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Abstract

Background: Histone tails have a plethora of different post-translational modifications, which are located differently in
‘‘open’’ and ‘‘closed’’ parts of genomes. H3K4me3/H3K79me2 and H4K20me3 are among the histone marks associated with
the early establishment of active and inactive chromatin, respectively. One of the most widespread promoter elements is
the CCAAT box, bound by the NF-Y trimer. Two of NF-Y subunits have an H2A-H2B-like structure.

Principal findings: We established the causal relationship between NF-Y binding and positioning of methyl marks, by ChIP
analysis of mouse and human cells infected with a dominant negative NF-YA: a parallel decrease in NF-Y binding, H3K4me3,
H3K79me2 and transcription was observed in promoters that are dependent upon NF-Y. On the contrary, changes in the
levels of H3K9-14ac were more subtle. Components of the H3K4 methylating MLL complex are not recruited in the absence
of NF-Y. As for repressed promoters, NF-Y removal leads to a decrease in the H4K20me3 mark and deposition of H3K4me3.

Conclusions: Two relevant findings are reported: (i) NF-Y gains access to its genomic locations independently from the
presence of methyl histone marks, either positive or negative; (ii) NF-Y binding has profound positive or negative
consequences on the deposition of histone methyl marks. Therefore NF-Y is a fundamental switch at the heart of decision
between gene activation and repression in CCAAT regulated genes.
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Introduction

Specific histone post-translational modifications are known

marks of peculiar chromatin environments. Some of them are

associated with accessible, active chromatin, others with hetero-

chromatin, either constitutive or facultative [1,2]. Specifically,

H3K4me3 and H3K79me2 are found in regions that are

transcribed, or poised to rapid induction [3]. Their presence in

vivo has been detailed at the single gene level and genome-wide

analysis confirmed their widespread distribution in the proximity

of promoters [4–8]. These H3 methylations are brought in by

MLL and Dot1 complexes [9–12]. In addition to positive

modifications, histone tails carry tri-methylations associated to

inactivate chromatin, with H3K9, H3K27 and H4K20 being the

most studied so far [13]. Specifically, H4K20me3 is the result of

the activity of Suv4-20, is associated to heterochromatin [14] and

is important for cell-cycle progression [15].

Selective deposition of methyl marks is exerted through different

mechanisms. For positive marks, this includes phosphorylation of

PolII [16,17] and promoter recruitment of hBRE1 and MLL

complexes by sequence-specific transcription factors -TF- such as

p53 [18]. However, removal of another TF, MYC, apparently

always associated to H3K4me3 and H3K79me2, leaves these marks

intact, suggesting that they are important for MYC to find its targets

in vivo [19]. This indicates that TFs could behave differently in terms

of recruitment of methylating complexes. These findings are

paralleled for negative marks by the notion that sequence-specific

TFs recruit Polycomb complexes to specific locations [20].

The CCAAT box is one of the most frequent promoter

elements, being found in 60–70% of them by bioinformatic

analysis [21–23] and ChIP on chip experiments [24]. The position

of CCAAT boxes within promoters is relatively fixed, at 260/

2100 from the Transcriptional Start Site, TSS [25; D. Dolfini

R.M., in preparation]. Whenever tested, the element significantly

contributes to promoter activity. The CCAAT activator is NF-Y,

an ubiquitous trimer composed of NF-YA, NF-YB and NF-YC, all

necessary for DNA binding [26]. NF-YB and NF-YC have

conserved histone fold motifs resembling H2B-H2A and their

heterodimerization is essential for NF-YA association [27]. NF-Y

is specifically required for genes regulated during the cell-cycle,

and inducible by external stimuli: essentially all G2/M genes, for

example, are dependent upon NF-Y [21,28]. NF-Y is generally

important to recruit neighbouring TFs and, in some systems, PolII,

before induction of transcription [29]. Consistent with the

widespread activity, inactivation of the CBF-B/NF-YA gene in

mice is embryonic lethal at a very early stage of development [30].

The relationship between NF-Y binding and histone marks has

been investigated in ER-stress inducible genes: NF-Y was present
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with H3K4me3 and H3K79me2 in basal conditions on all

promoters tested [31,32]. Interestingly, correlative ChIP on chip

experiments on tiling arrays coupled to expression analysis identified

a distinct cohort of NF-Y sites that are devoid of H3K4me3,

suggesting that this modification is not required for NF-Y access to

CCAAT boxes. Some of these sites had H3K27me3, and all were

positive for H4K20me3. Furthermore, removal of NF-Y leads to an

increase in transcription. These findings prompted us to investigate

the relationships between NF-Y binding and methylation marks on

CCAAT promoters in cause-effect experiments.

Results

NF-Y is required for transcription of active CCAAT
promoters

To correlate binding of NF-Y to gene expression, and the

presence of active histone marks, we infected human HCT116

cells with an NF-YA dominant negative adenovirus (Ad-YA-DN)

containing a mutation in the DBD subdomain (YAm29): the

mutant protein associates with the histone fold dimer and renders

the trimer incapable of CCAAT association [33 and References

therein]. As controls, we infected cells with wt Ad-NF-YA and with

Ad-GFP. The data were first normalized for GAPDH expression

and Fig. 1 shows quantitative Real Time RT-PCR expression

analysis of 19 NF-Y targets, in which binding was associated with

H3K4Me3 in ChIP on chip experiments [24]; essentially, three

patterns were observed: (i) in the majority, YA-DN treatment leads

to decrease in expression of the genes, with little effect observed in

the control GFP or Ad-NF-YA infections. (ii) For RTP801,

DSCR3 and MORC3, Ad-NF-YA, but not YA-DN, infections

lead to an increase in expression, compared to control GFP. (iii)

For NF-2, the effect of the NF-Y viruses was inexistent, indicating

that other TFs are more directly involved in transcription; this

have been observed in other promoters and it is often a cell-type

specific effect (R.M., unpublished).

NF-Y is required for the establishment of active histone
methyl marks on ‘‘open’’ promoters

In the same experimental setting, we analyzed H3K4me3,

H3K79me2 and H3K9-14ac by ChIP. Nine promoter locations of

the genes analyzed above were controlled by Q-PCR. Initial

evaluation of the data between chromatin of cells infected with Ad-

GFP and wt Ad-NF-YA yielded similar results (See below), so we

pursued analysis by comparing GFP and YA-DN. NF-Y binding

was controlled with anti-YB antibodies, reasoning that for the YA-

DN to be effective, efficient removal of one of the histone-like

subunits should be monitored. With respect to the anti-Flag

control antibody, binding was indeed severely affected -2 to 10-
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Figure 1. A Dominant Negative NF-YA affects CCAAT promoters activity. Quantitative RT-PCR analysis of growing HCT116 cells infected
with control GFP, wtNF-YA and YAm29 (YA-DN) dominant negative Adenoviruses; the expression of 19 genes was evaluated after normalization for
GAPDH levels. The genes were selected according to the expression patterns indicated. Five genes –ccna2, ccnB1, cdc2, grp78 and herpud1- are bona
fide NF-Y targets, representing the positive control of the experiments. All other transcription units are derived from the ChIP on chip analysis on
Chromosome 20, 21, 22 [24].
doi:10.1371/journal.pone.0002066.g001
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fold- on all promoters tested, although some residual binding was

still observed (Fig. 2). ChIPs with histone marks were performed in

parallel and evaluated after normalization for the total recoveries

of histone H3, as measured with an antibody directed against non

modified H3. The plotted data indicate a decrease of both

H3K4me3 and H3K79me2 that paralleled almost perfectly that of

NF-YB. The only exception was Chop, an inducible ER-stress

gene, which is expressed at very low levels: indeed, it has a low

level of H3K79me2, and H3K4me3 varies little. Interestingly,

H3K9-14Ac behaved differently in YA-DN infected cells: in most

promoters, there was a 2-fold increase, and only on APOBEC3B

we observed a decrease. The raw data, non normalized by H3

recovery, are shown in Figure S1.

The decrease in H3K4me3 and H3K79me2 on CCAAT

promoters could in theory be due to a generalized down-

regulation of these marks in Ad-YA-DN-infected cells; similarly,

the disappearance of NF-YB from promoters could be the result of

inhibition of NF-YB mRNA synthesis by promoter interference of

the YA-DN. We therefore assessed global levels of NF-Y subunits

and histone modifications, by checking extracts of infected

HCT116 in Western blots. Figure S2 shows the expected

overexpression of NF-YA and YA-DN proteins and a small

increase of NF-YC and NF-YB in YA-DN-treated cells. The levels

of histones and H3 modifications were essentially unchanged, bar

a slight decrease in H3K79me2 with YA-DN.

We wished to extend our observations to another cellular

context, the mouse non transformed fibroblasts NIH-3T3. Fig. 3A

shows semi-quantitative RT-PCR analysis of four NF-Y target

genes, Ccna2, Pcna, Hdac1 and Topo II a: as expected, YA-DN

treatment leads to decrease in expression of the genes, with little

effect observed in the control GFP or Ad-NF-YA infections. The

ER-stress inducible Chop and Grp78 were essentially not expressed

in the conditions used here. The expression levels of control, NF-

Y-independent genes such as the Nf-yb, Nf-yc and nucleolin were not

changed. We also checked expression of genes that impact on the

H2B-Ub-H3K79-H3K4 pathway, Rnf20, Ube2e1, Dot1l and Mll1:
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Figure 2. Removal of NF-Y leads to loss of H3 active methylation marks. HCT116 cell were infected as in Fig. 1, chromatin prepared and ChIP
analysis performed with the indicated antibodies. Nine promoters dependent form NF-Y were evaluated in quantitative Real Time PCR analysis.
Values are reported as fold enhancement over a control antibody –Flag- which was used in ChIPs. In parallel, we used an anti-H3 antibody to measure
total H3 recovery. The values are normalized for the amount of H3 immunorecipitated in each point. Non normalized data are in Figure S1.
doi:10.1371/journal.pone.0002066.g002
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none were altered by the YA-DN (Fig. 3). We then proceeded with

ChIP analysis and found that YA-DN leads to a 3–6-fold reduction

in NF-Y binding in vivo. A corresponding decrease in H3K4me3

and H3K79me2 was evident in all CCAAT promoters with YA-

DN, but not with GFP nor NF-YA. On the other hand, H3K9-

14ac was much less affected and only on H3 levels were not

significantly changed. In this context, we also evaluated the levels

of un modified histone H2B: interestingly, there is an increased on

Hdac1, Topo II a and Pcna promoters, which parallel the decrease in

NF-Y binding. On the other hand, the CCAAT a-globin promoter,

which is inactive in NIH3T3, showed no active modifications and

high H3-H2B levels; furthermore, the active CCAAT-less nucleolin

and fos genes were negative for NF-Y, and the expected high levels

of active marks were unaffected by the YA-DN.

We extended these observations to regions away from

promoters. NF-Y was bound to the core promoter of all CCAAT

genes analyzed and absent in the YA-DN condition (Figure S3). A

decrease of H3K4me3 and H3K79me2 was visible in the same

location after YA-DN infection, together with an increase of H2B,

particularly sharp on Chop. Total H3 recovery was similar in all

conditions. The levels of histone modifications were lower on

upstream regions -1 Kb- and largely unaffected by YA-DN,

whereas transcribed regions -+1 Kb- were modified, particularly

H3K79me2 on CyclinA2 and Pcna. This is consistent with evidence
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Figure 3. Effect of NF-Y removal in NIH3T3 cells. A. RT-PCR analysis of growing NIH-3T3 cells infected with control GFP, wtNF-YA and YAm29
(YA-DN) dominant negative Adenoviruses; NF-Y-dependent Cyclin A2, Pcna, Hdac1 and Topoisomerase IIa, ER inducible genes Grp78 and Chop, NF-Y
independent nf-yb, nf-yc and nucleolin and histone modifying complex genes Mll1, Dot1l, Rnf20 and Ube2e1 are analyzed. B. ChIP analysis of NIH3T3
infected with GFP (Black bars), wtNF-YA (Grey bars) andYAm29 (White bars) viruses, with the indicated antibodies on the right. The promoter regions
of genes listed on top of the figure were amplified. Values are measured as fold of enrichment over a Flag control antibody in semi-quantititaive PCR
analysis [32].
doi:10.1371/journal.pone.0002066.g003
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that this mark closely correlates with a transcribing RNA

Polymerase II. We also probed extracts of infected NIH-3T3 by

Western blots with the antibodies used for ChIPs, and the results

were similar to those obtained with HCT116: only H3K79me2

was slightly reduced (Figure S2, Right Panels). Taken together,

these data indicate that the binding of NF-Y to promoters of

active, or poised genes is a crucial signal for the positioning methyl

histone marks typical of active chromatin.

NF-Y elimination prevents recruitment of the MLL
complex

Methylations of H3K4 and H3K79 are exerted by the MLL

and Dot complexes, respectively [34,35]. The data shown above

would be consistent with either a lack of recruitment, or

recruitment of inactive complexes that would be incapable of

modifying H3 around promoter regions. We checked by ChIP

whether elimination of NF-Y binding affects recruitment of MLL

on CCAAT promoters. Figure 4 shows that while MLL proteins -

MLL1 and Menin- are enriched over the Flag control on Ccna2,

Hdac1, Pcna, Topo II a and, partially, Chop and Grp78 in Ad-NF-YA

infected cells (Left Panels), YA-DN largely prevents the association

of both MLL proteins (Right Panels). As a positive control, we used

p27, a bona fide target of MLL [36], which is also a known

CCAAT promoter [37]: enrichments were similar in control

conditions (YA), but were significantly reduced in the YA-DN

infected cells. The silent a-globin, instead, was negative in both

conditions. We conclude that removal of NF-Y from promoters

prevents recruitment of key components of the MLL complex.

NF-Y is required for H4K20me3 on many repressed
promoters

In addition to active marks, there are negative methyl

modifications, such as H4K20me3. We recently reported the

widespread presence on inactive CCAAT promoters bound by

NF-Y in ChIP on chip experiments [24]. We therefore wondered

whether NF-Y removal would alter this mark from these

negatively regulated locations. We performed ChIPs in HCT116

cells and the data normalized for the amounts of H3 and H4

recovered. Five of seven targets showed a decrease in NF-Y

binding and 3 in H4K20me3 (Fig. 5A); in parallel, H3K4me3,

which showed only marginal enrichments in the GFP control, was

substantially increased on five targets after Ad-YA-DN infections.

Two promoters showed lesser change: LOC441956 and

LOC198437. H3K79me2 was generally positively affected.

H3K9-14Ac levels were high and an increase was observed on

three genes -IL2RB, SUHW1 and SEZ6- which also show an

increase in H3K4me3. In summary, the promoters in which the

decrease in NF-YB association was more pronounced were also

those in which the switch between positive and negative methyl

marks are more prominent. To control for the specificity of these

phenomena, we amplified the targets positively regulated by NF-Y

described in Fig. 2: as shown in Fig. 5B, H4K20me3 was

dramatically increased on essentially all targets, from background

to 50- to 100-fold enrichments, after removal of NF-Y. This is in

agreement with the decrease in positive methyl marks (Fig. 2) and

repression of transcription (Fig. 1); note that Suhw1, which shows

no change in the histone methyl patterns, is also invariant in the -

low- transcription rates after NF-Y removal [24]. Therefore, we

conclude that NF-Y controls a switch in methyl marks deposition

and a dramatic change in promoter functions.

Discussion

NF-Y is a sequence-specific histone-like transcription factor,

whose binding location is usually near the transcriptional start

sites. In this report, we find that DNA interactions are not affected

by the presence of positive H3 methyl modifications. A premiere

among transcription factors, NF-Y removal alters substantially the

histone methylation patterns leading to important functional

consequences.

NF-Y in the build-up of positive methyl marks
It is clear that specific histone modifications are associated with

‘‘active’’ or ‘‘inactive’’ chromatin. Among active marks, genetic

and biochemical experiments suggest a step-wise deposition of

modifications along the promoter and transcribed regions of a

gene. In general, a relevant question is what determines the

location of these marks on genomes. It has long been known that

the binding of transcription factors and cofactors to promoters are

hallmarks of expression, by signalling to the Pol II transcription

machinery the positional coordinates. It would seem logical,

therefore, to postulate that positive histone marks are positioned

according to a code determined by the sequence-specific TFs.

Reassuringly, several studies have confirmed that TFs binding

indeed correlates with the presence of ‘‘active’’ marks and with

expression. In a detailed correlative analysis between histone

marks and MYC binding in vivo, it was established that this TF is

always associated with a specific context of H3K4me3 and

H3K79me2. However, MYC removal -and comparison between

myc+/+ and myc2/2 cells- leaves this pattern intact, while ablating

H4 acetylations [19]. The conclusion was that MYC actually

requires certain modifications to bind to the target E box and that

binding is a signal for further modifications. Similarly, we and

others found high levels of NF-Y binding and H3K4 and H3K79

methylations at poised promoters before induction [31,32],

begging for the question of which comes in first.

Surprisingly, in genome-wide analysis of NF-Y and H3K4me3

sites with tiling arrays, we find that NF-Y loci can be divided in two

distinct groups: (i) an expected large one overlapping with
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Figure 5. Removal of NF-Y leads to loss of H4K20me3 from inactive promoters and deposition of active methylation marks. A.
HCT116 cells were infected with Ad-GFP and Ad-YA-DN, and chromatin analyzed by ChIP with the indicated antibodies. Seven promoters bound by
NF-Y and H4K20me3 in ChIP on chip analysis [24] were evaluated in quantitative Real Time PCR analysis. Values are reported as fold enhancement
over the control Flag antibody. In parallel, we used an anti-H3 and H4 antibodies to measure total histones recovery. The values are normalized for
the amount of H3 and H4 immunorecipitated in each point. B. The H4K20me3 ChIPs were assayed for amplicons for promoters activated by NF-Y,
after infections with Ad-GFP and Ad-YA-DN.
doi:10.1371/journal.pone.0002066.g005
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H3K4me3 and correlating with expression; (ii) a second group,

devoid of H3K4me3, on silent genes [24]. This suggested that the

presence of this mark is not a pre-requisite for NF-Y binding.

Rather, we find here that NF-Y binding is required for recruitment

of key components of the MLL methylating complex –MLL1 and

Menin- and for deposition of H3K4me3 and H3K79me2. It is

apparent, therefore, that at least two classes of TFs exist: one

which acts early in promoter identification and predisposes the

recruitment of specific methylating complexes; a second class, a la

MYC, which takes advantage of the ‘‘stage’’ set up by

modifications set up by NF-Y (and the likes). This interpretation

is entirely consistent with biochemical and functional experiments

gathered in several inducible systems in which NF-Y, itself a poor

‘‘activator’’, cooperates in recruiting neighbouring inducible TFs,

such as HSF1 [38], SREBP1 [39], ATF6 [40]. Invariably, NF-Y

binding precedes and is required for TF and coactivator

positioning and transcriptional activation.

NF-Y and H4K20me3
A role of NF-Y in active mechanisms of repression is emerging

[33 and References therein] and recent experiments in C. elegans

have genetically linked ceNF-Y to Polycomb repression through

ESC/E(Z) [41]. It was therefore not completely unexpected to find

that the NF-Y dependence of positive marks on active promoters is

mirrored, on repressed genes, by the behaviour of H4K20me3.

We have specifically analyzed this mark because it was the most

consistently counter-correlative to H3K4me3 in the cohort of loci

derived from our ChIP on chip experiments. As for the other two

major negative methyl marks, we could not find any enrichment of

H3K9me3, and only a subset of H3K4me32 sites were

H3K27me3+. H4K20 tri-methylation is performed by the Suv4-

20 Set domain methylase and is apparently associated with

heterochromatin formation [14]. NF-Y appears to be important to

anchor this negative mark on many, but not all promoters: we note

that the results, in this set, are more variegated with respect to

positive marks: LOC441956, IL2RB, IGCL1 show a parallel

decrease of NF-YB and H4K20me3, LOC198537 and FLJ90181

of the former by marginally of the latter, SUHW11 of the latter,

but not the former, SEZ6 of neither. There is an important issue

that needs to be underlined when considering the lack of NF-YB

removal in ChIPs: we are measuring NF-Y binding with an

antibody against NF-YB, under conditions in which the dominant

negative is NF-YA-based; the lack of removal of the histone-fold

dimer could be due to additional interactions with other TFs,

independently from the CCAAT box. The NF-YB-NF-YC dimer,

indeed, has several residues in the L1 and L2 that could contact

DNA a la H2A-H2B [27 and References therein]. SUHW1 and

SEZ6, which do respond to Ad YA-DN infections by switching

histones marks, but maintaining NF-YB association, might

uncover a specific role of the NF-YA subunit in this switch,

uncoupled to the dimer. In addition, there is an excess of NF-YB-

NF-YC over NF-YA -2–3-fold on average (M. Ceribelli, in

preparation)- and thus there might be sites occupied by the

histone-fold dimer, but not by NF-YA: these would be predicted to

be oblivious of the NF-YA dominant negative, as used here. It will

be essential to perform genome-wide analysis of NF-YA and

specific inactivation of the histone fold dimer to establish clarify

these points.

NF-Y as a variant H2B-H2A?
Monoubiquitination of H2B at Lysine 123 -K120 in humans-

by the E2 conjugating RAD6 and the E3 ubiquitin ligase BRE1 is

an early event in the establishment of a chromatin environment

conducive of transcription [Reviewed in Refs. 34, 42]. H3K79me2

is methylated in an H2B-Ub-dependent manner in budding yeast

[9,11], and the role of hBRE1 -RNF20/40- in methylation of

H3K4 and H3K79 has been established in vitro and in vivo [18,43].

H2A is also monoubiquitinated by a Ring protein of the Polycomb

complex, and the functional significance is opposite to H2B-Ub:

repression [44]. The crystal structure of NF-YB/NF-YC has been

solved and the H2A-H2B histone-like nature clearly emerged [27].

In particular, H2A-H2B basic residues in L1 and L2 loops that

contact DNA within the nucleosome [45] are conserved and

required for NF-Y-CCAAT interactions [46]. H2B modifications

are mostly in tails, but some are within the histone-fold, notably

K43me and K85ac, both contacting the phosphate backbone of

DNA [47]. Interestingly, these two Lysines are conserved in NF-

YB and required for DNA-binding [46]. Furthermore, the NF-YB

Lysine corresponding to H2B K85 -K107- is acetylated by p300

(G. Caretti, R.M., unpublished). There is currently no data about

NF-Y ubiquitination, but the molecular basis for modifications are

present, both in NF-YB (K135, K140, K146, K149 in the a-C)

and NF-YC (K124 and K127 also in a-C). Clearly, this is an area

that will have to be investigated thoroughly in the future.

The switch between positive and negative marks detailed here

leads us to speculate that NF-Y might represent a specialized

version of the H2A-Ub/H2B-Ub system, one that would have a

strict sequence-specificity and affinity for core promoters. In an

elegant study on the rules determining global nucleosome

positioning in yeast, Segal et al. found low nucleosome occupancy

at TSS and examined frequencies of TFs for the occurrence of

nucleosome occupancy: the yeast NF-Y homologues HAP2/3/5

came on top of the ranking for binding site accessibility by intrinsic

nucleosome positioning [48]. Thus, CCAAT boxes would be

specifically left open for binding in core promoters. We propose a

scenario whereby NF-Y is a ‘‘variant’’ sequence-specific histone,

more distantly related with respect to H2A.Z and H3.3 [49], that

marks transcription units containing the CCAAT recognition

sequence. Much biochemical and genetic work lies ahead to

establish whether there is indeed an ‘‘NF-Y code’’ of modifications

that funnels histone modifying machines to promoters and other

regulatory areas of the genome and thus regulating local

chromatin accessibility.

Materials and Methods

Cells and Infections
NIH3T3 cells were grown in DMEM supplemented with 10%

Foetal Calf serum (FCS), 1% antibiotics (penicillin and strepto-

mycin) and L-glutamine in 5% CO2. HCT116/p532/2 cells were

grown in McCOY’S medium. Infections with Ad-YAm29, Ad-

YAwt and Ad-GFP adenoviruses were carried out as described

previously (Imbriano et al, 2005).

Chromatin Immunoprecipitation
Standard chromatin preparation and ChIP assays were

performed as previously described (Donati et al, 2006) with minor

modifications. Briefly, crosslinked chromatin from 56106

HCT116/p532/2 and NIH3T3 cells, was sonicated to fragments

length of approximately 1/1.5 Kb and immunoprecipitated with

3–5 mg of each antibodies.

Antibodies: NF-YB (Diagenode, Belgium), H3K4me3 (Abcam

8580, UK), H3K79me2 (Abcam 3594), H3K9-14Ac (Upstate

06599), H4K20me3 (Abcam 9053-100), unmodified H3 (Abcam

1791), unmodified H2B (Abcam 1790), unmodified H4 (Abcam

7311-200), MLL1 (Gift of Eli Canaani), Menin (BL342 Bethyl,

USA) and Flag (Sigma, USA). The ChIP-PCR primers used for

these experiments are reported in Table S1.
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Real time PCR
Quantitative Real Time PCR was performed using SYBR green

IQ reagent (Biorad) in the iCycler machine (Biorad). Primers were

designed to amplify genomic regions of 100–150 bp size and are

listed in Table S1. The relative sample enrichment was calculated

with the following formula: 2DCtx22DCtb, where DCt x = Ct input-

Ct sample and DCt b = Ct input-Ct control Ab. Data from semi-

quantitative PCRs were analyzed as in Ref. 32.

Western blot analyses
Total Extracts (50 mg) of HCT116/p532/2 and NIH3T3

infected with Adenoviruses were prepared and Western blots were

performed according to standard procedures, with the indicated

primary antibodies and a peroxidase conjugated secondary

antibody (Amersham).

Supporting Information

Figure S1

Found at: doi:10.1371/journal.pone.0002066.s001 (0.05 MB PPT)

Figure S2

Found at: doi:10.1371/journal.pone.0002066.s002 (3.54 MB PPT)

Figure S3

Found at: doi:10.1371/journal.pone.0002066.s003 (0.02 MB

PDF)

Table S1

Found at: doi:10.1371/journal.pone.0002066.s004 (0.03 MB

XLS)
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