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Abstract

Widespread use of antibiotics has resulted in an increase in antimicrobial-resistant

microorganisms. Although not all bacterial contact results in infection, patients can become

asymptomatically colonized, increasing the risk of infection and pathogen transmission.

Consequently, many institutions have begun active surveillance, but in non-research set-

tings, the resulting data are often incomplete and may include non-random testing, making

conventional epidemiological analysis problematic. We describe a mathematical model and

inference method for in-hospital bacterial colonization and transmission of carbapenem-

resistant Enterobacteriaceae that is tailored for analysis of active surveillance data with

incomplete observations. The model and inference method make use of the full detailed

state of the hospital unit, which takes into account the colonization status of each individual

in the unit and not only the number of colonized patients at any given time. The inference

method computes the exact likelihood of all possible histories consistent with partial obser-

vations (despite the exponential increase in possible states that can make likelihood calcula-

tion intractable for large hospital units), includes techniques to improve computational

efficiency, is tested by computer simulation, and is applied to active surveillance data from a

13-bed rehabilitation unit in New York City. The inference method for exact likelihood calcu-

lation is applicable to other Markov models incorporating incomplete observations. The

parameters that we identify are the patient–patient transmission rate, pre-existing coloniza-

tion probability, and prior-to-new-patient transmission probability. Besides identifying the

parameters, we predict the effects on the total prevalence (0.07 of the total colonized

patient-days) of changing the parameters and estimate the increase in total prevalence

attributable to patient–patient transmission (0.02) above the baseline pre-existing coloniza-

tion (0.05). Simulations with a colonized versus uncolonized long-stay patient had 44%

higher total prevalence, suggesting that the long-stay patient may have been a reservoir

of transmission. High-priority interventions may include isolation of incoming colonized

patients and repeated screening of long-stay patients.
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Introduction

Carbapenem-resistant Enterobacteriaceae (CRE) are a rising global health threat [1–7]. CRE

are a family of antibiotic-resistant, gram-negative enteric bacteria [8] that harbor resistance to

many “last line” treatment drugs [1] and include human pathogens such as Klebsiella pneumo-
niae, Enterobacter cloacae, and Escherichia coli [8]. The unusual combination of pathogenicity

[9] and antimicrobial resistance [1] of CRE renders it a major cause of morbidity and mortality

in hospitalized patients [9] and, increasingly, otherwise healthy hosts [10]. These pathogens

are not only resistant to the carbapenems, but to many or most other classes of antibiotics that

are effective and safe [11], such as broad-spectrum cephalosporins. Treatment of CRE with

polymyxins and aminoglycosides is complicated by efficacy, pharmocokinetics, and toxicity

[12]. Recently introduced treatment options such as meropenem-vaborbactam [13] or ceftazi-

dime-avibactam are expensive [14], and clinical experience with their use is limited [13].

Although not all bacterial contact results in infection, patients can become asymptomati-

cally colonized [15], leading to a higher probability of transmission to other patients [16],

extended length of stay, increased carbapenem exposure, or infection, which increases mortal-

ity risk [17, 18] as high as 70% for patients in intensive care units [9]. As a result, the Centers

for Disease Control has recommended active surveillance of patients at high risk [19]. Active

surveillance, or screening without suspicion of infection, can identify asymptomatic carriers

[20, 21] for subsequent intervention with infection control measures such as the use of contact

precautions, decolonization, patient cohorting, or minimization of the use of invasive devices

[15, 19], and may decrease rates of nosocomial transmission [22] and reduce morbidity, mor-

tality, and hospitalization costs [23, 24].

Studies using active surveillance data typically use standard epidemiological methods such

as case-control studies [25] or prospective observational studies [26] to determine a global

statistic of infection or colonization and an assessment of risk factors and their importance.

Because the infectious process is only partially observable and the data are highly dependent,

mechanistic mathematical models that allow parameter estimation and hypothesis testing [27,

28] can be an important addition to the toolbox of epidemiologists, clinicians, and public

health policy-makers. These methods can allow analysis of the dynamics of an outbreak and

can use information about locations and times of colonization that are often obscured when

data is aggregated for use with traditional methods. However, variants on the classic Kermack-

McKendrick epidemic model [29]—which describes the spread of infectious disease in a popu-

lation of uniformly-mixed, homogeneous individuals who may be disease susceptible, infec-

tive, or resistant (an SIR model)—are often poorly suited for describing pathogen spread

within small populations with high patient turnover [30].

Stochastic models are naturally suited (and increasingly used [31]) to describe transmission

and its variance amongst the small numbers of patients within hospital units. For example,

several groups have used discrete-time [32] or continuous-time Markov chains to model and

analyze hospital active surveillance data [32–40] for organisms such as methacillin-resistant

Staphylococcus aureus (MRSA) [41, 42], vancomycin-resistant Enterococci (VRE) [38, 41, 43],

carbapenem-resistant Enterobacteriae (CRE) [32], cephalosporin-resistant gram-negative rods

(RGNR) [41], Pneumococcus [33], and/or Pseudomonas [38]. Earlier modeling efforts moved

beyond simple Poisson or unstructured hidden Markov models, which assumed infections to

be independent (appropriate for RGNR) [41], to incorporate two mechanisms of colonization:

exogenous (patient cross-transmission) versus endogenous (arising from antibiotic pressure)

for VRE [38, 41], Pseudomonas [38], MRSA [41], or CRE [32]. Later models incorporated

other mechanisms such as healthcare workers as vectors [42, 44, 45], within-family versus

community-acquired transmission [33], sporadic [37] or background colonization [35, 39, 40,
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46], pre-existing colonization [32, 34, 37, 41, 47, 48], transmission from other rooms [46], or

bacterial acquisition between hospital stays [34]. Notably, López-Garcı́a & Kypraios created

a generalized model of nosocomial spread that included multiple sources of transmission

including patients, staff, and environment, and allowed calculation of the basic reproduction

number [36].

Many models used point prevalence [34, 37, 44] from regular surveillance testing [38], but

Cooper and Lipsitch used sparse microbiological and clinical culture results, although fitting

parameters required multiple years of data [41]. Less frequently, groups directly tracked indi-

vidual colonization statuses in the state of the model [32, 33]. Numerous groups subsequently

applied Markov Chain Monte-Carlo (MCMC) methods to allow incorporation of prior knowl-

edge about parameters [41, 49], estimation of sensitivity [34, 35, 39, 40, 47], and/or augmenta-

tion of data with individual patients’ possible but unobserved colonization times [34, 35, 39,

47]. Calculation of exact likelihood while incorporating partial observation data and unknown

times of patient colonization was deemed an “intractable” problem by some groups [39, 47],

although Bootsma et al. [32] estimates maximum likelihood in a discrete-time Markov model

that uses test results to reduce the space of probable states and allows for varying occupancy of

the unit.

In this work, we present a hybrid continuous-time/discrete-time Markov susceptible- infec-

tive-susceptible (SIS) model that allows direct calculation of likelihood while incorporating

exact exit/entry times and incomplete observation data. This model tracks the discrete state of

the unit, a binary string representing the colonization status of each patient within the unit.

The state evolves continuously between events (tests or patient turnover) with possible patient

transmission, but it can change instantaneously and discretely at the time of patient turnover

with the entry of a new, potentially colonized patient and possible prior-to-new patient coloni-

zation event via a contaminated bed or surroundings. From a mechanistic standpoint, we

describe a model of bacterial transmission and colonization tailored to analyze incomplete

active surveillance data for carbapenem-resistant Enterobacteriaceae (CRE). Our mathematical

model examines three mechanisms of bacterial colonization: patient–patient transmission

(via healthcare providers or other vectors) [15], prior-to-new patient transmission (also

referred to as patient-bed-patient transmission because it may occur via contaminated bed lin-

ens [26] or via the immediate surroundings [50]), and pre-existing colonization (in which

patients have been colonized prior to hospital unit entry by exposure during previous hospital-

izations or stays in long-term care facilities) [51, 52]. We will discuss 1) formulation of a hybrid

discrete-time/continuous-time Markov model analogous to a SIS model (in which beds can be

in either a colonized/uncolonized state), 2) event-driven simulation using data for patient exit

and entry, 3) an inference method designed for incomplete active surveillance data that calcu-

lates parameter likelihood given all possible sequences of states consistent with (partial) obser-

vations, 4) methods to speed calculation of the likelihood function, 5) comparison with a

reduced-state model similar to previously published SIS models [32, 34, 36], 6) results from

maximum-likelihood parameter estimation, and 7) the contributions of this work in the con-

text of past modeling and parameter inference efforts.

From an epidemiological standpoint, the model and methods presented in this paper can

be used to improve estimation of patient–patient transmission from sparse data by using the

individual time, location, and test result information for each patient, allowing parameter esti-

mation from individual rooms and small hospital units. Furthermore, the incorporation of

multiple routes of transmission allows breakdown of the overall colonization prevalence (total

colonized patient-days) into the components attributable to mechanisms in excess of pre-exist-

ing colonization. From a technical standpoint, the methods for inference and parameter esti-

mation allow exact determination of maximum likelihood parameters without requiring
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likelihood function estimation or sampling the distribution of possible realizations using

MCMC techniques, even when the model has a large number of possible states. This inference

method is generally applicable to discrete-state, discrete- or continuous-time Markov models

applied to partial observation data. Although calculation of the likelihood function for any

given set of parameters is expensive because it incorporates a matrix exponential [53], use of

the full detailed state tracking individual patient colonization statuses and the exact entry/exit

times enabled by the continuous-time model allows better parameter estimation compared to

use of a reduced state model that tracks the number of colonized patients. We outline a num-

ber of mathematical and computational methods to make this calculation both feasible and

practical. (Details of many of these methods are available in the appendices following the main

body of the paper).

Materials and methods

Ethics statement

The Institutional Review Board of the NYU School of Medicine approved this study (IRB #08

818) on the “Epidemiology of KPC producing Enterobacteriaceae in New York City” with a

waiver of consent: “Active surveillance for multi-drug resistant bacteria is a routine, well-

accepted method for enhancing infection control in areas of high risk in the hospital setting.

Only routine clinical specimens obtained for the active surveillance of KPC-E are used in this

study.” The data were analyzed anonymously.

Active surveillance data. We used de-identified hospital surveillance and census data

(available in S1 Data) for CRE colonization within a rehabilitation unit in a New York City

academic center, a subset of the data used for a CRE case-control study by Swaminathan et al.

[25]. The surveillance data consisted of perirectal swabs taken shortly after patient entry into

the hospital unit and approximately weekly thereafter until exit. All events were drawn from

an electronic medical record which placed timestamps on tests and entry/exit events to at least

the date, hour, and minute. The swabs were cultured for CRE (primarily Klebsiella pneumo-
niae). Also available were clinical microbiological test results from cultures performed upon

suspicion of infection. These data were combined with census data consisting of patient bed

locations and turnover times for the study duration of 417 days. (The average patient length of

stay was 14.1 days). We limited our analysis to 13 of 25 beds in the rehabilitation unit that

were consistently used, as the remainder were either temporary or rarely used beds that

stayed empty for the majority of the study duration. Additional information is available in S2

Appendix.

Models

Hybrid discrete-time/continuous-time Markov model

Consider a hospital unit of n beds filled with patients, all of whom are initially uncolonized

with pathogen. We model the process of colonization and transmission as a hybrid discrete-

time/continuous-time, discrete-state Markov chain [54, 55] in which a discrete-time Markov

process is used to describe events occurring at patient turnover, but a continuous-time Markov

chain is used to describe events occurring during time intervals in which no patients enter or

leave.

The detailed state of the unit at time t is represented as a binary vector (or bit string) b(t).
Each component bk 2 {0, 1} corresponds to the status of the patient in bed k at time t, for all

k 2 {1, 2, . . ., n}. Patients are considered uncolonized (bk = 0) if they do not harbor pathogen,

but colonized (bk = 1) if they do, even if asymptomatic. These states are equivalent to the
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susceptible and infective states of an SIS model, which is a two-state variant of the classic three

state susceptible-infective-resistant (SIR) model [29]. We assume beds are never empty, so

there are only two possible states for each bed and only 2n possible states of the unit. The

reduced state of the unit is an integer representing the total number of colonized patients in

the unit at a given time. In the detailed model, we choose to track the status of individual

patients and not just the number of colonized patients, even though the detailed state deter-

mines the reduced state—but not conversely—simply by counting the number of colonized

patients.

We assume three mechanisms in the model by which individual patients become colonized:

pre-existing colonization, prior-to-new patient colonization, and patient–patient trans-

mission. Here, pre-existing colonization is defined as carriage of pathogen upon entry into the

unit. Prior-to-new patient colonization is transmission of pathogen from the prior bed occu-

pant to the new patient immediately following, which can occur via contamination of the bed

[26] or immediate surroundings [50]. Finally, patient–patient transmission can occur between

any two patients who are simultaneously present in the unit via mechanisms such as the use of

shared equipment or contact with health-care providers [15, 56]. Of the three processes, note

that two occur (or can be thought of as occurring) instantaneously during patient turnover

(pre-existing and prior-to-new patient colonization), whereas the third (patient–patient trans-

mission) is considered to occur at any time between patient turnover events.

During exit/entry events, colonization can occur via prior-to-new patient colonization. Let

S be a dichotomous random variable denoting the unknown colonization state of an entering

patient, and let ϕ be the probability of pre-existing colonization (Fig 1b). S = 0 codes for unco-

lonized; S = 1 codes for colonized; Pr{S = 1} = ϕ; and Pr{S = 0} = 1 − ϕ. When the colonization

state is known (not random), it is denoted by s, where (similarly) s = 0 for uncolonized (Fig

1a), and s = 1 for colonized (Fig 1c). If the new patient is uncolonized (s = 0 if status known,

otherwise S = 0 with probability 1 − ϕ) and enters a bed in which the previous patient was colo-

nized (Fig 1e), there is a probability ψ of prior-to-new patient colonization, which may occur

via contamination of the bed or immediate surroundings. Alternately, the patient may remain

uncolonized with probability (1 − ψ). We assume that exit, entry, and possible prior-to-new

patient colonization occurs instantaneously during an exit/entry event.

Between exit/entry events, patient–patient transmission can occur from colonized to

uncolonized patients. For any given uncolonized patient, the fixed probability per unit time of

Fig 1. Possible exit/entry scenarios. Possible exit/entry scenarios, with s as an indicator variable for patient colonization (if known), ϕ as the

probability of pre-existing colonization (if the new patient’s status is unknown), and ψ as the probability of prior-to-new patient colonization given that

the prior patient was colonized: (a) replacement of an uncolonized patient by an uncolonized patient (s = 0 if status known); (b) replacement of an

uncolonized patient by a patient of unknown status (colonized with probability ϕ); (c) replacement of a patient of any status with a colonized patient

(s = 1 if status known); and replacement of a colonized patient by an uncolonized patient (s = 0 if status known, otherwise uncolonized with probability

1 − ϕ), who (d) remains uncolonized with probability 1 − ψ or (e) becomes colonized via prior-to-new patient colonization (probability ψ).

https://doi.org/10.1371/journal.pone.0231754.g001
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a colonization event per colonized patient in the hospital unit is γ (Fig 2). Thus, we are assum-

ing that the overall patient–patient transmission rate in the hospital unit is linearly propor-

tional to the number of pairs of colonized and uncolonized patients present at a given time.

Although continuous-time transmission is “restarted” at each exit/entry event, the model is a

“memoryless” Markov model [55] that depends only on the present state to determine the next

state without regard to history. At the discontinuity of an exit/entry event, the number of colo-

nized patients may instantaneously increase or decrease by 1, which then would change the

unit transmission rate (iγ, where i is the number of colonized patients present).

Of note, we use the term “rate” (the expected number of events per unit time) interchange-

ably with the term “probability per unit time,” but distinguish it from “rate constant,” which is

a reaction rate coefficient in chemical kinetics that is not equivalent to the probability per unit

time [57, 58]. We use “probability per unit time” as a shorthand for instantaneous probability

per unit time, defined as the probability per unit time as the time interval decreases to an infin-

itesimal size (equivalent to a hazard function from survival analysis [59]):

lim
Dt!0

Pðevent occurs in the time interval ðt; t þ DtÞÞ
Dt

We define γ as the instantaneous probability per unit time of a patient-patient transmission

event occurring from the initial time at which patient-patient transmission can occur (here

assumed to be t0 = 0) to time t. The probability of no event occurring during the time interval

(0, t) is e−γt (equivalent to a cumulative survival function [59]), so the probability of at least 1

event occurring during the time interval is 1 − e−γt.
Changes in the state of hospital units. In the next section, we describe how probabilities

evolve for the change in state of the entire hospital unit at and between events as a result of

changes in the colonization status of individual patients. Let T be a vector of arbitrary length of

the known, arbitrary times at which patient turnover occurs. We assume that patient replace-

ment is instantaneous and the status of the z-th incoming patient may be known or unknown.

A patient that leaves at time t�z is immediately replaced a new patient at time tþz (Fig 3). Here,

t�z is the limit approaching tz from the left and tþz is the limit approaching tz from the right,

given that time is pictured as flowing from left to right as in Fig 3.

Let p(t) be the probability distribution at time t of the different possible states of the unit.

That is, p(t) is a vector with 2n entries, each of which refers to a state of the n-bed unit as a

whole and gives the probability that the hospital unit is in the corresponding state. Notice that

in our model, pre-existing and prior-to-new patient colonization occur only during patient

exit/entry events, but patient–patient transmission occurs solely between exit/entry events dur-

ing non-turnover intervals. The probability distribution changes in a discrete manner at an

exit/entry event, which begins at the time of the prior patient’s exit (t�z ) and ends after the new

Fig 2. Transmission from colonized to uncolonized patient. Transmission from colonized to uncolonized patient at

rate γ per day per colonized-uncolonized patient pair.

https://doi.org/10.1371/journal.pone.0231754.g002
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patient’s entry and possible prior-to-new patient colonization (tþz ). Between exit/entry events,

no patient turnover occurs, and the probability distribution evolves continuously (Fig 3).

Transition probabilities for changes in the state of the hospital unit that occur during the z-
th exit/entry event are represented as entries within a discrete-time Markov transition proba-
bility matrix M(z) (described in S1F Appendix). In contrast, the transition rates for state

changes that occur between patient exit/entry events are represented as entries within the con-

tinuous-time transition rate matrix R (described in S1G Appendix). The cumulative effect of

these changes can be written [60, 61] as a probability matrix P(z) that examines the change in

the state of the hospital unit from the beginning to the end of a discrete time interval, as shown

in S1H Appendix.

Simulation

Given input parameters γ, ϕ, and ψ; a list of Z − 1 exit/entry events at arbitrary times T = {t1,

. . ., tZ−1} that occur in beds K = {k1, k2, . . ., kZ}; and, optionally, a list of arbitrary states S(z) of

the entering patients at time tz, we can create a simulation of the hospital unit for the period t0
to tZ. (Here, we assume that at time t0, the hospital unit is completely uncolonized, and the end

of the simulation period occurs after the time of the last exit/entry event at time tZ−1. The simu-

lation can also be performed with other initial states if desired).

Simulation of the hybrid continuous-time/discrete-time model requires three steps: 1)

choosing a list of arbitrary exit/entry times from data or simulation; 2) simulating the exit/

entry events of pre-existing colonization and possible prior-to-new patient colonization using

the probabilities ϕ and ψ, and 3) using event-driven simulation (also known as the Gillespie

Method [57, 62, 63]) and the parameter γ to simulate patient–patient transmission between
exit/entry events.

Fig 3. Overview of all processes of colonization and transmission. Overview of all processes of colonization and

transmission. The top diagram shows the two types of transition matrices. M(z) is the exit/entry probability matrix,

which describes probabilities of various outcomes upon patient turnover and possible prior-to-new patient

transmission at an exit/entry event. P(z − 1) is the non-turnover transition probability matrix, which is derived from

the patient–patient transmission rate matrix and describes what happens from one turnover event to the next. The

bottom diagram shows the statuses of individual beds within an example four-bed hospital unit. The vertical bars

represent a patient turnover event. The vertical bar color represents the status of the incoming patient: white if

uncolonized, red if colonized, and gray if unknown. The horizontal lines depict the colonization status of the patient in

a particular bed: a thin black line means the patient is uncolonized, but the thick red line means the patient is

colonized. The dashed red arrows represent the probability per unit time of patient–patient transmission between pairs

of colonized-uncolonized patients.

https://doi.org/10.1371/journal.pone.0231754.g003
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First, we used the exact exit/entry times from the rehabilitation unit census data. However,

it is also possible to create simulations using turnover times from other data sets or other

methods, such as generating these times using the assumption that exit/entry is a Poisson pro-

cess governed by the turnover time (the inverse of the mean length of stay [64]).

Second, we assign patients an initial colonization status upon entry into the unit and a final

status after contact with the bed. If the patient’s colonization status was previously known to

be uncolonized or colonized, the initial colonization status was tentatively set to be 0 or 1,

respectively. Incoming patients whose colonization status was unknown were given an initial

status of 0 with probability 1 − ϕ or status of 1 with probability ϕ. Then, uncolonized new

patients (initial status 0) entering a bed previously occupied by a colonized patient were given

a final colonization status of 0 or 1 with probability 1 − ψ or probability ψ, respectively.

Patients who entered initially colonized remained colonized after contact with the bed, regard-

less of the previous patient’s colonization status, and were given a final status of 1. Details

about exit/entry event simulation are found in S1B Appendix.

Last, we performed stochastic simulations of patient–patient transmission using event-

driven simulation [57, 62, 63]. Recall that the probabilities per unit time of patient–patient

transmission are represented as a continuous-time Markov chain for the interval between two

exit/entry events at times tz−1 and tz in which no patient turnover occurs. During this interval,

the only possible event is patient–patient transmission, which occurs at rate γ. Event-driven

simulation can be used to determine the time and location of patient–patient transmission

events using a variant [63] on the Gillespie method [57, 62]. This method uses transition rates

from a current state to multiple possible final states to create a realization of the final state of

the system after transition. Because this simulation method uses random numbers as input,

individual realizations will be different, but in aggregate, their statistics will approach that of

the original transition rates. Details for simulating patient–patient transmission between exit/

entry events are described in S1C Appendix.

Inference method

The inference method in this paper is designed for use with the partial observations and arbi-

trary test and patient turnover times often found in active surveillance data. As shown in Fig 4,

entering and exiting patients may have an unknown status (gray vertical bar) or be known to

be uncolonized (white bar) or colonized (red bar). Patients are tested at arbitrary times (open

circles), but typically not every patient in the hospital unit is tested at the designated time(s).

The possible true state of the hospital unit can only be known if all patients are tested at the

same time, but in practice, the state of the unit is often partially rather than fully observed. All

test results obtained are assumed to be accurate.

In the next section, we describe cleaning and pre-processing of the active surveillance data-

set, including data augmentation, a method for extrapolating test results forward and back-

ward in time based on some simple assumptions (similar to the assumptions of Bootsma et. al

[32]). We then describe a likelihood function, that is, the probability of a single sequence of

observations given a set of arbitrary parameters. Finally, we describe an inference method that

maximizes this likelihood function. Because direct calculation of the likelihood function is

computationally expensive, we outline multiple techniques that can be used to streamline this

calculation, including a method to “compress” a patient–patient transmission matrix P(Z)

from size 2n to n + 1 square (S1N Appendix); use of Jordan form to find the analytical solution

to the matrix exponential of the rate matrix R(t) (S1O Appendix); and other computational

techniques to reduce the required memory and time required for a single likelihood
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calculation. We used these methods in conjunction with MATLAB’s built-in optimization

function fmincon to calculate the maximum-likelihood parameters for our data set.

Data pre-processing. Because the mathematical model assumes that no time elapses

between exit and entry, we assumed that the “exit/entry” events of the model occurred at

the recorded time of patient entry in the dataset. We assumed that once colonized, patients

remained colonized throughout their stay, because even intentional attempts at decolonization

have limited efficacy [65, 66]. Negative test results following positive test results were assumed

to be false negatives, as intestinal excretion of CRE can be intermittent [67]. Patients who are

uncolonized at one test time were assumed to be uncolonized at all times prior to the test, from

and including the time of entry; patients found to be colonized at a particular test time were

assumed to be colonized for all times at and after the test until exit. (The patient colonization

status is still unknown after a negative test, before a positive test, and between a negative and a

positive test because the exact time of conversion, if one occurred, is unknown). Thus, at each

time at which testing was performed within the hospital unit, inferred test results were given to

all other patients whose colonization statuses could be inferred. The final augmented data set

of actual and inferred test results was used for all parameter estimation within this paper.

Additional statistics and information on data pre-processing are available in S2 Appendix.

Probability of a sequence of states. Consider a sequence of states and their correspond-

ing matrices (either exit/entry M(z) or patient–patient transmission probability P(z) matrices)

that occur at given times tz. If all patients are tested during an observation, the state of the hos-

pital unit will be completely known at that time. If not all patients are tested, only incomplete

data regarding the state of the hospital unit will be available, as shown in the example testing

Fig 4. Example event timeline for a surveillance study performed on a 4-bed unit (with time flowing left to right).

(a) Surveillance study timeline divided into non-turnover intervals (black arrows) by tests (spaces between black

arrows) and exit/entry events (dotted red arrows). Each non-turnover matrix for the interval tz to tz+1 has a

corresponding matrix P(z), and each exit/entry event at time tz has a corresponding M(z) matrix. (b) The events of a

surveillance study in which each horizontal line represents the history of a bed, which may include exit/entry events

(vertical bars) or tests (open circles). The color of the vertical bar indicates whether the incoming patient was

uncolonized (white), colonized (red), or untested with unknown status (gray).

https://doi.org/10.1371/journal.pone.0231754.g004
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scheme of Fig 4. For convenience, we will re-index the states b(z) and the corresponding

matrices in sequential order with integer indices j, allowing us to rid our notation of limits

(such as t�z or tþz ).

The re-indexed states and matrices will be notated as a(j) and W(j), where W(j) is a generic

transition matrix that denotes either an exit/entry matrix M(z) or the patient–patient transmis-

sion matrix P(z) describing the probability of transitioning from state j − 1 to state j. Notice

that M(z) describes a state transition occurring instantaneously at exit/entry/bed contact, but

P(z) describes the probability of the state transition between two events at times tj−1 and tj. The

P(z) probability matrix is created by exponentiating the continuous-time patient-patient trans-

mission rate matrix over any interval of time between events such as exit/entry or tests. Thus,

different P(z) matrices may represent probabilities of state transitions over time intervals of

varying lengths, unlike a typical discrete-time Markov model which calculates the probability

over fixed time intervals such as a day.

Here, p0 is the initial probability distribution, so p0(a) is the probability that a(0) = a, e.g.,

that if no time elapses, the state of the unit is the initial state. Wa(i)a(j)(i) is the probability of

transitioning from state a(i) at the ith event to state a(j) at the jth event. Notice that any

amount of time can elapse between these events, so multiple instances of patient-patient trans-

mission may occur between exit/entry and/or test events.

In the case of partial testing, there will be multiple possible states consistent with observa-

tions. For example, consider the first set of tests at time t2. If we assume all test results (for the

white open circles shown) are negative, then the partially observed state of the unit is 00?0. The

two possible underlying states consistent with test results are {0000, 0010}.

Let B(j) be the set of all possible states consistent with test results at event j. Each state vector

b(j) in the set B(j) will have some components bk (for k in the set of tested beds) whose status is

known from test results, but the remaining components can take on any combination of values

(0 or 1). Notice that if all tests are performed, the state of the system will be known and B(j)
will have only one element. If no tests are performed, all states are possible, so B(j) will have 2n

elements. Thus, every observation with m tests performed (for m 2 {0, 1, . . ., n}) yields a set of

2n−m possible states consistent with its test results. The true state of the system X(j) at event j is

contained within the set of possible states B(j). Therefore, the whole set of observations gives

us the following information about the sequence of true system states at all of the test times:

½Xð0Þ 2 Bð0Þ� and ½Xð1Þ 2 Bð1Þ� and . . . and ½XðzÞ 2 BðzÞ�

The likelihood (a priori probability) P of this set of observations is

P ¼ Prð½Xð0Þ 2 Bð0Þ� and ½Xð1Þ 2 Bð1Þ� and . . . and ½XðzÞ 2 BðzÞ�Þ

For brevity, we denote the sequence of states i = a(0), j = a(1), k = a(2), y = a(z − 1), and z =

a(z). Then the likelihood equation can be written as

P ¼
X

i2Bð0Þ

p0ðiÞ
X

j2Bð1Þ

Wð0Þij
X

k2Bð2Þ

Wð1Þjk � � �
X

z2BðzÞ

Wðz � 1Þyz

 ! ! !

ð1Þ

(Note that this method is similar to Baum’s recursion method as used in the work of

McBryde et al. [37]. The following method of obtaining submatrices is similar to the method

by Bootsma et al. of reducing the number of possible states by incorporating observations

using forward and backward vectors [32]).

Eq 1 can be written in matrix notation (and evaluated that way in MATLAB) if we intro-

duce the following subvector and submatrices. Let p0(B(0)) be the row vector with entries of

PLOS ONE A mathematical model for bacterial colonization in hospital units

PLOS ONE | https://doi.org/10.1371/journal.pone.0231754 November 12, 2020 10 / 32

https://doi.org/10.1371/journal.pone.0231754


initial probabilities for each of the possible initial states in set B(0). Let W(j, B(j), B(j + 1)) be

the rectangular submatrix of W(j) containing the rows corresponding with the states specified

in B(j) and the columns corresponding with the states specified by B(j + 1). Finally, let U(B(z))

be a column vector with all elements equal to 1 and the same number of elements as contained

in B(z). Then the overall probability is

P ¼ p0ðað0ÞÞ Wð0;Bð0Þ;Bð1ÞÞ Wð1;Bð1Þ;Bð2ÞÞ . . . Wðz � 1;Bðz � 1Þ;BðzÞÞ UðBðzÞÞ ð2Þ

To find the parameters for the prior-to-new patient probability ψ and the transmission rate

γ, we must maximize the likelihood P with respect to a particular sequence of observations:

patient exit/entry events, the corresponding new-patient colonization statuses, and the test

results of particular beds at given times.

Finding maximum likelihood parameters and error ranges. We used the function

PðB; g; �;cÞ (Eq 1) as the objective function to determine the likelihood of a sequence of

observations B given input parameters γ, ϕ, ψ. The observations consisted of test times, loca-

tions, and results from active surveillance data for an n-bed hospital unit as well as census

information (exit/entry times, the corresponding beds in which turnover occurred, and the

colonization statuses of incoming patients if available). We determined the best-fit parameters

by finding the maximum of the log-likelihood (the logarithm of Eq 1) using the MATLAB

function fmincon with the following constraints: ϕ and ψ were probabilities with values

between 0 and 1. (The parameters themselves remained on a linear scale). The patient-patient

transmission rate γ is a probability per unit time that can have any non-negative value depend-

ing on the units chosen. Because estimates from epidemiological studies [68] or mathematical

models [35, 39] suggested that the overall rate of transmission was less than than 25 cases per

1000 patient-days of exposure (0.025), we chose a generous parameter search range between 0

and 2. An initial search of the space suggested a single maximum lay between 0 and 0.5, so the

final parameter search was restricted to values between 0 and 0.5. Example plots from the like-

lihood landscape for γ 2 [0, 1] are shown in S1I Appendix. Error ranges were computed as

described in Fig 5.

Techniques to improve inference. The continuous-time patient-patient transmission

rate matrix allows use of exit/entry and test events at arbitrary times. However, this flexibility

comes at a price: matrix exponentiation must be performed for each of the time intervals

between events (approximately 500 intervals of different lengths for the rehabilitation unit

data).

Calculating a matrix exponential is an inherently difficult problem because confluent or

nearly confluent eigenvalues leads to a loss of accuracy, but algorithms that avoid eigenvalues

tend to require more computer time and may be adversely affected by roundoff error [69, 70].

Finding the matrix exponential of the full detailed patient-patient transmission rate matrix

becomes computationally expensive as the number of beds (n) increases because the number

of matrix entries increases exponentially (as 22n). For units with a small number of beds (for

example, n = 4 beds), the time needed is trivial because the matrices are 16 by 16, but for an

n = 13 bed room, the full detailed state rate matrix has a size of 8192 by 8192. Consequently, if

it is possible to decrease the dimensions of the transmission rate matrix or to factor the rate

matrix so the matrix exponential can be calculated using only scalar exponentials, this step can

be sped up significantly.

As described in S1N Appendix, we “compress” the patient-patient transmission rate matrix

from size 2n by 2n to size n + 1 by n + 1 by converting entries in the full detailed matrix to their

reduced matrix equivalents, similar to previous work analyzing SIS epidemic dynamics on a

network of fully “connected” individuals [71]. Matrix exponentiation can then be performed
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on the smaller matrix and the entries converted and “exploded” back to their correct locations

in the full detailed matrix. This is a tremendous advantage because the number of reduced

states increases only linearly with the number of beds (as n + 1) [71]. Although we cannot diag-

onalize the matrix because it is defective, we were able to find the analytic solution for the Jor-

dan matrix exponential, as shown in S1O Appendix. This solution allows us to calculate scalar

exponentials of the Jordan matrix to find the matrix exponential.

Implementing the inference method. The surveillance data, microbiological test results,

and hospital census data were pre-processed using Python and MATLAB (R2015b). The simu-

lation and inference methods were implemented in MATLAB. Parameter estimation and sim-

ulation were performed in parallel using a combination of MATLAB and Bash scripts on

Phoenix (now BigPurple), the high-performance computing cluster at New York University

Fig 5. Comparison of inference methods of the full detailed model (FDM) versus the reduced state model (RSM)

using simulations generated from the same set of input parameters (γ, ϕ, ψ). First, the dataset from the

rehabilitation unit was used to find the best-fit parameters using the FDM. These parameters were used to generate

simulations. The FDM and RSM inference methods were used to generate two sets of best-fit output parameters. The

mean best-fit output parameters (γ, ϕ, ψ)FDM and (γ, ϕ, ψ)RSM from the FDM and RSM inference methods,

respectively, were found and then compared to the input parameters (γ, ϕ, ψ).

https://doi.org/10.1371/journal.pone.0231754.g005
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Medical Center. Parallel processing was used for initial searches of parameter space and paral-

lel simulations of the forward model.

Reduced state model

Reduced state model. The reduced state model is a continuous-time SIS Markov model

in which the patient turnover is approximated as a Poisson process [72] in which patient exit/

entry events occur continuously and independently at a constant average rate β. In essence, the

reduced state model is a continuous-time classic birth and death process [73] applied to a sus-

ceptible-infective-susceptible epidemic model. The time between these exit/entry events is

described by the exponential distribution, a memoryless probability distribution in which

1/β describes the mean time between exit/entry events (e.g., the average length of stay) [64].

Additional information and data supporting this assumption are described in Fig B in S2

Appendix.

The rate of increase (fi) in the number of colonized patients from i to i + 1 is fi = γi(n − i) +

β(n − i)ϕ. Notice that fi is governed by parameters for the turnover rate β, the patient–patient

transmission rate γ, and the probability of pre-existing colonization ϕ. However, the rate of

decrease is governed only by the parameters ϕ and ψ (the prior-to-new patient colonization

probability): gi = βi(1 − ϕ)(1 − ψ).

Let Pi be the probability of being in state i. As time passes, the probability of being in a par-

ticular state will change. For the state with i patients colonized, the differential equation for the

change in Pi is dPi/dt = fi−1 Pi−1 + gi+1 Pi+1 − fi Pi − gi Pi. At steady state, there is no change in

the probability of being in any particular state, so the time derivatives of Pi can be set equal to

zero. If we solve dP0/dt = g1 P1−f0 P0 = 0 for P1, we find that P1 = f0 P0/g1. By induction, we find

the equations for i 2 {2, . . ., n} are Pi = fi−1 Pi−1/gi. This equation shows the probability for the

next higher state Pi+1 in terms of the present state Pi. Substituting in recursively and solving for

the probability Pi in terms of P0, for i 2 {1, 2, . . ., n}, we find

Pi ¼
Yi� 1

j¼0

fj
gjþ1

P0 ð3Þ

Because the sum of probabilities over all possible states is 1, we can solve for P0:

P0 ¼
1

1þ
Pn

i¼1

Qi� 1

j¼0

fj
gjþ1

 !
ð4Þ

The equations for Pi and P0 are general and hold regardless of the actual rates fj or gj. A

detailed description of the reduced model is found in S1K Appendix.

The probability of all possible sequences of states consistent with (possibly incomplete)

observations is analogous to the likelihood equation of the full detailed model (Eq 2, but the

matrices have dimensions of n + 1 by n + 1, not 2n by 2n. In the reduced model inference

method (described in S1K Appendix), we fit the probability distribution of states for the theo-

retical values against the distribution of states from actual data to estimate the minimum-error

parameters.

Total prevalence. Total prevalence (TP), also known as the colonization pressure, can

be defined as the fraction of patient-days during which patients are colonized. The theoreti-

cal total prevalence can be calculated from the reduced state model for any given set of

parameters.
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The total prevalence is the sum of the probabilities of each state weighted by the number of

colonized patients in each state: TP = 0P0 + 1P1 + 2P2 + . . . + nPn. In terms of the rates of

increase (fi) or decrease (gi), the total prevalence can be written as

TP ¼
Xn

i¼0

iPi ¼
Xn

i¼0

Yi� 1

j¼0

fj
gjþ1

 !

iP0 ð5Þ

Total prevalence, or the probability that at least 1 patient is colonized, is also equivalent to 1

−P0 (with P0 defined in Eq 4). We can estimate the theoretical contribution of each coloniza-

tion mechanism to total prevalence by varying the input parameters γ, ϕ, and ψ that govern the

rates of increase fi and decrease gi in the number of colonized patients.

Comparison of reduced and full detailed model results

Fig 5 shows the process used to estimate error and check performance of our model. First, we

used the best-fit parameters from the actual dataset (Table 1) to generate synthetic data. For

this, we used the identical scheme of exit/entry events and testing times/locations as the true

data from the rehabilitation unit. Then, we applied the inference method for the full detailed

model to the simulated data sets to find the estimated parameters, their mean recovered values,

and standard deviations for γ, ϕ, and ψ. Finally, for each parameter, we found the mean value

over the 1265 trials and used the standard deviation to compute an error range (Table 1).

Results

We applied the full detailed state model (FDM) inference method to the 13-bed rehabilitation

unit to determine maximum-likelihood parameters. We estimated the maximum-likelihood

parameters for the 13-bed rehabilitation unit to be γ = 0.00203/day per colonized/uncolonized

patient pair, ϕ = 0.0497, and ψ = 0.000946. For a scenario in a 13-bed unit in which 1 patient is

colonized, there are 12 colonized-uncolonized patient pairs, so the probability per day of a

transmission from the colonized patient to any uncolonized patient in the entire unit is about

0.02. A pre-existing colonization probability of about 5% suggests that about 5 out of every 100

patients is colonized. Finally, having a very small best-fit parameter for bed-patient coloniza-

tion suggests that the probability of transmitting bacteria from a colonized patient to the bed

or environment and subsequently to the next patient entering the bed (if uncolonized) essen-

tially does not occur or is not detectable using the FDM method with available data.

In order to evaluate the reliability and reproducibility of these estimates, we used the best-

fit parameters, exit/entry times, and testing schema from the actual hospital data as starting

points for simulations. “Observations” (using actual hospital test times and locations) were

performed on the simulation data, and the inference methods using the full detailed model

or reduced state model were applied to the simulated data to find best-fit parameters. The

inferred parameters were then compared with the input parameters for the simulations to

Table 1. Comparison of input parameters for simulations versus the mean estimated value (MEV) and standard deviations (SD) of parameters recovered using the

inference method from the full detailed state model (FDM) or the reduced state model (RSM).

Input FDM MEV ± SD FDM error RSM MEV ± SD RSM error

γ (per day) 0.002029 0.001869 ± 0.000834 0.0788 0.002310 ± 0.000417 0.1386

ϕ 0.049700 0.048655 ± 0.012559 0.0210 0.066839 ± 0.015914 0.3448

ψ 0.000946 0.022321 ± 0.036288 22.6023 0.353808 ± 0.004715 373.119

SSE 0.000458 0.124806

Here, SD = standard deviation, SSE = sum of squares error. The model error per parameter is simply the fraction error |x − x0|/x, for true value x versus estimated value x0.

https://doi.org/10.1371/journal.pone.0231754.t001
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evaluate how well each inference method worked. A summary table of parameters, error

ranges, and the sum of squares error for the full detailed model and the reduced model are

shown in Table 1. Visualizations of best-fit parameter results for individual simulations are

available in Fig 6 for the FDM and Fig G-Fig I in S1L Appendix for the RSM. Fig 6 shows the

results of parameter estimation using the full detailed state model (FDM) inference method

applied to 1265 simulations that were created using the above maximum-likelihood parame-

ters as input. The mean recovered parameters were γ = 0.0018±0.0008 per day per colonized/

uncolonized patient pair, ϕ = 0.05±0.01, and ψ = 0.02±0.04, where the error range is the stan-

dard deviation of estimated parameters. Applying the reduced state model (RSM) inference

method on 1265 simulations (Fig G-Fig I in S1L Appendix), we found the average estimated

best-fit parameters to be γ = 0.0023±0.0004 per day for each colonized/uncolonized patient

pair, ϕ = 0.07±0.02, and ψ = 0.35±0.005. Note that for the FDM, the “true” (input) parameters

are all contained within the error range. The RSM also has relatively good estimates for the

input γ and ϕ, both of which are contained within the error range. However, the RSM estimate

for ψ is highly—although consistently—inaccurate (with a narrow error range); this suggests

Fig 6. Range of parameter estimates inferred from 1265 simulations of the full detailed model. Range of parameter

estimates inferred from 1265 simulations of the full detailed model created using the input parameters γ = 0.00203 per

colonized/uncolonized patient pair per day, ϕ = 0.0497, and ψ = 0.000946. Each star represents the estimated

maximum-likelihood parameter for an individual trial, a dashed line represents the mean best-fit parameter over the

1265 trials, and the gray region shows the standard deviation from the mean best-fit parameter. The bold line shows

the input parameter value.

https://doi.org/10.1371/journal.pone.0231754.g006
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that the RSM model is not capable of accurately inferring ψ. As described at length in the dis-

cussion regarding the non-equivalence of the full and detailed states for inference, patient-

patient transmission for γ involves only the number of simultaneously colonized patients in

the unit, which is captured in the state data for both the FDM and RSM. However, determina-

tion of whether colonization of a new patient from a prior patient has occurred requires know-

ing which patients in the unit were colonized and when, not just how many—information that

is captured by the FDM but not RSM.

For the full detailed model, the error in the estimate for ψ is high and remains so despite the

large of number of simulations performed, each of which was created with the exact exit/entry

events, observations, and length of time as the actual data from the study. These simulations

are statistically identical and have a finite amount of data. Because the error involved in param-

eter fitting has components of both bias and statistical error, the large number of trials per-

formed will only eliminate the statistical error, not the bias. In the case of ψ, the parameters are

constrained to be non-negative, introducing a bias, especially as the value for ψ is effectively

zero. These results reveal that the mechanism of prior-to-new patient colonization is relatively

unimportant compared to pre-existing colonization and patient-patient transmission. This

suggests that for a realistic hospital surveillance situation with moderate testing compliance

and low frequency of prior-to-new patient colonization, estimating the value of ψ will be diffi-

cult using the FDM method. At larger values of ψ, however, the FDM method may be able to

produce better quantitative estimates.

Effect of a long-stay patient

In the actual rehabilitation unit data, a single patient was observed to have an unusually long

length of stay (259 days) and to have a positive test for colonization approximately mid-way

through the hospital stay. To investigate the possible influence of a long-stay patient on other

patients in the unit, we performed 16 sample simulations using actual entry/exit and observa-

tion times but simulation colonization and transmission events. The disproportionate effect of

this long-stay patient is apparent in 16 sample simulations shown in S1E Appendix.

In 7 of 16 simulations, the long-stay patient becomes colonized with a mean time to coloni-

zation of 128 days, essentially the midpoint of the patient’s stay, and an average time spent

uncolonized of 130 days. The mean total prevalence of simulations in which the long-stay

patient became colonized was 526 colonized patient-days. In 3 of the 7 simulations in which

the long-stay patient becomes colonized, colonization occurs before the mid-point of the

patient’s stay after 38, 20, and 42 days, respectively.

After excluding the days colonized (if any) of the long-stay patient from each simulation’s

total prevalence, there was a mean of 396 colonized patient-days over the 7 simulations with a

colonized long-stay patient and a mean of 275 colonized patient days over the 9 simulations in

which the long-stay patient remained uncolonized, resulting in a difference of 120 colonized

patient days between simulations with colonized versus non-colonized long-stay patients. This

resulted in an increase of 44%. The times and duration of the simulated long-stay patient’s col-

onization (if any) are shown in S1D Appendix.

Total prevalence

Colonization pressure, or the fraction of colonized patients in a hospital unit, is one risk factor

for a patient becoming colonized or infected [25, 74]. We can estimate the mean colonization

pressure, or the fraction of colonized patient-days, with the theoretical total prevalence calcu-

lated from the reduced state model (Fig 5) and input parameter values. Thus, we can deter-

mine the expected fraction of colonized patient-days over the course of the study at particular
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parameter values. The theoretical total prevalence calculated from the best-fit parameters was

0.07 of the total colonized patient-days of the entire active surveillance study (the bold star in

all panels). Thus, for the case where active surveillance was performed in a hospital unit of 13

beds and in which complete occupancy is assumed, the model predicts that 7% or about 380 of

5421 total patient-days would be colonized.

Furthermore, we can estimate the fraction of total colonized patient-days over the course of

the study that are attributable to various mechanisms of colonization. Fig 7 shows how the

total prevalence would vary if one parameter was fixed at the best-fit parameter value and

the other two parameters were varied. (Expanded versions of each plot are available in S1M

Appendix). For example, in Fig 7f, ψ is fixed at ψ = 0.0009, and the plot shows how total preva-

lence varies with increasing ϕ and γ. The bold star shows the total prevalence (0.07) with all

parameters at the best-fit values (γ = 0.002, ϕ = 0.05, and ψ = 0.0009). Because prior-to-new

transmission was found to be effectively zero, in absence of patient–patient transmission, the

total prevalence increases linearly with and is equal to the pre-existing prevalence, shown as

the linear diagonal line for γ = 0 in (Fig 7f). Thus, given a theoretical total prevalence of 7%,

with ϕ = 0.05, 5% of mean colonization-days can be attributed to pre-existing colonization; the

remaining 2% can be attributed to patient–patient transmission, with prior-to-new coloniza-

tion contributing a negligible amount. Note that while ϕ describes the fraction of entering

patients that are colonized, those patients will remain colonized for the entirety of their stay, so

the colonized patient days will compose 5% of total patient days.

Fig 7a shows the effect of prior-to-new patient colonization probability (ψ) on total preva-

lence at various levels of patient–patient colonization (γ) but fixed pre-existing colonization

(ϕ = 0.05). These results suggests that the total prevalence is not very sensitive to the effect of

prior-to-new patient colonization at the best-fit parameter values (bold star). However, as the

patient–patient transmission rate increases, the effect of prior-to-new bed-patient transition

becomes more pronounced, with the greatest slope (increase in total prevalence with increas-

ing ψ) occurring with γ = 0.008 to 0.01.

Fig 7b shows the relationship between the prior-to-new patient colonization probability (ψ)

and the total prevalence with varying pre-existing colonization probabilities (ϕ) but a patient–

patient transmission rate fixed at the best-fit value(γ = 0.002/day per colonized/uncolonized

patient pair). Like Fig 7a, the total prevalence is quite insensitive to changes in ψ at the best-fit

values of ϕ = 0.05 and γ = 0.002/day per colonized/uncolonized patient pair, but it has the

greatest increase with increases in ψ (has the greatest slope) at ϕ = 0.5. However, at ϕ = 0 or

ϕ = 1, in which no patients or all patients are colonized, respectively, the total prevalence is

constant at 0 or 1, regardless of the prior-to-new patient transmission probability.

Fig 7c shows the total prevalence at different values of the patient–patient transmission rate

(γ) and pre-existing colonization (ϕ), with ψ fixed at the best-fit value of ψ = 0.0009. With zero

(ϕ = 0) or all (ϕ = 1) patients entering colonized, the patient–patient transmission rate is irrele-

vant because the total prevalence is, respectively, 0 or 1. At the best-fit parameter values (bold

star), the total prevalence is about 0.07, but doubling the patient–patient transmission rate to

γ = 0.004/day (per colonized/uncolonized patient pair) increases the total prevalence to 0.11,

an increase of 0.04. However, if the pre-existing colonization ϕ were to double from ϕ = 0.05

to ϕ = 0.10, the total prevalence would increase to 0.14. At ϕ = 0.10, doubling γ to γ = 0.004/

day increases the total prevalence to 0.20. At ϕ = 0.25, doubling γ increases the total prevalence

from 0.32 to 0.48, a much greater absolute increase of 0.16. Thus, modest increases in pre-

existing colonization will magnify the effects of small changes in patient-patient transmission.

Fig 7d shows the effect of patient–patient transmission and prior-to-new colonization on

total prevalence with pre-existing colonization fixed at the best-fit value of ϕ = 0.05. At the

best-fit parameters (bold star), changing the patient–patient transmission does not greatly
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Fig 7. Predicted total prevalence of colonization in a 13-bed hospital unit as a function of the model parameters γ, ϕ, and ψ. Each

panel shows the predicted total prevalence as a function of one model parameter for selected values of a second model parameter, with the

third parameter held constant at the best-fit value for the rehabilitation data (inferred using the full detailed model inference method). The

bold star (�) shows the point at which all parameters have the inferred best-fit values (γ = 0.002029/day, ϕ = 0.0497, and ψ = 0.000946). The

bold dashed curve shows the case in which two of the three parameters have their best-fit inferred values while the third parameter is varied.

The panels show total prevalence as a function of (a) ψ and γ, (b) ψ and ϕ, (c) γ and ϕ, (d) γ and ψ, (e) ϕ and ψ, and (f) ϕ and γ. The insets in

panels (a) and (b) show enlargements of the area near the origin. In the inset of panel (a), the values of γ for the contours from bottom to

top are γ = 0, 0.001, 0.002, 0.003. Enlarged versions of all panels are available in S1M Appendix.

https://doi.org/10.1371/journal.pone.0231754.g007
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increase the total prevalence, but as the prior-to-new patient colonization probability

increases, small increases in patient–patient transmission are magnified and subsequently

have a greater effect on total prevalence.

Fig 7e shows the effect of prior-to-new patient colonization on total prevalence with fixed

patient-patient transmission at the best fit value of ϕ = 0.05. The bold dotted line showing the

total prevalence at the best-fit prior-to-new patient colonization (ψ = 0.0009) is essentially the

diagonal line, suggesting that the amount of total prevalence attributable to prior-to-new bed-

patient colonization is effectively zero.

Fig 7f, as discussed above, shows the relationship between pre-existing prevalence (ϕ) and

total prevalence at different patient–patient transmission rates, with prior-to-new colonization

fixed at the best fit value of essentially zero (ψ = 0.0009). The diagonal line at γ = 0/day shows

that total prevalence equals pre-existing prevalence if there is no patient–patient transmission.

The increasing values of γ above the diagonal show the effect of patient–patient transmission

on total prevalence. At the best-fit parameter values (bold star), the increase in total prevalence

contributed by patient–patient transmission is small. However, as the patient–patient trans-

mission rate increases, the fraction of total prevalence contributed by patient–patient trans-

mission becomes greater. Additionally, at very high values of γ, the initial slopes become

nearly vertical, suggesting that colonization spreads rapidly (an outbreak caused by entry of

an initially colonized patient) and the majority of total prevalence is attributable to patient–

patient transmission.

Discussion

In this paper, we developed a stochastic mathematical susceptible-infective (SI) model of bac-

terial transmission within hospital units that uses the full detailed state model (FDM). The

FDM tracks individual patient colonization statuses, and it includes three mechanisms of colo-

nization: patient–patient transmission, prior-to-new patient colonization, and pre-existing

colonization. The FDM employs a stochastic hybrid continuous-time/discrete-time Markov

model so that it can incorporate arbitrary times for patient exit/entry and testing. We used the

FDM to develop an inference method that incorporates active surveillance data and hospital

census data to distinguish parameters for three routes of transmission, including from prior to

new patients. This inference method allows incorporation of incomplete test results and calcu-

lates the total probability of all possible sequences of states consistent with observation. We

also compare the FDM with a reduced state model (RSM) similar to previously published

models for in-hospital transmission [9, 32, 34, 37, 38, 41–43, 46, 47, 75] that track the number
of colonized or infected patients rather than the status of each individual patient.

In the context of previous stochastic models [31] of patient colonization within hospital

units (compared in S1 Table), this work incorporated five major modeling choices: 1) using a

detailed rather than reduced state model (i.e., tracking individual patient statuses versus count-

ing the number of colonized patients); 2) modeling evolution of states with a hybrid of dis-

crete-time and continuous-time approaches; 3) incorporating three mechanisms of patient

colonization, including prior-to-new (bed-patient) colonization; 4) allowing for incomplete

observations and patient turnover at arbitrary times; and 5) calculating likelihood directly

while incorporating partial observations.

The majority of models of in-hospital transmission use the reduced state, counting the

number of individuals in each compartment [32, 34, 37, 38, 41–43, 46–48, 75]; the full detailed

state is used far less frequently in forward model formulation [33] although individual patient

statuses may be tracked during MCMC algorithms [34, 35, 39]. Of note, the general model of

López-Garcı́a & Kypraios [36], if formulated with each patient as a compartment, would be
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equivalent to using a detailed state model with individual transmission rates (which would not

be able to be represented as a reduced model). Although the reduced state may be sufficient

for inferring patient-patient transmission rates—and in fact, the “compression” method

described in S1N Appendix effectively transforms the full detailed state to the equivalent

reduced state between events—the full detailed model is required at exit/entry and test events

to track individual patient colonization statuses, which improves the model’s ability to

uniquely identify parameters for bed-patient and pre-existing colonization. The reduction of

the full detailed model is equivalent to the approach of graph-automorphism driven “lumping”

by Simon and Kiss, who show that the exact solution of a continuous-time Markov Chain indi-

vidual-based epidemic model converges to that of an ordinary differential equation-based

mean field (e.g. reduced) model [76]. However, although the full detailed model and reduced

model can be shown to be equivalent in formulation of the forward model (both statistically

and in simulation), for purposes of inference they are not equivalent. The full detailed model

performs better because it retains information about individual patients that can distinguish

pre-existing or prior-to-new patient colonization from patient-patient colonization.

Most stochastic hospital transmission models use either continuous time [37, 38, 41–43, 48]

or discrete time [32, 33, 40, 47] Markov models. To our knowledge, this model is the first in-

hospital transmission model to incorporate a hybrid continuous-time/discrete-time approach,

and also the only model that explicitly incorporates bed-patient colonization, although previ-

ous models included an environmental transmission component [36]. However, like many

other groups [77, 78], we incorporated transmission from infected or colonized patients to sus-

ceptible patients [29] and included pre-existing colonization [32, 38, 42, 46–48].

Although multiple models incorporate incomplete observations [32, 33, 34, 42, 75], our

approach is most similar to previous efforts that incorporated arbitrarily timed tests [34]. Simi-

lar to previous methods, we assume perfect specificity [35, 39], but unlike other groups, we do

not directly estimate parameter sensitivity [34, 35, 39, 40, 47]. We instead use a “once colo-

nized, always colonized” approach to testing, assuming that even if colonization-positive

patients test negative, they nevertheless remain colonized because decolonization occurs on a

timescale of months to years [67] and patients can retest positive after one [19] or even multi-

ple [67] negative swabs.

We build on previous work directly calculating the likelihood of continuous-time Markov

models [38, 41] and combine it with other approaches such as a discrete-time method that

uses observations to reduce the number of possible states [32] and incorporates exact times of

testing and turnover [36, 35, 39, 46–48]. A hybrid continuous-time/discrete-time formulation

allows the flexibility to incorporate events that occur at varying time intervals while also

accounting for events that are modeled as occurring instantaneously, such as patient exit/entry

and exposure to a potentially contaminated bed. This eliminates a parameter and avoids

assumptions that turnover times have a constant rate [30, 38] or exponential distribution [36].

The technique of compressing the continuous-time portions of the model incorporates tech-

niques similar to previous work reducing the dimensionality of an exact stochastic SIS epi-

demic network with 2n possible states [71] and “lumping” over a complete graph using

automorphism [76]. The overall approach to calculating likelihood is generalizable to any Mar-

kov model that can ultimately be represented as a series of transition probability matrices.

Although direct calculation of the likelihood of all possible permutations of events consistent

with observed data is difficult or even “intractable” [39, 47], the problem is simplified when

represented in matrix form (similar to previous work [32]): test results reduce the number of

possible states and thus the dimensions of the sub-matrices representing the probability of

transitions from event to event. Unlike approaches incorporating MCMC augmentation of

data with “guesses” about the times of colonization events [34, 35, 39], the likelihood of all
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observed test results and unobserved colonizations is already incorporated into the likelihood

and does not require additional computation during parameter estimation. However, use of

MCMC methods could allow incorporation of prior information about parameters.

Mechanisms of colonization

To our knowledge, this model is the first in-hospital transmission model to explicitly include

prior-to-new transmission [79], although many previous stochastic models of in-hospital

transmission have included pre-existing colonization and patient–patient transmission [32,

34, 38, 41, 48]. Although antibiotic exposure was found to be a risk factor for CRE colonization

and infection in long-term acute care facilities [2, 80] and hospitals [18, 81–83], patients were

generally not admitted into the rehabilitation unit while on intravenous or parenteral antibiot-

ics, so we choose to assume that all patients have equal susceptibility to bacterial transmission.

We also assumed that patient-patient transmission rates are linearly proportional to the num-

ber of colonized-uncolonized patient pairs, consistent with findings that the odds ratio of

transmission in long-term acute care hospitals increased approximately linearly with increased

colonization pressure [74] and that a linear patient-patient transmission model fit better than

a non-linear model for medical hospital units [35]. Our model did not include background

colonization, as two previous modeling efforts found no significant difference in model output

or goodness-of-fit between mathematical models that did or did not include background colo-

nization [35, 39]; one even found a slight preference for a no-background model in hospital

medical units [39]. The true background transmission rate is unclear as most datasets included

only 1-2 colonization mechanisms without prior-to-new patient colonization, but the fraction

of acquired colonization attributable to mechanisms other than patient-patient transmission

may range from none [39] to approximately half [84] or three-quarters [39, 68]. In our model,

inclusion of a background colonization rate would be equivalent to adding a random noise

term for sources including spontaneous emergence of resistance [85], unmasking of existing

colonization by antibiotics [74], and transmission from outside sources such as visitors or

equipment [47]. De novo creation of resistant strains seemed unlikely as the dataset used

showed primarily clonal transmission of the ST258 strain of K. pneumoniae [25]. Unmasking

of colonization was also less likely in a rehabilitation unit than in an intensive care unit, as the

patients were required as a condition of admission to be able to participate in their care, and

thus were rarely on parenteral or intravenous antibiotics. Plasmid movement was also not

included as it occurs infrequently [86]) and therefore likely does not significantly affect results

given the short average patient length of stay. However, if the model was applied to a dataset

tracking mobile genetic elements for resistance [1] rather than a specific strain of CRE, trans-

mission could be interpreted as the spread of those genetic elements [87, 88] from patient to

patient.

Non-equivalence of the full and detailed states for inference

The classic SIR compartment model represents the state of a population as the numbers of sus-

ceptible, infective, and resistant patients. Most models of bacterial spread within hospital units

[32, 38, 41] count only susceptible and infective patients and use longitudinal prevalence as the

state of the unit, with the exception of one model of S. pneumoniae carriage within families,

which tracked the infection statuses of individual members within households [33]. As shown

in Fig 5, we compared the FDM against a simpler continuous-time, reduced-state model

(RSM) in which only the prevalence, i.e., the number of colonized or uncolonized patients,

was considered (similar to a susceptible-infected-susceptible model). In the RSM, the same

three routes of transmission were included, but turnover was assumed to occur at a constant
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rate β which was estimated from patient census data. Surprisingly, although the two models

are equivalent for the forward problem of creating a simulation using given input parameters,

the FDM and RSM are not equivalent for the inverse problem of parameter inference. Using

the same parameters and initial state of the hospital unit, both the FDM and RSM give equiva-

lent statistics and predictions about future states, such as the distribution of colonized patients

at steady state. In the context of the inverse problem, however, the FDM has a greater ability to

distinguish and uniquely identify parameters for patient-patient transmission versus pre-exist-

ing colonization from data.

For example, consider a scenario in which hospital unit testing occurs after each of three

patient turnover events. At each test time, there is a single colonized patient within the unit

(the reduced state), but inspection of the full detailed states could show different scenarios,

such as a series of three patients in the same bed being colonized (001, 001, 001) or three

patients in different beds being colonized (001, 100, 010). The former scenario suggests prior-

to-new colonization, but the latter suggests pre-existing colonization. However, with the

reduced model, both scenarios yield an identical series of states (1, 1, 1), discarding location

information that could help distinguish the colonization mechanisms. This may account for

some of the difficulties of past modeling efforts to uniquely identify parameters for patient–

patient transmission versus spontaneous colonization [38] or pre-existing colonization, as

aggregating data into counts diminishes the available information [41].

Cooper et al. used a hidden Markov model that required at least 40 months of contiguous

data with at least 1 case per month. For a series with fewer than 20-30 observations, maximum

likelihood estimates may fail to converge, and collinearity between parameter estimates can

lead to identifiability problems. This may result from a loss of information that occurs with

data aggregation [41]. We observed a similar effect in comparing the ability of FDM and RSM

models to recover input parameters from “observations” sampled from simulated data created

with those parameters and the identical test scheme used in hospital surveillance. The differ-

ence between input and recovered parameters for each inference method reflects the effects of

incomplete information—including encoding state as the point prevalence (the number of col-

onized patients at a given test time)—and randomness.

Usage of the full detailed state reduces the problem of parameter collinearity or non-iden-

tifiability. The FDM model could easily distinguish parameters for patient–patient transmis-

sion and pre-existing colonization in simulated data, and its estimate of the prior-to-new-

patient colonization probability was improved compared to that of the RSM, which consis-

tently overestimated ψ, as shown in Table 1. The FDM model had a smaller estimated error

range than the RSM model, although the estimate of ψ still had large uncertainty, likely because

of the small or near-zero parameter value (see additional comments in “Epidemiological Rele-

vance” below). In general, the overall parameter estimation error of the FDM (0.0005) was

much smaller than that of the RSM (0.12). These results show that the inference method can in

fact recover estimated parameter values reasonably close to the parameter values used to create

the simulated data. The sum of squares error (SSE) for the FDM is smaller than that of the

RSM, suggesting that parameter estimation for the FDM is better than for the RSM. Thus,

tracking individual patient information of the detailed state can improve parameter identifica-

tion for different mechanisms of transmission.

Computational challenges of partial observation

The approach of looking at all particular states consistent with observations has been applied to

reduced state models [32, 37]. Although conceptually similar, calculation of the likelihood func-

tion is far more difficult in the FDM case because the number of states consistent with an
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observation increases exponentiallywith the number of unobserved patients. If all beds are tested

at a given observation time, there is only one possible state, but in reality, most surveillance stud-

ies do not have 100% compliance and test only some beds in a unit at a given observation time.

Testing reduces the number of possible hospital unit states conditioned on the test results: if m of

n patients in the unit are tested, then there are 2n−m (FDM) or 2(n −m) + 1 (RSM) possible states

consistent with the test results at that observation time. The number of possible states was

reduced even further by using the assumption of “once colonized, always colonized” (similar to

previous approaches [32, 37]). A number of groups have used MCMC methods to sample over

the space of states with times of colonization consistent with test results [34, 35, 39, 47].

Despite the exponentially larger number of possible states in the detailed model, the infer-

ence method presented in this paper still permits exact likelihood calculation that takes into

account all possible sequences of hospital unit states consistent with partial observations,

although this may be computationally expensive for larger units. The likelihood calculation is

generalizable to any Markov model that can be reduced to a series of probability transition

matrices. (In this paper, we transform the rate matrices from the continuous-time portions of

the hybrid model into probability matrices for state changes over unequal time intervals). Like-

lihood calculations were made computationally tractable through the use of matrix “compres-

sion” (S1N Appendix) and a method for exact matrix exponentiation based on the Jordan

form (S1O Appendix). These techniques drastically reduce the time and computer memory

needed for calculating the multiple large matrix exponentials required for the continuous-time

portions of the model between exit/entry events. After implementing these changes, calcula-

tion of the likelihood of a single set of parameters over the study period data (weekly sampling

of 13 beds over 1 year) decreased from hours to approximately 7 minutes using lightly opti-

mized MATLAB code on the Center for Health Informatics and Bioinformatics cluster. Use of

a compiled rather than interpreted language or a system with additional random access mem-

ory (RAM) would likely decrease computation time significantly.

Epidemiological relevance

Colonization pressure is the proportion of patients already colonized or infected with pathogen

[16]. In this study, we define it as the fraction of colonized patient-days of total patient-days in a

hospital unit for a given period of time such as a month or year (as opposed to point prevalence,

estimated as the fraction of positive tests at a given testing time [37]). This is equivalent to the

theoretical total prevalence from Eq 5, the probability that at least one patient is colonized.

(Note that the total prevalence is not equivalent to the probability of pre-existing colonization,

which is the fraction of incoming patients that are colonized). Estimating the colonization pres-

sure can be problematic if not all patients were tested and/or if colonized patients are tested at a

different frequency than untested patients; in this work, testing is assumed to be arbitrary rather

than random, so using clinical test results for patients suspected of having colonization or infec-

tion will not bias the results. Using best-fit parameters from the FDM, we were able to estimate

the total prevalence at different parameter values and also estimate the relative contributions of

the different mechanisms of colonization to the total prevalence. The theoretical total prevalence

was estimated to be approximately 7%, similar to an estimate of 5.4% for New York City hospi-

tals [25]. We were able to estimate the total prevalence attributable to patient–patient transmis-

sion (2%) over the baseline pre-existing colonization (5%). The best-fit patient-patient

transmission rate of 0.002 per colonized-uncolonized patient pair per day, or 2 per 1000 colo-

nized-uncolonized patient pairs per day, is consistent with the work of Hilty et al., which found

a rate of between 0.0006 and 0.002 per colonized uncolonized patient-pair per day for extended-

spectrum beta-lactamase K. pneumoniae [68], assuming that the colonized study patients had
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been exposed to only one index case at a time. The estimate of pre-existing colonization (e.g.,

colonization of patients prior to entry into the hospital unit) is consistent with an estimate of

community CRE prevalence of 5.6-10.8% in the United States [10] and observations that many

patients were already colonized upon entry [1, 89]. Patients with pre-existing colonization may

have become colonized during previous hospitalizations [67] (as was also previously found for

VRE [90]), or within the community [68]. This suggests that infection control procedures within

the rehabilitation unit should focus on identifying and isolating colonized patients on admis-

sion, and that improvements in handwashing [91] and other measures targeted at decreasing

patient–patient transmission can only lower total prevalence to the baseline of pre-existing

colonization. However, if pre-existing colonization prevalence increases, measures to reduce

patient–patient transmission become increasingly important.

Our model found that the contribution of prior-to-new-patient colonization to total preva-

lence was effectively zero, suggesting that environmental contamination of CRE in the rehabil-

itation unit may be a lower-yield target for intervention. This is consistent with results from a

study which showed that environmental contamination was a minor contributor to overall

transmission, despite an increased risk of acquisition for patients admitted to rooms previously

occupied by patients colonized by MRSA or VRE [79]. Our result differs from a of ICU coloni-

zation by K. pneumoniae, which showed that occupying a bed previously occupied by a colo-

nized patient was a major risk factor for colonization (odds ratio 4.8) [26]. However, this may

reflect a difference in illness severity of ICU patients compared to rehabilitation patients or

local factors such as cleaning methods [92] and room layout. In the rehabilitation unit of this

study, patients were frequently transported in their beds from other locations rather than

being placed into the same bed as the previous patient. In this case, the prior-to-new-patient

colonization parameter would only describe colonization from surfaces surrounding the bed

(such as sink drains [93], ventilators [94], tables or curtains) that remained in the same loca-

tion and may have had fewer opportunities for patient contact. This is consistent with a study

of CRE environmental contamination that found that 75% of the contamination occurred in

beds and 25% in the surrounding environment, although there was a large variation in the

degree of environmental contamination between different patients and even the same patient

at different times [95]. Thus, the poor estimation of ψ may have been a result of the rarity of

event occurrence or a mismatch between model assumptions and hospital conditions; likely

this estimate would improve in situations with fewer confounding factors or in situations in

which prior-to-new-patient colonization occurred more frequently. The model does not

account for prior-to-new patient transmission occurring at distant time intervals or via meth-

ods other than patient-bed-patient transmission, as one institution found delayed transmission

between patients inhabiting the same room even months apart [96].

The simulation results suggest that patients with longer-than-average hospital stays may

become reservoirs of transmission. These long-stay patients may contribute disproportionately

to outbreaks by acting as a source for multiple patient–patient transmission events. Thus, target-

ing long-stay patients for additional screening and possible isolation or decolonization (if possi-

ble) may be a high-yield infection-control measure, as colonized patients with shorter stays have

fewer opportunities for transmission. Furthermore, additional infection-control measures may

be considered to prevent colonization of long-stay patients to protect other hospital patients.

Other limitations

Our model identifies as “transmission” only cases in which patients are simultaneously present

in the hospital unit for some length of time. For pathogens in which colonization or its detec-

tion might be delayed significantly, the model may not be appropriate.
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Although use of the hybrid continuous-time/discrete-time model allows use of arbitrary

exit/entry times and testing times, it is computationally expensive to calculate the likelihood

function. The real “trade-off” in the choice to represent state as a scalar (the number of colo-

nized/infected patients) versus vector (a list of the statuses of the patients in a unit) is that the

size of the matrix increases linearly versus exponentially, respectively. However, the assump-

tion that patients are equally likely to colonize or be colonized by any other patients within the

unit may be unwarranted in hospital units with large numbers of patients. Thus, there will be

an upper hospital unit size limit in applicability of this method because of the assumptions,

regardless of the computational cost.

Additionally, some of the mathematical and computational techniques presented in this

paper and its appendices exploit the specific structure and assumptions of our colonization

and transmission model—in particular, the methods of matrix “compression”, factorization of

γ, and use of Jordan form. Future modifications to the mathematical model that would elimi-

nate of some of the symmetries in patient–patient transmission (such as incorporation of

additional parameters for spatial transmission or random colonization) would prevent use of

these matrix compression methods on the continuous-time portions of the model. However,

removal of these symmetries, which make the matrix defective, will allow use of standard tech-

niques for matrix exponentiation such as diagonalization.

We did not calculate test sensitivity for reasons described previously, but incorporation of

sensitivity into the model either as part of the likelihood framework or via a Bayesian method

would be a valuable future extension of the model.

Conclusion

Although new tools such as KlebSeq [97] promise to make sequencing more widely available,

hospitals likely will continue to have older methods of CRE detection in place. Our mathemati-

cal model and inference techniques provide a method for hospitals to estimate the fraction of

colonization attributable to nosocomial transmission without need for sequencing, even with

incomplete testing of incoming patients. (Should sequencing become available, data from indi-

vidual strains or for particular resistance plasmids can be used as input, although there is some

minimum amount of data required for parameter estimation). Because hospitals in the United

States are penalized by the government for patient infections [98, 99], this method to distin-

guish pre-existing from hospital-acquired colonization may prove valuable, especially as it

does not require additional resources and personnel for genetic sequencing [88] but can use

existing testing methods. It is applicable to any nosocomial pathogen for which appropriate

surveillance data exists and for which the mechanisms and assumptions of the models

described in this paper are applicable. In particular, the model may be well-suited for describ-

ing MRSA, which colonizes the epithelium [100] and can be transmitted by direct skin and

fomite contact [101, 102]. Other potential pathogens for which the model may be well-suited

include C. difficile, Pseudomonas [102], and E. coli, which persist on contaminated surfaces in

concentrations high enough for transmission [102, 103]. It may also be applicable to SARS-

CoV-2. The model assumptions are less well-suited for pathogens that persist for shorter times

on surfaces, for which person-person transmission or long-term carriage does not occur, and/

or in which an extended non-infectious incubation time occurs. The inference method will

work better for pathogens whose colonization prevalence falls in the intermediate range

between non-existent and complete colonization.

In summary, the full detailed mathematical model and inference method enables estimation

of parameters for three possible routes of colonization from active surveillance data. Using

these parameters, we can estimate the importance of patient–patient transmission and
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effectiveness of interventions on colonization pressure, and we can also simulate realistic sce-

narios with actual patient exit/entry times. Crucially, the inference method allows direct maxi-

mum likelihood estimation of parameters from all possible states consistent with incomplete

and nonrandom observations without need for MCMC techniques. We also demonstrate the

utility of tracking the colonization statuses of individual patients for unique parameter identifi-

cation. Incorporation of additional routes of colonization and transmission, including exoge-

nous colonization from sources other than the patients (such as visitors), is an area for future

research.
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