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ABSTRACT The human gut microbiome plays a vital role in both health and dis-
ease states and as a mediator of cognitive and physical performance. Despite major
advances in our understanding of the role of gut microbes in host physiology,
mechanisms underlying human-microbiome dynamics have yet to be fully eluci-
dated. This knowledge gap represents a major hurdle to the development of tar-
geted gut microbiome solutions influencing human health and performance out-
comes. The microbiome as it relates to warfighter health and performance is of
interest to the Department of Defense (DoD) with the development of interventions
impacting gut microbiome resiliency among its top research priorities. While techno-
logical advancements are enabling the development of experimental model systems
that facilitate mechanistic insights underpinning human health, disease, and perfor-
mance, translatability to human outcomes is still questionable. This review discusses
some of the drivers influencing the DoD’s interest in the warfighter gut microbiome
and describes current in vitro gut model systems supporting direct microbial-host in-
teractions.
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The human gut microbiome is comprised of over 100 trillion microorganisms (mi-
crobes or microbiota) inhabiting the gastrointestinal (GI) tract (1); these microbes

influence human physiology, metabolism, nutrition, and immune function. Disruption
to the gut microbiota, known as dysbiosis, is defined as (i) loss of beneficial bacteria, (ii)
overgrowth of potentially pathogenic bacteria, and (iii) loss of overall bacterial diversity;
in most cases, these types of dysbioses occur simultaneously, such as those caused by
antibiotic treatments, physiological stress, or diet (2). Dysbiosis is linked with GI
conditions such as inflammatory bowel disease (IBD) and obesity (3), as well as a strong
correlation with brain-, anxiety-, and trauma-related disorders (4).

The intestinal barrier acts as a selective facilitator for surveillance and response to
agents interacting within its mucosal sites, often contingent upon the landscape of the
host’s microbiome (5). Considered one of the most heavily innervated mucosal surfaces
(6) in the body, the GI tract is implicated in dynamic neuroimmune host defense, where
gut microbiota play a role in the development and functional maturation of the gut
immune response (7). Mucosal neurons serve as sensors for internal environmental
changes and signals (6) in the gut. Many of these neuronal signals elicit or inhibit
immunoregulatory responses that are implicated in complications (such as vomiting
and diarrhea) that affect both mental and physiological readiness (8) as the host
attempts to eliminate harmful agents from the body (5, 9). All of these factors highlight
the impact of microbiota in the mucosal region of the gut in relation to host defense
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and how these interactions could potentially be an etiological factor in complications
such as gastrointestinal maladies.

While there is no single standard gut microbiome profile, recent research is eluci-
dating the dominating factors for significant diversity in the human gut microbiome
(10). In a global review, diet or diet-related factors (e.g., hygiene, parasitic load,
environmental exposure, and dietary lifestyle) were the predominant factors in seven
separate cohorts. These factors were driven by the types of local foods available to each
population. Additionally, a further study of 1,135 participants from a more homoge-
neous Dutch population also showed diet as a significant factor for changes in diversity
of the gut microbiome (11), with the most significant shifts in diversity being caused by
the total quantity of carbohydrates consumed, consumption of plant proteins, and
frequency of fruit consumption. This suggests that the human gut microbiome can be
highly geographically localized based on types and content of foods available in the
region, and any variation in nearby regions or behavioral selection (i.e., vegetarianism)
will alter the microbiota. Changes in the gut microbiome begin occurring within a few
hours to 1 day of a significant alteration in diet (12).

Fluctuating diversity in the gut can be a result of the previously mentioned factors
and other functional needs; however, certain regions of the gut are able to maintain a
relative level of compositional stability (13). A contributing factor for these selective
differences in gut microbiome diversity is the composition of the host epithelium (14).
The small intestine (SI), consisting of a single layer of epithelial cells and a mucosal
layer, represents a physical barrier against the environment (15). The SI epithelium
includes cell types for absorption of nutrients arising both from the digestive process
and from gut microbiome metabolites (16). Additionally, the goblet cells of the SI
epithelium produce and maintain a mucin layer that protects the epithelium from the
gut microbiome and provides a selective atmospheric oxygen environment for growth
of specific bacterial classes (14, 17). This layer is critical for the interaction between the
gut and the microbiome by allowing the transfer and absorption of metabolites and
protecting the epithelial cells from bacterial invasion.

Given the intricate system of the human gut microbiome and its collection of
interdependencies, the design of a more accurate model of the human gut and
microbiome that includes physical interactions of the epithelial cells and mucosa with
the microbiome is required to effectively focus on opportunities applicable to U.S.
Department of Defense (DoD) warfighter concerns.

In the next section, we discuss important studies and insights obtained from
research in warfighters, specifically the current and future opportunities to model the
intricacies of the gut microbiome and its interdependencies for increased accuracy.

ROLE OF GUT MICROBIOTA IN THE WARFIGHTER

In recent years, the DoD has shown particular interest in research focused on the
influence of military-relevant stressors on interactions between the gut microbiome
and warfighter biology, manipulation of the gut microbiome to influence warfighter
health, and use of the gut microbiome as a biomarker of warfighter health status (18).
One of the DoD’s top priority research outcomes for future studies includes building
gut microbiome resiliency to pathogen infection to reduce the health burden of GI
diseases and improve warfighter performance. Therefore, the continued development
of microbiome interventions such as probiotics, prebiotics, or synthetic constructs that
proactively influence the warfighter’s health, performance, or response to stress is of
critical importance (Fig. 1).

Enteric and diarrheal diseases. Acute enteric infections and diarrheal diseases
remain the most common non-combat-related malady among deployed personnel (19,
20). Recent estimates report a pooled incidence, consisting of both U.S. military and
long-term travelers, of over 30 cases per 100 person-months (19). This incidence of
acute diarrheal illness during initial deployment of warfighters has not decreased with
the introduction of modern infectious disease treatments, as occurrence rates during
Operations Iraqi Freedom and Enduring Freedom were remarkably similar to that
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experienced during World War II (WWII) in the same region (19, 21). Additionally,
emerging evidence suggests that acute GI infections can develop into chronic ailments
such as irritable bowel syndrome (IBS); those who endure high levels of anxiety and
stress, such as military personnel, are at an increased risk (22). Thus, there is a critical
need to advance mechanistic understanding of these illnesses to mitigate the substan-
tial burden of afflictions in deployed military personnel, ultimately impacting opera-
tional readiness and effectiveness (18, 23).

The human gut microbiome is a critical component for protecting warfighters from
acute diarrheal illness and potentially the progression to chronic disease. Among the
bacterial causative agents of travelers’ diarrhea, enterotoxigenic and enteroaggregative
Escherichia coli (ETEC and EAEC, respectively), Campylobacter jejuni, Shigella, and Sal-
monella species are the most common (24). The pathophysiology of diarrheal disease
is multifactorial, but disruption of the intestinal epithelial barrier and dysregulation of
mucosal immunity upon perturbation of the gut microbiome by enteric pathogens are
a primary etiological factor (25).

Gut commensal microbiota are essential for maintaining human-microbiome ho-
meostasis (26) and confer protection against diarrheal pathogen colonization through
diverse mechanisms (27). Disruption of indigenous gut microbiota, such as through
antibiotic use (28), may contribute to increased susceptibility to enteric infection (25).
The extent to which an individual’s gut microbiota influences resistance to pathogen
colonization remains to be fully elucidated, with limited studies having identified
specific gut microbiota patterns associated with infection risk. In a human challenge
study, Sutterella sp., Prevotella copri, and Bacteroides vulgatus were identified as gut
microbiota having a potential protective effect against ETEC diarrheal disease in
asymptomatic carriers, while individuals with gut microbiota enriched with Bacteroides
dorei, Prevotella sp., Alistipes onderdonkii, Bacteroides sp. (Bacteroides ovatus), and
Blautia sp. were associated with disease occurrence (29). In vitro gut model systems
could help elucidate the mechanisms of colonization resistance by specific gut micro-
bial taxa, aiding in the development of a prophylactic and treatment of travelers’
diarrhea, such as recombinant probiotics that neutralize heat-labile enterotoxin activity
of ETEC (30). Therefore, in order to develop targeted microbial strategies that enhance
defense against diarrheal infection, additional research is necessary to obtain a fully
comprehensive understanding of the protective effect of specific microbial communi-
ties.

FIG 1 DoD gut microbiome research priorities and ideal in vitro model system characteristics.
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Operational readiness and effectiveness. Emerging research has granted a
deeper understanding of the downstream effect that the gut microbiome has on
physiological responses, particularly when faced with psychological, environmental,
and physical stressors (18, 20). Warfighters are routinely subjected to these types of
stressors in the field, where physiological and mental operational readiness is chal-
lenged (31, 32). Recent metagenomic and endurance studies of professional athletes
versus sedentary subjects displayed marked increases in amino acid and antibiotic
biosynthesis, as well as carbohydrate metabolism, and these changes were attributed
to changes in gut microbiota (33), such as a higher prevalence of Veillonella atypica,
which aids in lactate metabolism of marathon runners (34). Such physiological pro-
cesses have a downstream effect on the rate of muscle turnover, potentially enhancing
or diminishing fitness (31). Harnessing the dynamics between physiological stress and
gut microbiota profiles could signal a promising entryway for performance enhance-
ment (31) and, conversely, highlight the metabolic impacts of antibiotic use (33).

In instances such as endurance activities, physical and environmental stress re-
sponses have been linked to dysbiosis (35–37). Comorbidities such as heat stress and
physical exertion are commonly encountered by warfighters and have been linked with
increased GI permeability (38). Disruption in GI barrier integrity (38) can render the host
vulnerable to, and more profoundly affected by, systemic endotoxemia caused by
enteric bacteria (35, 39). Studies on military training in the Arctic demonstrate the
relationship between physical stress and a shift in gut microbiota communities, marked
by subsequent metabolite changes further enabling dysbiosis (37). Bioinformatics
studies have quantitively illustrated how stress can reduce intestinal barrier integrity,
altering gut microbiota composition, which in turn modulates immunoregulatory
responses in the host (9, 40, 41). A compromised gut microbiota profile introduces
disruption in the uptake of fluids, electrolytes, and vital nutrients, exerting negative
impacts on exercise performance and recovery (42–44). Host-gut microbiota interac-
tions are also implicated in the nervous system control of glucose, impacting another
aspect of host metabolic efficiency (45). Pain is also associated with GI distress, which
can introduce additional impairments in physical endurance (46). Through the brain-
gut axis, gut microbiota can directly modulate afferent sensory neurons, eliciting pain
(47, 48), including host nociceptor responses as seen in the case of Salmonella enterica
serovar Typhimurium (6). There are implicit benefits to preventing dysbiosis, but a
comprehensive understanding of these relationships could improve warfighter perfor-
mance and also serve the general population, where the burden of GI diseases is also
significant.

EXISTING GUT MODEL SYSTEMS

Advancements in technology are promoting the development of experimental
model systems that realistically mimic the microenvironment of the human gut,
providing mechanistic insights underpinning human health, disease, and performance.
While animal models are often used to investigate host-gut microbiota interactions and
their contributions to host physiology and pathophysiology (49, 50), questions arise
about their translatability to human outcomes (51, 52). Therefore, there is significant
interest in developing in vitro models that closely resemble conditions of the human GI
which can facilitate detailed mechanistic analysis in a tightly controlled, reproducible
environment (53) (Table 1).

In vitro coculture gut model systems. An ideal in vitro human intestinal model can
be described as containing all human-derived native gut epithelial cell types and all gut
microbiota and recapitulating the three-dimensional (3D) complex tissue architecture,
physiological shear, and cyclic stress forces acting on the epithelial cells (54). However,
recapitulating a comprehensive spectrum of gut complexities and dynamics, including
sustaining direct coculture of human tissue and complex microbial populations (aero-
bic and anaerobic), in a single in vitro model is challenging (54, 55). For example, the
apical anaerobic model system uses a Transwell insert, consisting of a semipermeable
membrane seeded with a monolayer of intestinal epithelial Caco-2 cells, which seals off
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a basal aerobic environment while also exposing its apical monolayer surface to an
anaerobic environment of an external anaerobic chamber (56). This dual chamber
design supports the aerobic requirement of Caco-2 cells while also facilitating their
direct interaction with Faecalibacterium prausnitzii, an obligate anaerobe, residing in
the apical compartment. However, due to its static oxygenated basal environment,
coculture was limited to 8 h. Additionally, as Caco-2 cells did not originate from healthy
epithelium (57), they may exhibit attributes different from normal tissue and subse-
quent host-gut microbiome dynamics may not accurately represent native intestine. A
more recently developed enteroid-anaerobe coculture (EACC) system sustained cocul-
ture of anaerobes Bacteroides thetaiotaomicron and Blautia sp. with an established
patient-derived intestinal enteroid cell line for up to 24 h. Coculture was extended in
this Transwell-based system with the addition of a gas-permeable base used to
oxygenate the basal aerobic compartment at defined physiological levels with an
external tank (58). While human enteroids are a more physiologically relevant cell
culture model, both the apical anaerobic model and EACC lack other physiologically
relevant gut characteristics such as shear stress, simulation of peristalsis, and native
architecture (i.e., villi, crypts, etc.), which reduces their extensibility.

Several different approaches have been taken to develop model systems that
capture the native dynamics and architecture of the human gut environment. One
technique employs biofabricated supports to recreate the structure of intestinal villi
and crypts, which when seeded with epithelial cells present improved cellular physi-
ology and differentiation (59, 60); others use a porous silk protein scaffolding system to
construct a 3D tubular architecture representation of the intestines (61, 62). The oxygen
gradient device mimics the topology of colonic crypts using collagen scaffolds for
supporting the physical interaction of human primary colon epithelial stem cells and
obligate anaerobes Bifidobacterium adolescentis and Clostridium difficile for up to 24 h
through the generation of a self-sustaining, stable oxygen gradient across 3D crypt
topology (63). The device employs an oxygen-impermeable plug creating an anaerobic
environment by minimizing oxygen influx from above a monolayer of respiring epi-
thelial cells separating apical anaerobic and basal aerobic compartments. Passive
diffusion of atmospheric oxygen in direct contact with the basal compartment creates

TABLE 1 Examples of current in vitro gut model systems supporting direct microbial-host interactionsa

Properties

Gut model system

Apical
anaerobic
model

Enteroid-
anaerobe
coculture

Oxygen
gradient
device

Anaerobic
intestine-
on-a-chip

Anoxic-oxic
interface-
on-a-chip

Architecture None None Crypts/microvilli Villi Villi
Mucus layer No Yes Yes Yes Yes
Shear stress Static Static Static Static Yes
Peristalsis No No No No Yes
Epithelium

integrity
TEER TEER TEER Fluorescence TEER

O2 gradient Static Active profusion Passive diffusion Active profusion O2 gradient
Human

epithelial
model

Caco-2 HJEs PCoESCs Caco-2; HIMECs Caco-2

Anaerobic
microflora
coculture

F. prausnitzii B. thetaiotaomicron;
Blautia sp.

B. adolescentis;
C. difficile

B. fragilis B. adolescentis;
Eubacterium hallii

Complex
microbial
coculture

No No No Yes Yes

Direct
interaction

Yes Yes Yes Yes Yes

Viability 8 h 24 h 24 h 5 days 7 days
Reference 56 58 63 64 65
aAbbreviations: TEER, transepithelial electrical resistance; Caco-2, human colon epithelial cell line; h, hours; HJEs, human jejunal enteroids; PCoESCs, primary human
colon epithelial stem cells; HIMECs, human intestinal microvascular endothelial cells.
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and maintains a physiological oxygen gradient within the system, eliminating the need
for an external anaerobic environment or gas flow.

Recent microfluidic gut model systems include the anaerobic intestine-on-a-chip
(64) and anoxic-oxic interface-on-a-chip (AOI) (65). These nonstatic devices support
microbial cocultures that directly interact with host epithelial cells for extended periods
(5 or 7 days, respectively) compared to those of other systems such as the Host-
Microbiota Interaction (HMI) (66) and The Human Microbial Crosstalk (HuMiX) (67)
models where direct interaction is currently not possible. Additionally, both the anaer-
obic intestine-on-a-chip and the AOI chip support the coculture of complex microbial
populations and, in the case of the anaerobic intestine-on-a-chip, can support complex
microbiota with primary human intestinal epithelium. Furthermore, the AOI device
simulates the physiological flow and mechanical deformations representative of native
gut epithelium which largely influence epithelial cell proliferation and differentiation
and stability of gut microbiota (68). Transepithelial electrical resistance (TEER) was used
in four of the five gut model systems described in Table 1; the fifth used a method
based on fluorescence microscopy. The TEER methods tested the integrity of a mono-
layer of Caco-2 cells after growth over several days. The integrity of the cultured
monolayer is critical for the survival of the epithelium after introduction of the bacte-
rium, which led two studies to retest for monolayer integrity after introducing the
bacterium. The valid readings were described as ranging between 500 � · cm2 and
4,000 � · cm2 (55). Finally, epithelial integrity and peristalsis have been shown to guide
cell morphology (59, 60), and fluidic shear has been shown to increase differentiation
in the epithelium over epithelial integrity alone.

CONCLUSION AND FUTURE PERSPECTIVES

The gut microbiome is highly dynamic and correlated with multiple factors includ-
ing diet, genetic makeup, stress, socioeconomic status, interactions between social and
physical environments (42), and exercise (43). It fluctuates over time (13) and varies
biogeographically across different sections of the gut (14). Diet exerts a large effect on
the gut microbiota composition, but some bacteria thrive independently of dietary
changes by colonizing the mucus layer as a reservoir and are maintained regardless of
food intake (14). Thus, microbiome-host studies could target this mucus layer reservoir
as a starting point to characterize gut resilience, and a systems biology approach to
determine gut microbe interactions in enteric disease, pain, and the gut-brain axis must
be considered (36).

While various models simulating the gut microbiome have been developed and
studied, there still exists a need to create a reproducible simulated system that can
accurately represent dynamic gas exchange, mechanical elements, and host-gut mi-
crobiome cross talk (69). These parameters are requisite in characterizing the links
between physiological processes in the body and host gut microbiota. An in vitro model
that simulates the physiological conditions of the GI tract, while sustaining the inter-
action between a coculture of intestinal epithelial cells and microbiota, would have the
advantage of allowing detailed mechanistic analysis in a tightly controlled, reproduc-
ible environment.

The applications of an in vitro human intestinal model are numerous, but a direct
application of interest is aiding in improving warfighter operational readiness and
physiological performance. Enteric disease and its physiological and mental health
implications remain a prominent etiological contributor in reducing warfighter perfor-
mance, and those mechanisms have yet to be fully elucidated (19). Nutritional resource
competition and gut dysbiosis can incite host defense mechanisms, where gut micro-
biota can serve to prevent exogenous pathogens from infecting the host or provoke
them to infect the hose (7). These types of relationships are echoed in other physio-
logical contexts that the warfighter can experience, such as interaction with the
hypothalamic-pituitary-adrenal (HPA) axis and its implications for mental health, spe-
cifically posttraumatic stress disorder (PTSD) (70).

Creating comprehensive and reproducible in vitro human intestinal models would
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serve as a platform for researchers to rapidly illustrate and characterize these relation-
ships and other physiological paradigms related to the gut microbiome. These can aid
in development of therapeutic interventions or diagnostics, where bacteria can func-
tion in the gut long-term as live diagnostics of inflammation or be used as prebiotics
or probiotics (71, 72). These examples highlight only a few of the many applications,
and while focused on enhancing warfighter performance and resilience, they should
also be considered a platform to discover novel therapeutics extended for use in the
general public.
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