGBM based on the
overall cohort. So, we believe that these signsmay be useful in daily
radiological practice and help differentiate PCNSL and aGBM.

In the present study, PCNSL had higher rT1 and lower rT2

than aGBM. The possible mechanism is that a high degree of
cellularity and high nuclear–cytoplasm ratio lead to the decrease
of tumor water content (31, 32), which contributes to signal
characteristics. Although the rT1CE of PCNSL was slightly
higher than that of GBM, there was no significant difference
between the two groups. This result differs from that of the study
by Anwar et al. (9), which reported a sensitivity of 83.3%,
specificity of 85.7%, and AUC of 0.92 for differentiating
PCNSL and GBM. Different study populations, MRI sequence
parameters, and timing and dosage of MRI contrast
administration may contribute to this inconsistency. Notably,
compared with rT2 or rT1, T2/T1 achieved the highest AUC in
distinguishing PCNSL from aGBM. The good diagnostic
performance may be attributed to the fact that T2/T1 can
provide better contrast as a quantitative tool. Many studies
have confirmed that T1/T2 ratio was useful in differentiating
Frontiers in Oncology | www.frontiersin.org 9
benign and malignant lesion in breast (33) and liver (24),
quantifying the demyelinated cortex in multiple sclerosis (25).

There are several limitations for the current study. First, our
sample size was relatively small, especially for the aGBM group.
From 3 medical centers, only 48 patients with atypical and solid
enhancement met the inclusion criteria and were selected.
Second, radiologic–pathologic correlation for morphological
features was not performed. Third, although the repeatability
and reproducibility of SIR measurements were good; however,
possible bias still existed due to the manual positioning ROIs.
Finally, our cohort included heterogeneous MRI equipment and
scanning parameters mimicking the circumstances encountered
in a clinical setting. However, as a semiquantitative parameter,
how SIR is affected by different equipment and scanning
parameters is not clear. Further prospective study is needed.
CONCLUSION

T2 pseudonecrosis sign, reef sign, and peritumoral leukomalacia
sign are closely related to PCNSL, which are never reported
before. Compared to radiologists’ assessment, the combination
model of morphological features and SIRs can provide better
diagnostic performance in distinguishing PCNSL from aGBM.
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The bold P value suggests a significant difference between the variables in the two cohorts. Model 1, rT2 + T2/T1 + rT1 + Localization + Incision sign + Reef sign + Peritumoral leukomalacia
sign + T2 pseudonecrosis sign; Model 2, rT2 + T2/T1 + rT1; Model 3, Localization + Incision sign + Reef sign + Peritumoral leukomalacia sign + T2 pseudonecrosis sign; Model 4, rT2; Model
5, T2/T1; Model 6, rT1.
PCNSL, primary central nervous system lymphoma; aGBM, atypical glioblastoma; CI, confidence interval; AUC, area under the curve; ACC, accuracy; PPV, positive predictive value; NPV,
negative predictive value.
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