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Abstract: The outbreak of the coronavirus disease (COVID-19) pandemic caused by the novel
coronavirus (SARS-CoV-2) has been declared an international public health crisis. It is essential
to develop diagnostic tests that can quickly identify infected individuals to limit the spread of the
virus and assign treatment options. Herein, we report a proof-of-concept label-free electrochemical
immunoassay for the rapid detection of SARS-CoV-2 virus via the spike surface protein. The assay
consists of a graphene working electrode functionalized with anti-spike antibodies. The concept of the
immunosensor is to detect the signal perturbation obtained from ferri/ferrocyanide measurements
after binding of the antigen during 45 min of incubation with a sample. The absolute change in
the [Fe(CN)6]3−/4− current upon increasing antigen concentrations on the immunosensor surface
was used to determine the detection range of the spike protein. The sensor was able to detect a
specific signal above 260 nM (20 µg/mL) of subunit 1 of recombinant spike protein. Additionally,
it was able to detect SARS-CoV-2 at a concentration of 5.5 × 105 PFU/mL, which is within the
physiologically relevant concentration range. The novel immunosensor has a significantly faster
analysis time than the standard qPCR and is operated by a portable device which can enable on-site
diagnosis of infection.

Keywords: SARS-CoV-2; COVID-19; 2019-nCoV; biosensor; immunosensor; electrochemical sensing;
voltammetry; spike protein; diagnostics; corona

1. Introduction

Coronavirus disease 2019 (COVID-19) which is caused by the severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) was declared a global pandemic in early 2020 and
has infected more than 82 million and killed more than 1.8 million people worldwide
to date [1,2]. The strategy of many countries to combat the spread of the virus relies on
fast identification of infected people and their close contacts. This can result in faster
isolation of the infected individuals and a lower transmission or spread of the virus among
the population.

The current global standard testing strategy, as recommended by the World Health
Organization (WHO, Geneva, Switzerland), for the detection of SARS-CoV-2 virus targets
viral RNA using polymerase chain reaction (PCR) [3,4]. The success of this strategy depends
on rapid testing; however, since PCR is often carried out at centralized laboratories, test
facility bottlenecks can be created, both by transport and batch analysis, extending the time
from test to answer. As highlighted by the World Health Organization and the European
Commission, one of the main COVID-19 management strategies is related to rapid and
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accurate analysis including antigen tests [5,6]. The development of supplementary on-
site point-of-care (POC) rapid tests could help alleviate the bottlenecks of central testing
and open up opportunities to hold larger gatherings by the prevention of super-spreader
events. The importance of rapid testing for the prevention of new cases has been discussed
widely [7,8]. At the time of publishing of this paper, more than 140 commercial Sars-CoV-2
tests have received the status of Emergency Use Authorization (EUA) for diagnostic use by
the FDA [9]. However, the vast majority of these are RT-PCR-based and detect the viral
RNA, with only a handful of antigen tests being approved. Most antigen tests target the
nucleocapsid protein, which is one of the four major structural proteins of the SARS-CoV-2
virus [10,11]. However, the Spike (S) protein, which is another structural protein, has less
sequence homology with the previous SARS-CoV and MERS viruses, and might thus be a
more specific antigen target.

Electrochemical biosensors provide a promising approach to rapid medical diagnostics
of infection-biomarkers that may lead to more timely and effective decision-making [12–15].
Furthermore, potentiostats are already available in miniaturized formats, enabling the
possibility of on-the-spot or point-of-care applications. Electrochemical biosensors have
previously been used to detect viral antigens from several pathogenic viruses such as
Hepatitis, Dengue, Rabies, and Zika [16–18]. The ongoing COVID-19 pandemic has led
to an increase in biosensor research aiming to identify and quantify SARS-CoV-2 specific
antigens [19–22]. Seo et al. have developed a Field-Effect Transistor-Based (FET) biosensor
by coating a graphene surface with a monoclonal antibody against the SARS-CoV-2 Spike
protein, obtaining a detection limit of 1 fg/mL in PBS [23]. Mahari et al. have also
shown a proof-of-concept of a similar screen-printed electrode (SPE) biosensor against
the Spike antigen, as well as a homemade potentiostat for reading the SPE with a limit of
detection of 10 fM in saliva within 30 s [24]. The few current EUA-approved nucleocapsid
protein antigen tests can detect approximately 115–100 PFU/mL of SARS-CoV-2 virus. In
comparison, commercial PCR-based methods have a sensitivity of approximately 1200 viral
genome copies/mL [25].

In this work, we present a proof-of-concept novel electrochemical biosensor for rapid
detection of SARS-CoV-2 Spike antigen, using SPE functionalized with a monoclonal anti-
spike antibody. The sensor consists of a printed graphene layer functionalized with a
1-pyrene butyric acid N-hydroxysuccinimide ester (PBASE) linker bound to a monoclonal
anti-spike antibody. The time for incubation and testing using the herein presented im-
munosensor is 45 min, which is significantly lower than what is possible by PCR. The
biosensor can specifically detect the Spike protein with the lowest detected concentration
of 260 nM (20 µg/mL) using a 45 min incubation time and a SARS-CoV-2 concentration of
5.5 × 105 PFU/mL. The immunosensor developed here is a proof-of-concept that, despite
its lower sensitivity compared to PCR, might still be valuable in a setting where quick
decision-making is necessary.

2. Materials and Methods
2.1. SARS CoV-2 Automated Single Molecule Array Assay

The measurement of SARS CoV-2 S-protein was performed on an automated single-
molecule array (Simoa) HD-1 Analyzer platform (Quanterix©). In short, the Spike-protein
capture antibody (#40150-D006, Sino Biological Beijing, China) was covalently attached
by standard carbodiimide coupling chemistry to carboxylated paramagnetic beads (Quan-
terix) using 0.2 mg/mL antibody and 0.3 mg/mL EDC (#77149, Thermo Fisher Scientific,
Waltham, MA, USA). The spike protein detection antibody (#40591-MM43, Sino Biological)
was biotinylated using a 40:1 molar ratio of biotin (#A39259, Thermo Fisher Scientific) to
antibody. Recombinant Spike subunit 1 protein was applied as a calibrator (#40592-V08B,
Sino Biological). 22E6 PFU/mL recombinant SARS CoV-2 virus (Linköping University,
Linköping, Sweden) was diluted in PBS with 1% BSA, followed by a two-fold dilution in
lysis buffer (100 mM Tris-HCl, 800 mM NaCl, pH 9.0, 1% Triton x-100, 1% BSA).
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The method was developed as a single-plex assay using a two-step protocol. The
following reagents were prepared beforehand: capture beads (1/3) were mixed with
helper beads (2/3) in bead diluent buffer (Quanterix, Billerica, MA, USA) and diluted
to a final concentration of 2.0 × 107 beads/mL. The biotinylated detection antibody was
diluted in sample/detection diluent (Quanterix) to a final concentration of 0.4 ug/mL. The
streptavidin-beta-galactosidase (SβG) was diluted in SβG diluent (Quanterix) to 50 pM.
Upon loading the reagents and consumables, eight calibrators were prepared, starting from
300 pg/mL S-protein and titrated using a three-fold dilution. Calibrators, samples and
internal assay control materials were loaded to the instrument in a 96-well microtiter plate.

The instrument performed the following steps: (1) A total of 25 µL of capture beads
were pipetted into a cuvette together with 100 µl of sample, control or calibrator and 50 µL
of biotinylated detection antibody. (2) Incubation was performed for 30 min. (3) The beads
were magnetically separated and washed. (4) Then, 100 µL of SβG was added to the
cuvette by the instrument. (5) Incubation was performed for 5 min. (6) After washing the
beads, RGP substrate was added. (7) Finally, the beads were loaded on to the Simoa disc
containing an array of 216,000 micro-wells and sealed with oil. The average number of
enzymes per bead was used as a readout. Using four parameters logistic fitting, the protein
concentration was interpolated from the calibrator curve [26].

2.2. ELISA Preparations

Enzyme-linked immunosorbent assay (ELISA) was performed by coating a 96-well
Nunc Maxisorp plate (Thermo Fisher, #44-2404) with 100 µL per well of a 2× dilution
series of SARS-CoV-2 Spike S1-His protein (Sino biological, #40591-V08B1) for 16 h at
4 ◦C. The wells were washed three times with 200 µL PBST (137 mM NaCl, 2.7 mM
KCl, 10 mM Na2HPO4, 1.8 mM KH2PO4, and 0.05% Tween 20, pH 7.4). The wells were
blocked by incubating for 1 h with 100 µL PBST containing 2% Bovine Serum Albumin
(BSA) and washed three times. A total of 100 µL of 1:10,000 primary anti-spike antibodies
(#45150-D003 and #45150-D001, Sino biological) was added to each well and incubated
for 1 h at 37 ◦C and washed four times. 100 µL of 1:10,000 Goat anti-human-IgG-HRP
(#A18817, Thermo Fisher) conjugated antibody was added and incubated for 30 min at
room temperature, and wells were washed four times. A total of 100 µL TMB Plus2 (#4395,
Kementec, Taastrup, Denmark) HRP substrate was added, and the plate was incubated
in the dark for 25 min. The reaction was stopped by the addition of 100 µL 0.2 M H2SO4
and 450 nm (specific signal) and 620 nm (background) absorbance were read in a standard
plate reader after 5 min.

2.3. Functionalization of Graphene Electrochemical Sensors

Graphene sensors (#GPH381-2, PreDiagnose, Karlslunde, Denmark) was functional-
ized by pipetting 50 µL 2 mM 1-Pyrenebutyric acid N-hydroxysuccinimide ester (PBASE)
(#114932-60-4, Sigma-Aldrich, St. Louis, MO, USA) dissolved in 1:3 v/v of dimethylfor-
mamide (68-12-2, Sigma-Aldrich) to methanol (#67-56-1, Sigma-Aldrich) onto the sensor to
cover the working electrode. Sensors were covered to avoid evaporation and incubated for
2 h at room temperature. The sensors were then washed with methanol and dried with
nitrogen. The anti-spike antibody (#45150-D003, Sino biological) was diluted 100x in PBS
to approximately 22 µg/mL, and 10 µL was added to the working electrode and incubated
for 2 h at 37 ◦C and 300 rpm shaking. After washing and drying the sensors with PBS, they
were blocked by the addition of 50 µL PBST (0.05% Tween-20) containing 1% BSA to the
working electrode, and sensors were incubated for 1 h at room temperature. The sensors
were then washed with deionized water and then rinsed by 5 s immersion in 37 ◦C PBST
on a magnet stirrer at 400 rpm followed by drying with nitrogen. After the blocking step,
the electrochemical signal of the functionalized sensor was measured using a potentiostat.
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2.4. Characterization of Graphene Electrochemical Sensors

All electrochemical measurements were conducted using a portable potentiostat (Palm-
sens 4, PalmSens, Houten, The Netherlands). Characterization of the graphene electrode
was carried out by cyclic voltammetry (CV) and electrochemical impedance spectroscopy
(EIS). CV and EIS were utilized to characterize the electrode at each stage of functionaliza-
tion and to evaluate the antibody–antigen interaction onto surfaces. All electrochemical
measurements were performed in PBS solution, containing 2.5 mM Ferriferrocyanide and
measured against the reference electrode. The CVs were performed from −1.2 to 1.1 V and
a potential step of 0.01 V, with scan rates between 0.05 and 0.25 V/s. The EIS measurements
were performed using a frequency range of 100 kHz to 0.1 Hz at 0.01 V AC voltage and a
DC voltage of −0.31 V.

2.5. Spike and Virus Detection

For detection of the Spike protein, the sensors were incubated for 45 min 37 ◦C
and 300 rpm shaking with 10 µL PBS (control), or 10 µL 260, 520, or 1040 nM of SARS-
CoV-2 Spike S1-His protein (Sino biological, #40591-V08B1). Sensors were then washed
with deionized water, rinsed by immersion in a 37 ◦C PBST (0.005% Tween-20) bath for
5 s, and dried under a gentle stream on nitrogen gas before performing electrochemical
measurements. For detection of SARS-CoV-2 recombinant virus detection, a viral stock of
22E6 PFU/mL stored in Dulbecco’s Modified Eagle’s medium (DMEM) with 1% bovine
serum albumin (BSA) and inactivated by dilution 1:1 in viral lysis buffer (100 mM Tris-HCl,
800 mM NaCl, pH 9.0, 1% Triton x-100, 1% BSA) was used. Before use on the immunosensor,
an aliquot of viral stock and lysis buffer were purified using HiPPR™ detergent Removal
Spin Columns (#88305, Thermo fisher) to remove the Triton-X detergent following the
manufacturer’s manual. In short, the sample was diluted 1:3 with Milli-Q water and
spun through the detergent removal resin for 2 min at 1500 g. PBS was used as a resin
equilibrator, and the eluted volume was the same as input volume.

To electrochemically measure the spike protein, the electrochemical signal of the
functionalized sensor was measured after the blocking step (background signal) and again
after incubation with the analyte using square wave voltammetry (SWV) (analyte signal).
SWV was conducted from −0.8 to 1.0 V using an amplitude of 0.25 V and a frequency of
10 Hz. To find the specific current change due to the spike binding to the sensor surface, the
background signal was subtracted from the analyte signal using the PSTrace V5.8 software
(PalmSens, Houten, The Netherlands).

2.6. Statistics

One-way ANOVA tests were carried out using Graphpad Prism 7. Where applicable,
multiple comparisons were adjusted using Tukey’s test. SD values are calculated using the
n-1 method as per standard convention.

3. Results and Discussion
3.1. Choice of Antigen and Validation of Antibody

The SARS-CoV-2 virus contains four major structural proteins, Spike, Nucleocapsid,
Matrix, and Envelope, from which the Spike protein sequence varies most compared to
its corresponding protein in SARS-CoV and MERS-CoV viruses. The choice of the Spike
protein as antigen for the development of the biosensor was based on the potential to make
a Sars-CoV-2 specific detection and its previously demonstrated high immunogenicity in a
similar setting [23].

To validate specific binding between the Spike S1 protein and the monoclonal antibod-
ies, an Enzyme-linked immunosorbent assay (ELISA) was performed first. Spike S1 protein
was coated on the plates and the two anti-Sars-Cov2-Spike-S1 antibodies, and a secondary
anti-human-igG HRP conjugated antibody was added subsequently. The results revealed
that both antibodies bind to the antigen (Figure S1). To demonstrate the specificity of the
antibodies 26 nM Lysozyme (370 ng/mL) and BSA (1730 ng/mL) were used as negative
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control antigens against the anti-spike S1 antibodies, and using either of them resulted in
no detectable signal. The limit of detection of Sars-Cov-2 Spike S1 protein in the ELISA
was determined to be approximately 3 ng/mL.

3.2. Functionalization and Characterization of Graphene Sensors for Electrochemical Detection
of SARS-CoV-2

The sensor was produced by coating graphene working electrodes with a linker (Figure 1A)
that can bind to a specific antibody against SARS-CoV-2 spike protein (Figure 1B). This
approach is similar to the that one Seo et al. have used and characterized [23]. To block
the excess reactive linkers remaining on the surface, the sensor is incubated with BSA. The
sensor was then used to measure ferri/ferrocyanide, an electrochemically active chemical,
after BSA blocking to obtain the background signal (Figure 1C). After analyte incubation,
the spike protein should recognize and bind to the antibodies (Figure 1D).
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Figure 1. Schematics of functionalization and the concept of detection. (A) The graphene working
electrode is functionalized with 1-pyrene butyric acid N-hydroxysuccinimide ester (PBASE) linker.
(B) The spike-specific antibodies are immobilized to the electrode using the linkers. (C) Bovine Serum
Albumin (BSA) is used to block free surface or linkers on the electrode. (D) Upon addition of the
sample, only the spike protein will attach to the antibodies. (I) Graphene lattice; (II) 1-Pyrenebutyric
acid N-hydroxysuccinimide ester (PBASE) linker; (III) spike-specific antibody; (IV) Bovine serum
albumin (BSA) protein; (V) SARS-CoV-2 spike subunit 1 protein.

The graphene sensor reversibility was evaluated by cyclic voltammograms using a
10 mM ferri/ferrocyanide solution in a 0.1 M KCl supporting electrolyte at scan rates from
50–250 mV/s (Figure 2A). Symmetrical voltammograms were observed. The half-wave
potentials were evaluated for each voltammogram from the anodic and cathodic peak
potentials, Epa and Epc, respectively, according to the standard equation (The standard
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equation: E0 = (Epa + Epc)/2), yielding a value of −91.5 ± 4.9 mV vs. the reference
electrode. The numeric peak current ratio (Ipa/Ipc) was observed to be one for all voltam-
mograms with a standard deviation of 0.015. The Randles–Sevcik plot demonstrates that
Ipa and Ipc, respectively, are proportional to the square root of scan rates with R2 of 0.9919
and 0.9905 (Figure 2B). Although the mentioned characterization demonstrates charac-
teristics of ideal reversible electron transfer and diffusion-controlled reaction, the peak
potentials increase with increasing scan rates. This deems the sensor pseudo-reversible,
which means that the sensor is sufficient for analytical determination of signal change in
response to a given perturbation [27].
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Electrochemical impedance spectroscopy and CV were performed to investigate the
electrode behaviour after each surface modification step (Figure 2C,D). Cyclic voltammo-
grams clearly show that the ferri/ferrocyanide electron transfer kinetics change from one
step to another (Figure 2C). Ferri/ferrocyanide CV of the bare graphene electrode shows a
well-defined characteristic reversible peak. The introduction of PBASE, antibodies and BSA
on the surface leads to a decrease in electron-transport resistance with each step. Thus, the
antibody immobilization and the blocking with BSA onto the activated electrode surface
act as inert electron transfer relative blocking layers without completely hindering the
diffusion of the ferri/ferrocyanide redox couple towards the electrode surface.

Electrochemical impedance spectroscopy was further performed to characterize the
features of the different steps of the electrode modification (Figure 2D). The Nyquist plot
of the different functionalization steps reveals changes in the electron-transfer resistance.
Following the PBASE step, the electron transfer resistance slightly increased, which is
also apparent from the cyclic voltammograms. The immobilization of antibodies on the
electrode surface visibly increases the blocking of the electron transfer, demonstrating
the formation of an insulating layer. The electron-transfer resistance remains constant
upon blocking with BSA, indicating that most PBASE linkers were bound to antibodies.
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The subsequent addition of PBS to the sensor as a control analyte, resulted in a relatively
small increase compared to the BSA-step, while the addition of 520 nM spike remarkably
increased the electron-transfer resistance.

3.3. Detection of Spike Subunit 1 Using the Electrochemical Immunosensor

For quantitative analysis of Spike subunit 1 detection, Square Wave Voltammetry
(SWV) was performed to detect the change of the ferri/ferrocyanide signal. The func-
tionalized working electrode was incubated with dilutions of either Spike protein, PBS or
beta-lactamase, as a control protein. Signal curves were obtained by scanning the potential
from −0.8 to 1 V using SWV before and after incubation with the analyte. The analyte peak
was then point-by-point subtracted from the background peak in the PSTrace software.
The subtraction resulted in distinct peaks around 0.2 V. The resulting peak heights were
used as a direct measure of the contribution of the analyte to total electron diffusion. Each
analyte was measured six times, using three separate sensors in two separate experiments.
The peak heights of each analyte were then averaged. Incubation with either PBS or the
unspecific control protein beta-lactamase resulted in similar averaged peak heights at 24
and 22 µA, respectively. Three Spike S1 concentrations of 260 nM (20 µg/mL), 520 nM
(40 µg/mL) and 1040 nM (80 µg/mL) all resulted in increased peak heights compared
to the controls, at approximately 45, 49 and 60 µA, respectively (Figure 3A). The three
spike S1 concentrations follow a linear correlation, with a regression coefficient of 0.9995
(Figure 3B). The data showed a statistically significant difference between the controls and
all Spike concentrations (260 nM: p < 0.01; 520 nM and 1040 nM: p < 0.0001) (Figure 3C).
Thus, the lowest concentration of Spike S1 protein detected using our proof-of-concept
immunosensor was 260 nM (20 µg/mL).
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spike concentration and current perturbation. (C) Extracted peak height averages versus current of tested analytes. Bars are mean
values from two separate experiments and batches of sensors with 3 sensors in each; with error bars showing SEM, n = 6. (D) Extracted
peak height averages of tested analytes versus current when measuring viral lysis buffer and three different recombinant SARS-CoV-2
virus concentrations. Bars are mean values from 3 separate sensors, with error bars showing SEM, n = 3). Statistical significance was
obtained using one-way ANOVA with adjusted p-values of p < 0.01 (**) and p < 0.0001 (****).

3.4. Direct Detection of SARS-CoV-2 Using Electrochemical Immunosensor

To evaluate the ability of the novel proof-of-concept immunosensor for the electro-
chemical detection of SARS-CoV-2, we tested concentrations of recombinant virus ranging
from 34.38 × 103 to 5.50 × 105 PFU/mL (Figure 3D). The virus stock was stored in Dul-
becco’s Modified Eagle’s medium (DMEM) with 1% bovine serum albumin (BSA) and
inactivated by dilution 1:1 in viral lysis buffer. The lysis buffer was tested on the sensor
and was found to interfere with the signal until diluted to 2000× (data not shown). We,
therefore, removed the Triton-X detergent from the solutions using a resin-based spin
column before measuring on the inactivated virus and the lysis buffer control. Incubation
with a purified and 20-times-diluted viral lysis buffer resulted in an average peak height of
about 32.6 µA.

Three purified SARS-CoV-2 concentrations of 34.38 × 103, 13.75 × 104, and
5.50 × 105 PFU/mL were measured and resulted in average peak heights of 34.1, 31.4,
and 52.5 µA, respectively (Figure 3D). The signal from the highest concentration of
5.50E5 PFU/mL was statistically significant compared to the lysis buffer control (p < 0.0001).
However, no difference in signal was detected for the two lower concentration samples, in-
dicating that our detection limit is somewhere between 13.75 × 105 and 5.5 × 105 PFU/mL
for our proof-of-concept immunosensor. Based on the linearity between the spike con-
centration and current perturbation seen in Figure 3B, the detected virus concentration
corresponds to a spike concentration of ~690 nM. Thus, it is theoretically possible to reach
lower virus detection limits without further modifications of the experimental setup. A
Lancet study has measured the virus titer in nasopharyngeal swabs from two COVID-19-
positive individuals, finding viral loads of 6.25 × 105 and 3.0 × 107 PFU/mL [28]. Thus,
the viral concentrations detected by the immunosensor in this study are within the relevant
physiological range.

To ensure that the sensor can be used to identify patients with mild SARS-CoV-2
infections, the limit of detection could be optimized further. One way to accomplish this
would be to target the nucleocapsid protein instead of the spike protein. Preliminary data
from our Simoa assay detected a considerably higher signal from the nucleocapsid protein
than from the Spike protein (data not shown). Several commercially available antigen tests
target the nucleocapsid protein with relatively high sensitivity [9]. However, as discussed
earlier, the nucleocapsid protein shares high similarity to other coronaviruses, and thus
could increase the risk of false-positive detection [10,11]. In future work, investigation of
cross-specificity using other common human coronaviruses like HCoV-OC43, HCoV-HKU1,
HCoV-229E, and HCoV-NL63 and rhinoviruses will give strong evidence for the risk of
false-positive detection.

Additional characterization of the actual number of antibodies bound to the surface
may shed light on whether a denser antibody immobilization can lead to higher sensitivity.
Another way to enhance the spike specific signal from the current sensor functionalization
setup could be a subsequent addition of redox-labelled nanoparticles functionalized with
anti-spike antibodies on top of the bound spike proteins, thereby obtaining a specific
redox signal.

3.5. Determination of Spike Protein Antigen in Recombinant SARS-CoV-2

Most antigen tests state a limit of detection in the weight or molar of the target analyte.
However, limited information exists about the quantity of detectable antigen in SARS-CoV-
2 samples, making it difficult to determine whether the detection limit is clinically relevant.
This has prompted assay developers to investigate the correlation using their proof-of-
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concept assays [29]. We wanted to add to this discussion, and therefore investigated the
amount of detectable full-length spike protein that was available for antibody binding in
dilutions of recombinant SARS-CoV-2 virus. The virus titers are often given in plaque-
forming units per millilitre (PFU/mL) which correlate to the amount of infectious viral
particles. The single-molecule array (Simoa) assay was used to compare the signal from
the available spike antigen in SARS-CoV-2 dilutions with known PFU/mL to known
concentrations of recombinant spike subunit 1 protein. In short, the Simoa method uses
the same reagents as conventional immunoassays such as ELISA but uses femtoliter-sized
reaction chambers that are approximately 2 billion times smaller. This will result in a rapid
buildup of fluorescence if a labelled protein is present on an antibody-labelled bead, which
allows for single-molecule detection and, on average, offers 1000-fold greater sensitivity
than conventional immunoassays [30,31]. The assay was able to detect recombinant Spike
subunit 1 protein down to a concentration of approximately 0.5 pg/mL, and a SARS-CoV-
2 viral titer at around 800 PFU/mL (Figure S2). The data revealed a linear correlation
between the Spike subunit 1 protein concentration and the viral load of Triton-X inactivated
SARS-CoV-2, as measured by the immunosensor. We found that using the Simoa assay,
the signal from 1700 PFU of recombinant SARS-CoV-2 correlates to the signal from about
1 pg of pure Spike antigen. Using our proof-of-concept immunosensor we were able to
detect Spike protein at a concentration of 20 ng/mL, while our lowest significant signal
from SARS-CoV-2 was detected from 5.5 × 105 PFU/mL. This correlates to 27.5 PFU of
recombinant SARS-CoV-2 per pg of pure Spike antigen. The two assays are only an indirect
comparison between the Spike concentrations in the pure form and from a viral solution,
using only the signal size as a measure. The vastly different correlations show that they
are highly assay dependent, likely attributable to the fundamentally different technologies
used. Thus, we suggest that it is necessary to determine the correlation between the Spike
protein and the viral load for every specific assay.

4. Conclusions

This work describes a proof-of-concept for a simple, label-free electrochemical im-
munosensor for the fast and direct detection of SARS-CoV-2 through the specific detection
of the Spike subunit 1 protein, which is a unique biomarker for SARS-CoV-2. ELISA was
used to validate the antibody–antigen interaction, while cyclic voltammetry and electro-
chemical impedance spectroscopy were used to characterize the individual layers of the
electrode functionalization. It was possible to specifically detect Spike protein at 260 nM
(20 µg/mL) while the signal from the control protein beta-lactamase at 260 nM (7.5 µg/mL)
was equal to the background. The sensor was able to detect SARS-CoV-2 at a concentration
of 5.5 × 105 PFU/mL, which is within the physiologically relevant concentration range.
Thus, we here present a novel proof-of-concept immunosensor able to detect SARS-CoV-2
in about 45 min, enabling portable on-site screening upon further optimizations of the
detection limit. Additionally, we have demonstrated a correlation between the Spike
concentration and the viral load using our sensor and a commercially available assay.

Supplementary Materials: The following are available online at https://www.mdpi.com/1424-822
0/21/2/390/s1, Figure S1: ELISA for validating the binding of anti-SARS-CoV-2 spike S1 antibodies
to varying concentrations of Sars-Cov-2 Spike S1 protein. Figure S2: Viral load vs. spike subunit
1 concentration.
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