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Abstract

It is well known that an important step toward understanding the functions of a protein is to determine its subcellular
location. Although numerous prediction algorithms have been developed, most of them typically focused on the proteins
with only one location. In recent years, researchers have begun to pay attention to the subcellular localization prediction of
the proteins with multiple sites. However, almost all the existing approaches have failed to take into account the
correlations among the locations caused by the proteins with multiple sites, which may be the important information for
improving the prediction accuracy of the proteins with multiple sites. In this paper, a new algorithm which can effectively
exploit the correlations among the locations is proposed by using Gaussian process model. Besides, the algorithm also can
realize optimal linear combination of various feature extraction technologies and could be robust to the imbalanced data
set. Experimental results on a human protein data set show that the proposed algorithm is valid and can achieve better
performance than the existing approaches.
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Introduction

Over the past years, the research on determining the subcellular

locations of proteins has attracted more attention from academia

due to its important roles in understanding protein functions,

identifying drug targets, annotating genomes and so on. The

approaches for determining the subcellular locations of proteins

can be divided into two categories: experimental and computa-

tional methods [1]. Experimental methods such as cell fraction-

ation, electron microscopy and fluorescence microscopy usually

are time consuming, expensive and laborious [2]. These limita-

tions have made the experimental methods unable to cope with

the situation that a large number of protein sequences continue to

emerge from the genome sequencing projects, and have encour-

aged the ongoing efforts to develop computational methods. It is

well known that the information on the final subcellular location of

a protein is basically encoded as a part of its amino acid sequence

and such a sequence is thought to be recognized by a specific

receptor protein as a protein sorting signal. Thus, it would be

possible, at least in principle, for us to predict the subcellular

location of a protein from its amino acid sequence by using

computational methods [3]. In addition, many studies in other

related areas have indicated that sequence-based prediction

approaches, such as those for predicting drug-target interaction

networks [4], predicting transcriptional activity of multiple site p53

mutants [5], prediction of body fluids [6], predicting protein

metabolic stability [7], predicting antimicrobial peptides [8],

identifying DNA binding proteins [9], identifying regulatory

pathways [10], predicting signal peptides [11], predicting HIV

cleavage sites in proteins [12,13], predicting the network of

substrate-enzyme-product triads [14], predicting protein pathway

networks [15], predicting proteases and their types [16], and

predicting membrane proteins and their types [17], can generate

many useful data for which it would be time-consuming and costly

to obtain by experiments alone, and can timely provide very useful

insights for both basic research and application by being combined

with the information derived from the structural bioinformatics

tools (see, e.g., [18]). In view of this, computationally predicting

the subcellular locations of proteins from their amino acid

sequences may become a useful complement to the experimental

methods.

Since the pioneering efforts were provided [19,20], a number of

sequence-based computational methods had been developed for

predicting the subcellular locations of proteins. For example, based

on N-terminal sequence information only, a neural network-based

tool called TargetP was developed in [21] for large-scale

subcellular localization prediction. Support vector machine

(SVM) was introduced to predict the subcellular locations of

proteins from their amino acid composition [22] and functional

domain composition [23], respectively. In [24,25], the subcellular

localization prediction problem of apoptosis proteins was studied.

In order to avoid losing the sequence order information, Chou

[26] proposed a concept of pseudo amino acid composition

(PseAA composition) to represent the protein samples. Soon

afterwards, many different prediction methods were proposed
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based on PseAA composition [27–34]. Text mining approach was

used to improve the prediction results of protein subcellular

localization by Lu et al. [35] for both prokaryote and eukaryote.

MultiLoc, a SVM-based approach, was proposed in [36] through

integrating N-terminal targeting sequences, amino acid composi-

tion and protein sequence motifs. A package of web servers named

Cell-PLoc was developed by Chou and Shen [37] for predicting

the subcellular locations of proteins in various organisms. A wider

view of some other published protein subcellular localization

prediction methods may be found in [2,3].

As mentioned above, through the continuing efforts of

researchers, many computational methods which can achieve

superior performance have been developed. However, all these

studies [1–3,19–39], except for [2] and [37], focused only on

mono-locational proteins, i.e., they assume that each protein exists

in only one cellular compartment. This is not always the case. In

fact, recent evidences [40,41] indicate that a mass of proteins have

multiple sites in the cell. For addressing this problem, Scott et al.

[42] established a Bayesian network predictor based on the

combination of InterPro motifs and specific membrane domains in

human proteins. By hybridizing three feature extraction tech-

niques including gene ontology, functional domain and pseudo

amino acid composition, Chou and Cai [43] developed a nearest

neighbor algorithm for predicting the subcellular locations of

proteins with multiple sites in budding yeast. In 2007, based on a

feature representation frame of hybridizing gene ontology and

amphiphilic pseudo amino acid composition and an ensemble k-

nearest neighbor classifier, two algorithms called Euk-mPLoc [44]

and Hum-mPLoc [45] were developed by Chou and Shen to deal

with the eukaryotic and human proteins with both single and

multiple sites, respectively. Later, they presented an improved

feature representation frame by hybridizing the gene ontology,

functional domain, and sequential evolutionary information, and

several new approaches such as Euk-mPLoc 2.0 [46], Hum-

mPLoc 2.0 [47], Plant-mPLoc [48] and Virus-mPLoc [49] were

proposed. Lee et al. [50] developed a PLPD algorithm by using a

density-induced support vector data description (D-SVDD)

approach. In [51], Briesemeister et al. presented an algorithm

named YLoc by using the simple naive Bayes classifier. Lin et al.

[52] proposed a knowledge based approach by using the local

Figure 1. Graphical model for IMMMLGP.
doi:10.1371/journal.pone.0037155.g001
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sequence similarity. Recently, four new approaches called iLoc-

Euk [53], iLoc-Gneg [54], iLoc-Plant [55] and iLoc-Virus [56]

were proposed based on a multi-label classifier to predict the

subcellular locations of eukaryotic, Gram-negative bacterial, plant,

and virus proteins, respectively. In [57], Wu et al. presented a

multi-layer classifier to predict the subcellular locations of Gram-

positive bacterial proteins. In [58], a new predictor, called iLoc-

Hum, was developed based on the accumulation-label scale for

predicting the subcellular locations of human proteins.

In order to deal with the protein with multiple sites, the

common idea of the existing approaches is to train one or more

single-label classifiers by transforming the original multi-label data

into single-label ones and classify the query protein to the locations

whose score outputted by the single-label classifiers satisfying some

conditions. Three strategies were mainly used to transform the

original multi-label data into single-label data. The first category

such as Chou and Shen’s work [46,49] is to take the protein with

multiple sites as multiple proteins with single site; the second

category [50] is to transform the original data set into multiple

binary data sets, one for each location, and each binary data set

includes all protein samples of the original data set, which are

labeled positively if in the original data set they belong to the

location corresponding to this binary data set and negatively

otherwise; the third category [51] is to regard every possible

combination of locations as a new class. However, the third

strategy is infeasible in most cases because the number of classes

will increase exponentially and the data in the new classes usually

are sparse; the first and second one have limitations as well

because they neglect the correlations among the locations caused

by the protein with multiple sites. In fact, the correlations among

the locations are the important information for improving the

prediction accuracy. Taking the data set of eukaryotic proteins

[46] as an example, it can be seen that almost all the proteins of

cyanelle and hydrogenosome only have one site and about 30%

proteins of cytoplasm also belong to nucleus. If a classifier can

obtain these correlations from the training data set, it will think

over the correctness of prediction result ‘‘a certain protein belongs

to cyanelle and other locations simultaneously’’, and will have to

reconsider whether the location ‘nucleus’ is missed when a protein

was located to cytoplasm only. Thus, the first research content of

this paper is to improve the performance of the classifier by

considering the correlations among the locations caused by the

protein with multiple sites.

In addition, to improve the whole performance of protein

subcellular localization prediction approaches, another important

factor is to represent the proteins with an effective feature

extraction technology. Although the proteins may contain all the

information such that they can be transported to the due

subcellular compartments exactly, to establish a quality feature

extraction technology that can mine this information is still a

challenging problem. However, with the efforts of researchers,

various types of feature extraction technologies based on the

different local information of proteins such as N-terminus,

sequence motifs, amino acid composition, and gene ontology

terms have been proposed. Thus, we can try to improve the

prediction performance by incorporating multiple local feature

information of proteins. In fact, researchers have already done

some work in this aspect. However, in many cases, different types

of feature information were included in one predictor based on the

subjective understanding of researchers, and it is hardly to realize

the optimal combination of them. Thus, the second research

context of our work is to optimally combine multiple feature

extraction technologies in the predictor.

Furthermore, the subcellular distribution of proteins is usually

extremely imbalanced. For example, in the data set of eukaryotic

proteins [46], the number of proteins in ‘cytoplasm’ is 2186, while

the number of proteins in ‘Hydrogenosome’ is only 10. In this

case, the common classifier will tend to be overwhelmed by the

majority classes and ignore the minority ones. Thus, the third

research context of our work is to address the imbalanced data

problem.

In order to consider aforementioned three problems simulta-

neously, a new classifier is proposed in this paper by using

Gaussian process model. The basic idea of the proposed algorithm

is to define multiple latent functions on the feature spaces, then the

correlations among the locations can be identified by the

Table 1. The experimental results (mean) on human protein data sets for investigating the usefulness of the correlations among
the locations.

Evaluation metric The proposed algorithm

The original data set The new data set (40%)

Normal Variation The gap Normal Variation The gap

The whole test set Average precision : 0.661 0.655 0.006 0.653 0.636 0.017

Recall : 0.595 0.587 0.008 0.562 0.543 0.019

F1-score : 0.530 0.522 0.008 0.516 0.504 0.012

Absolute true success rate : 0.274 0.261 0.013 0.204 0.189 0.015

Coverage ; 2.003 2.047 20.044 2.630 2.711 20.081

Ranking loss ; 0.129 0.132 20.003 0.143 0.148 20.005

Samples with
multiple sites

Average precision : 0.688 0.673 0.015 0.700 0.678 0.022

Recall : 0.478 0.459 0.019 0.535 0.498 0.037

F1-score : 0.535 0.518 0.017 0.572 0.545 0.027

Absolute true success rate : 0.179 0.148 0.031 0.231 0.181 0.050

Coverage ; 3.889 4.030 20.141 3.825 3.954 20.129

Ranking loss ; 0.152 0.158 20.006 0.148 0.155 20.007

doi:10.1371/journal.pone.0037155.t001
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covariance matrix between these latent functions, the optimal

linear combination of different feature extraction technologies can

be realized by defining a likelihood function and the imbalance of

data can be coped with by the weighting coefficient of the

likelihood on each sample. Since it can deal with the problems

possessing the following properties: (1) the distribution of data on

different classes may be imbalanced, (2) the data are represented in

multiple feature spaces, and (3) each datum may associate with

multiple labels simultaneously, the machine learning framework

described in this paper is named imbalanced multi-modal

multi-label learning (IMMML). we also call the proposed

algorithm imbalanced multi-modal multi-label Gaussian process

(IMMMLGP).

According to a recent comprehensive review [59], to establish a

really useful predictor for determining the subcellular locations of

proteins based on their sequence information, we need to consider

the following procedures: (i) construct or select a valid benchmark

data set to train and test the predictor; (ii) formulate the protein

samples with an effective mathematical expression that can truly

reflect the intrinsic correlation with their subcellular locations; (iii)

introduce or develop a powerful algorithm (or engine, classifier) to

operate the prediction; (iv) properly perform cross-validation tests

to objectively evaluate the anticipated accuracy of the predictor; (v)

establish a user-friendly web-server for the predictor that is

accessible to the public. Below, let us describe how to deal with

these steps.

Methods

Let D and Y~fy1,y2, � � � ,yQg respectively denote the sets of

proteins and the subcellular locations for a certain subcellular

localization prediction problem, where Q is the number of

subcellular locations. Let fg1,g2, � � � ,gmg be the set of m feature

extraction technologies used to extract the feature information of

the proteins. Thus, each protein X[D can be represented by

fx1,x2, � � � ,xmg, where, xj[Rdj is the feature vector of X associated

with gj , Rdj is the feature space corresponding to gj , j~1,2, � � � ,m.

Suppose S~f(X1,Y1),(X2,Y2), � � � ,(Xn,Yn)g be a data set includ-

ing n proteins with known sites, where, Xi[D denotes the ith

protein, fxi1,xi2, � � � ,ximg are the feature vectors of Xi and Yi5Y
is the set of subcellular locations associated with Xi, i~1,2, � � � ,n.

For notation’s convenience, Yi can be represented by a vector

½yi1,yi2, � � � ,yiQ�T , in which yik~1 denotes that protein Xi belongs

to yk, otherwise yik~{1. The goal of subcellular localization

prediction of proteins with both single and multiple sites is to learn

a function h : D?2Y from S which can correctly predict the

subcellular locations of a new protein X�[D. Being different with

the traditional predictor for the proteins with single site, the output

of h is a set of the locations.

Due to the desirable properties such as the natural Bayesian

interpretation, explicit probabilistic formulation, and the ability to

infer model parameters, Gaussian process model (GP) has received

extensive attentions in recent years and become an important tool

for many machine learning technologies. We will omit an

introduction to it and refer the readers to the excellent books on

this topic [60]. The main reason for using Gaussian process model

but not other methods in this paper is that it can infer the

correlations among the subcellular locations and the optimal

combination coefficients of feature extraction technologies in a

more convenient way.

To represent our uncertainty over subcellular locations for a

protein, a better method is to output a probability for each

subcellular location. As shown in Fig. 1, the main idea of

IMMMLGP is to assume an unobservable latent function fjk for

every subcellular location yk on the feature space Rdj ,

j~1,2, � � � ,m,k~1,2, � � � ,Q, and then the probability that a

protein X belongs to subcellular location yk can be obtained by

the combination of latent functions ff1k,f2k, � � � ,fmkg that assumed

for yk. In IMMMLGP, the correlations among the subcellular

locations can be identified by the covariance matrix of the latent

functions; the optimal linear combination of different feature

extraction technologies can be realized by defining a likelihood

function and the combination coefficient of the jth feature

extraction technology is just a parameter of the kernel function

over feature space Rdj ; the imbalance of data can be coped with by

giving a weighting coefficient to each sample in the joint

likelihood. The details of IMMMLGP algorithm are shown as

follows.

Gaussian Process Prior
The basic idea behind Gaussian process model is to place a

Gaussian process prior over the latent functions. In this paper, we

place the Gaussian process priors with zero mean and the

following covariance function over the latent functions

ffjk Dj~1,2, � � � ,m,k~1,2, � � � ,Qg,

Sfjl(x),fjs(x’)T~Cls
:aj
:kj(x,x’),j~1,2, � � � ,m; l,s~1,2, � � � ,Q;

Sfj1l(x),fj2s(x’)T~0,j1=j2; j1,j2~1,2, � � � ,m; l,s~1,2, � � � ,Q

(
ð1Þ

where, C~(Cls)Q|Q is a positive semi-definite matrix that

specifies the correlations among the subcellular locations, so that

the observation of one location can affect the prediction on

another one. As will be seen from the Section ‘‘Joint Likelihood’’,

the main role of aj(ajw0) is the weighting coefficient of the jth

feature extraction technology. kj is a covariance function over

feature space R
dj . In this paper, the Gaussian kernel was used as

the covariance function kj, i.e., kj(x,x’)~e{DDx{x’DD2=bj . Since fj1l

and fj2s are the functions defined on different input spaces when

j1=j2, we can regard them as mutually independent functions.

We assume that all the parameters can be given except C and

fajg. For notation’s convenience, let Y~½Y T
1 ,Y T

2 , � � � ,Y T
n �

T
,

Dj~fx1j ,x2j , � � � ,xnjg, D~fXi Di~1,2, � � � ,ng, a~½a1,a2, � � � ,am�,
fjki~fjk(xij), Fj~½fj11,fj21, � � � ,fjQ1,fj12, � � � ,fjQ2, � � � ,fj1n, � � � ,fjQn�T ,

and F~½FT
1 ,FT

2 , � � � ,FT
m �

T
, fjk�~fjk(x�j), F�j~½fj1�,fj2�, � � � ,fjQ��T ,

F�~½FT
�1,FT

�2, � � � ,FT
�m�

T
, i~1,2, � � � ,n, j~1,2, � � � ,m,

k~1,2, � � � ,Q, fx�1,x�2, � � � ,x�mg are the feature vectors of X�.
According to (1), the joint distribution p(F DD,C,a) and

p(F ,F�DD,X�,C,a) can be written as

p(F DD,C,a)~ P
m

j~1
N Fj D0,(ajK

j)6C
� �

ð2Þ

and

p(F�,F DD,X�,C,a)~

P
m

j~1
N

F�j

Fj

2
64

3
75D0,

ajK
j
�� aj(K

j
�)

T

ajK
j
� ajK

j

" #
6C

0
B@

1
CA ð3Þ

respectively, where 6 denotes the Kronecker product, the element

of Kj is kj(x,x’),x,x’[Dj , Kj
��~kj(x�j ,x�j), and Kj

� is a column

vector and its ith element is kj(xij ,x�j),i~1,2, � � � ,n. Thus, the

conditional prior p(F�DF ,D,X�,C,a) can be deduced analytically,
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p(F�DF ,D,X�,C,a)~ P
m

j~1
N (F�j D((Kj

�)
T (Kj){1

6E)

Fj ,aj(K
j
��{(Kj

�)
T (Kj){1Kj

�)6C)

ð4Þ

where, E is an identity matrix.

Joint Likelihood
Let p(Y DF ) denote the joint likelihood, i.e., the joint probability

of observing the class labels Y given the latent functions.

Generally, the class labels can be regarded as independent

variables given the latent functions. Thus, p(Y DF ) may be

evaluated as a product of the likelihoods on individual observation,

that is

p(Y DF)~ P
n

i~1
P
Q

k~1
p(yik Df1ki,f2ki, � � � ,fmki) ð5Þ

Since the imbalance of data should be considered, we can set a

weighting coefficient to the likelihood of each observation such

that it can enhance the influence of minority classes on joint

likelihood and reduce the influence of the majority classes, i.e.,

p(Y DF )~ P
n

i~1
P
Q

k~1
(p(yik Df1ki,f2ki, � � � ,fmki))

rik ð6Þ

A detailed explanation of why the likelihood (6) can deal with the

imbalance of data and the details of determining frik Di~
1,2, � � � ,n; k~1,2, � � � ,Qg will be given in Appendix S1.

In this paper, we also would like to realize the optimal linear

combination of various feature extraction technologies. It can be

seen from (1) that the scale of fjki can be determined by the

covariance function, this suggests that the linear combinationPm
j~1

bjfjki(bjw0) of ffjkig with covariance function fCkjg is

equivalent to the sum
Pm
j~1

fjki of ffjkig with covariance function

fb2
j Ckjg. Thus, we can define likelihood p(yik~1Df1ki,

f2ki, � � � ,fmki) as

p(yik~1Df1ki,f2ki, � � � ,fmki)~s(
Xm

j~1

fjki) ð7Þ

then the optimal linear combination of various feature extraction

technologies may be realized indirectly by choosing the weighting

coefficients fajg in (1). Here, s(t)~1=(1ze{t) is the logistic

function. As the values of p(yik~1Df1ki,f2ki, � � � ,fmki) and

p(yik~{1Df1ki,f2ki, � � � ,fmki) must sum to 1, thus likelihood

p(yik Df1ki,f2ki, � � � ,fmki) can be written as

p(yikDf1ki,f2ki, � � � ,fmki)~s(yik

Xm

j~1

fjki) ð8Þ

Posterior Distribution
By using Bayes’s rule, the posterior distribution over F for given

C and a becomes

p(F DD,Y ,C,a)~
p(Y DF )p(F DD,C,a)

p(Y DD,C,a)
ð9Þ

where,

p(Y DD,C,a)~

ð
p(Y DF )p(F DD,C,a)dF ð10Þ

is the marginal likelihood of the parameters C and a. It can be seen

that the posterior distribution p(F DD,Y ,C,a) is a non-Gaussian

distribution which can not be computed analytically. The same as

the traditional GP classification models, Laplace’s method can be

utilized to obtain a Gaussian approximation of p(F DD,Y ,C,a), that

is

p(F DD,Y ,C,a)&q(F DD,Y ,C,a)~N (F DF̂F ,A{1) ð11Þ

where F̂F~ arg max
F

p(F DD,Y ,C,a) and

A~{++ log p(F DD,Y ,C,a)DF~F̂F is the Hessian matrix of the

negative log posterior at F̂F . The details of solving F̂F and A can be

found in Appendix S1.

Prediction
By using the approximation q(F DD,Y ,C,a) of posterior (9) and

the conditional prior p(F�DF ,D,X�,C,a) (4), the distribution of F�
can be deduced analytically

p(F�DD,Y ,X�,C,a)~

ð
p(F�DF ,D,X�,C,a)q(F DD,Y ,C,a)dF

~N (F�D ~KKF̂F ,Hz ~KKA{1 ~KKT )

ð12Þ

where,
~KK~diagf(K1

� )
T (K1){1,(K2

� )
T (K2){1, � � � ,(Km

� )T (Km){1g6E,

H~diagfH1,H2, � � � ,Hmg6C, Hj~aj(K
j
��{(Kj

�)
T (Kj){1Kj

�),
diagf:g denotes block diagonal matrix.

Thus, the probability p(y�k~1DD,Y ,X�,C,a) that protein X�
belongs to subcellular location k(k~1,2,:::,Q) may be predicted

by averaging out F�, i.e.,

p(y�k~1DD,Y ,X�,C,a)

~

ð
s(
Xm

j~1

fjk�)p(F�DD,Y ,X�,C,a)dF� ð13Þ

~

ð
� � �
ð

s(
Xm

j~1

fjk�)p(f1k�,f2k�, � � � ,

fmk�DD,Y ,X�,C,a)df1k�df2k� � � � dfmk�

Notice that the predictive probability (??) also can not be

computed analytically. In this paper, we resort to Monte Carlo

sampling method to compute it.

Until now, we have presented the whole IMMMLGP

algorithm under the assumption that C, a and

frik Di~1,2, � � � ,n; k~1,2, � � � ,Qg have been obtained. The details

of computing C, a and frik Di~1,2, � � � ,n; k~1,2, � � � ,Qg can be

found in Appendix S1.
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Results and Discussion

In this section, we test the proposed algorithm on a human

protein data set collected from the Swiss-Prot database by Shen

and Chou [47]. This data set includes 3106 different protein

sequences covering 14 subcellular locations, where 2580 proteins

belong to one subcellular location, 480 to two locations, 43 to

three locations, and 3 to four locations. None of proteins included

here has .25% pairwise sequence identity to any other in a same

subcellular location. Five feature extraction technologies including

GO process, GO function, GO component, composition of amino

acids, and pseudo amino acid composition with l~11, which

measure the similarity of proteins from different aspects, are

chosen in the experiments. The details of these feature extraction

technologies can be found in [61] or [62]. In each experiment, the

approach proposed in [63] is used to determine the parameter bj

of covariance function kj(x,x’)~e{DDx{x’DD2=bj .

In statistical prediction, the following three cross-validation

methods are often used to examine a predictor for its effectiveness

in practical application: independent data set test, subsampling

test, and jackknife test [64]. Of the three test methods, the

jackknife test is deemed the most objective [65]. The reasons are as

follows. (i) For the independent data set test, although all the

proteins used to test the predictor are outside the training data set

used to train it so as to exclude the ‘‘memory’’ effect or bias, the

Figure 2. Subcellular distribution of the test samples.
doi:10.1371/journal.pone.0037155.g002

Table 2. The performance comparison between the proposed algorithm and Hum-mPLoc 2.0.

Evaluation metric The proposed algorithm Hum-mPLoc 2.0

The whole test set Average precision : 0.581 0.579

Recall : 0.643 0.519

F1-score : 0.506 0.541

Absolute true success rate : 0.202 0.294

Coverage ; 4.303 5.317

Ranking loss ; 0.419 0.496

Samples with multiple sites Average precision : 0.596 0.568

Recall : 0.579 0.443

F1-score : 0.576 0.548

Absolute true success rate : 0.153 0.114

Coverage ; 6.800 8.453

Ranking loss ; 0.463 0.568

doi:10.1371/journal.pone.0037155.t002
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way of how to select the independent proteins to test the predictor

could be arbitrary unless the number of independent proteins is

sufficiently large. This kind of arbitrariness might result in

completely different conclusions. For instance, a predictor

achieving a higher success rate than the other predictor for a

given independent test data set might fail to keep so when tested by

another independent test data set [64]. (ii) For the subsampling

test, the concrete procedure usually used in literatures is the 2-fold,

5-fold, 7-fold or 10-fold cross-validation. The problem with this

kind of subsampling test is that the number of possible selections in

dividing a benchmark data set is an astronomical figure even for a

very simple data set, as elucidated in [65] and demonstrated by

Equations (28)-(30) in [59]. Therefore, in any actual subsampling

cross-validation tests, only an extremely small fraction of the

possible selections are taken into account. Since different selections

will always lead to different results even for a same benchmark

data set and a same predictor, the subsampling test cannot avoid

the arbitrariness either. A test method unable to yield a unique

outcome cannot be deemed as a good one. (iii) In the jackknife test,

all the proteins in the benchmark data set will be singled out one-

by-one and tested by the predictor trained by the remaining

protein samples. During the process of jackknifing, both the

training data set and test data set are actually open, and each

protein sample will be in turn moved between the two. The

jackknife test can exclude the ‘‘memory’’ effect. Also, the

arbitrariness problem as mentioned above for the independent

data set test and subsampling test can be avoided because the

outcome obtained by the jackknife cross-validation is always

unique for a given benchmark data set. Accordingly, the jackknife

test has been increasingly and widely used by those investigators to

examine the quality of various predictors (see, e.g., [4–10,66–72]).

However, to reduce the computational time, we will adopt the

independent data set and subsampling test methods to examine the

proposed predictor as done by many predictors with SVM or

Bayesian network as the classifier [42,50]. And we will try to

prevent the influence of the arbitrariness problem mentioned

above on the experimental results through constructing an

independent data set as large as possible or repeating subsampling

test many times.

Since the performance evaluation of multi-label problems is

much more complicated than the traditional single-label ones, the

following popular multi-label evaluation metrics are used to

comprehensively evaluate the performance of the proposed

approach. Here, S~f(X1,Y1),(X2,Y2), � � � ,(Xp,Yp)g denotes a

test set, h(Xi) returns a set of proper labels of Xi; h(Xi,y) returns a

probability indicating the confidence for y to be a proper label of

Xi; Rankh(Xi,y) is the rank of y derived from h(Xi,y).

N Average precision:

1

p

Xp

i~1

1

DYi D

X
y[Yi

Dfy’DRankh(Xi,y’)ƒRankh(Xi,y),y’[YigD
Rankh(Xi,y)

. It can

compute the average fraction of labels ranked above a

particular label y[Yi.

N Coverage:
1

p

Xp

i~1

( max
y[Yi

Rankh(Xi,y){1). It can evaluate how

far one needs to go in the list of labels in order to cover all the

proper labels of a sample.

N Ranking loss:

1

p

Xp

i~1

1

DYi DDYi D
Df(y,y’)Dh(Xi,y)ƒh(Xi,y’),(y,y’)[Yi|YigD, where

Yi is the complementary set of Yi. It can evaluate the average

fraction of label pairs that are not correctly ordered for a

sample.

N Recall:
1

p

Xp

i~1

Dh(Xi)\Yi D
DYi D

.

N F1-score: 2
Rec:Pre

ReczPre
, where Pre~

1

p

Xp

i~1

Dh(Xi)\Yi D
Dh(Xi)D

and

Rec~
1

p

Xp

i~1

Dh(Xi)\Yi D
DYi D

.

N A b s o l u t e t r u e s u c c e s s r a t e :
1

p

Xp

i~1

D(i), w h e r e

D(i)~
1 h(Xi):Yi

0 otherwise

8<
: . According to the definition, the

prediction score of a test protein can be counted as 1 when

and only when all its subcellular locations are exactly

predicted without any underprediction or overprediction.

Therefore, the absolute true success rate is much more strict

and harsh than other metrics.

Table 3. Some examples of the experimental results outputted by the two algorithms.

Accession number
Locations annotated in Swiss-Prot
database

The predicted results of
Hum-mPLoc 2.0

The predicted results of the
proposed algorithm

P60852 Plasma membrane; Extracell Extracell Plasma membrane; Extracell

O75396 Endoplasmic reticulum; Golgi apparatus Endoplasmic reticulum Endoplasmic reticulum; Golgi apparatus

Q2VWA4 Cytoplasm; Nucleus Nucleus Cytoplasm; Nucleus

Q6NT55 Endoplasmic reticulum; Microsome Endoplasmic reticulum; Microsome;
Extracell

Endoplasmic reticulum; Microsome

P42261 Plasma membrane; Endoplasmic reticulum;
Synapse

Plasma membrane; Synapse; Extracell Plasma membrane; Endoplasmic reticulum;
Synapse

Q9Y3A5 Cytoplasm; Nucleus; Cytoskeleton Mitochondrion Cytoplasm; Nucleus

P49419 Cytoplasm; Nucleus; Mitochondrion Mitochondrion Cytoplasm; Mitochondrion

Q86WV6 Endoplasmic reticulum; Cytoplasm;
Mitochondrion; Plasma membrane

Cytoplasm Cytoplasm; Endoplasmic reticulum

Q99527 Plasma membrane; Golgi apparatus;
Endoplasmic reticulum

Plasma membrane Plasma membrane; Endoplasmic reticulum

O75410 Cytoplasm; Nucleus; Centriole Nucleus Cytoplasm; Nucleus; Centriole; Mitochondrion

doi:10.1371/journal.pone.0037155.t003
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The more detailed definitions of the first five metrics can be

found in [73] and [74], and the definition of absolute true success

rate can be found in [58] or [53].

As shown in the Section ‘‘Methods’’, a main contribution of the

proposed approach is that the correlations among the locations are

exploited by using a covariance matrix C. In order to justify the

fact that the superior performance of the proposed algorithm

benefits by considering the correlations among labels, we firstly

investigate the performance difference between the proposed

approach and its variation in which the covariance matrix C is

assumed to be an identity matrix (i.e., the locations are considered

as mutually independent ones). Table 1 shows the experimental

results on the human protein data set. For each evaluation metric,

‘;’ indicates ‘the smaller the better’ while ‘:’ indicates ‘the bigger

the better’. In our experiments, the data were randomly

partitioned in half to form a training set and a test set. We

repeated each experiment for 5 random splits, and reported the

average of the results obtained over 5 different test sets. In order to

study the influence of the percentage of the proteins with multiple

sites on the proposed approach, we construct a new human

protein data set which contains around 40% proteins with multiple

sites by randomly removing some proteins with single site from the

original data set. Table 1 also presents the experimental results on

this new data set. It can be seen from Table 1 that the proposed

approach can achieve superior performance than its variation no

matter on the whole test set or the test samples with multiple sites

only. Moreover, the performance gap tends to increase when the

percentage of the proteins with multiple sites increases. Thus, as

what we expected, the correlations among the locations are the

useful information for improving the prediction accuracy of the

predictor and the covariance matrix could exploit this information

effectively.

In order to evaluate the relative performance of the proposed

algorithm, it is compared with an existing algorithm named Hum-

mPLoc 2.0 [47], which is a popular web-server predictor for the

subcellular localization prediction of human proteins with multiple

sites. Since the whole human data set has been taken as the

training set of Hum-mPLoc 2.0, to make a fair and comprehensive

comparison, we have to take it as the training set of the proposed

algorithm also and construct a test set according to the following

criteria: (1) they must belong to human proteins, as clearly

annotated in Swiss-Prot database; (2) None of proteins included

here has .25% sequence identity to the ones of the training set in

a same subcellular location. By following the above procedures, we

obtained a test set containing 1315 proteins, of which 825 located

to one site, 369 to two sites, 91 to three sites, and 30 to more than

three sites. The details about the distribution of these samples can

be seen in Fig. 2. Table 2 presents the experimental results of the

proposed algorithm and Hum-mPLoc 2.0, where the best result on

each metric is shown in bold face. It can be seen from Table 2 that

the proposed algorithm achieves the best performance on four of

the six evaluation metrics as far as the whole test set is concerned.

Since these evaluation metrics measure the performance of

algorithms from different aspects, one algorithm usually is difficult

to outperform another on all the metrics. Thus, overall, the

proposed algorithm can achieve superior performance than Hum-

mPLoc 2.0 on this test set. In addition, Table 2 also presents the

experimental results of each algorithm on the test samples with

multiple sites only. It can be seen that the proposed algorithm

consistently outperforms Hum-mPLoc 2.0 on the samples with

multiple sites in terms of all evaluation metrics. This suggests that

the proposed algorithm has the obvious advantage than Hum-

mPLoc 2.0 for predicting the subcellular locations of proteins with

multiple sites.

In order to understand why the proposed algorithm can achieve

superior performance than Hum-mPLoc 2.0 on the proteins with

multiple sites, we analysis the difference of the results outputted by

the two algorithm. Table 3 shows some examples of the

experimental results outputted by them. For the first 5 proteins,

all their sites are correctly identified by the proposed algorithm but

only partial sites can be correctly predicted by Hum-mPLoc 2.0.

For the others, all of the two algorithms only can correctly predict

their partial sites or incorrectly predict all their sites. It can be seen

from Table 3 that the proposed algorithm can output as much as

possible corrected locations than Hum-mPLoc 2.0 in most cases.

For example, according to the experimental annotation in Swiss-

Prot, the protein with accession number P60852 belongs to two

locations: Plasma membrane and Extracell. If using Hum-mPLoc

2.0 to predict its sites, the output is ‘Extracell’, and ‘Plasma

membrane’ is missed; however, the proposed algorithm can

correctly output all of them. This may be the main reason why the

proposed algorithm achieves superior performance than Hum-

mPLoc 2.0.

Finally, it should be pointed out that although the proposed

algorithm can achieve superior performance than the existing

ones, it mainly benefits by the novel classifier but not the feature

information. In the future, we will try to improve the algorithm by

using more feature information such as FunD (functional domain)

representation and SeqEvo (sequential evolution) representation.

Moreover, since user-friendly and publicly accessible web-servers

represent the future direction for developing practically more

useful models, simulated methods, or predictors [75], we shall

make efforts in our future work to provide a web-server for the

method presented in this paper.
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