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ABSTRACT
A small series of 2,4-dioxothiazolidinyl acetic acids was prepared from thiourea, chloroacetic acid, aromatic
aldehydes, and ethyl-2-bromoacetate. They were assayed for the inhibition of four physiologically relevant
carbonic anhydrase (CA, EC 4.2.1.1) isoforms of human (h) origin, the cytosolic hCA I and II, and the trans-
membrane hCA IX and XII, involved among others in tumorigenesis (hCA IX and XII) and glaucoma (hCA II
and XII). The two cytosolic isoforms were not inhibited by these carboxylates, which were also rather inef-
fective as hCA IX inhibitors. On the other hand, they showed submicromolar hCA XII inhibition, with KIs in
the range of 0.30–0.93mM, making them highly CA XII-selective inhibitors.
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1. Introduction

In most living organisms, the equilibrium between metabolically
generated CO2 and bicarbonate is slow and needs a catalyst for
supporting the metabolic requirements. This catalyst is the metal-
loenzyme carbonic anhydrase (CA, EC 4.2.1.1)1–5, of which a multi-
tude of genetically distinct families have been described so far6–9.
The CO2 hydration reaction also leads to the formation of a weak
base (bicarbonate) and a strong acid (Hþ ions) from two neutral
molecules, being thus highly useful for pH regulation and several
metabolic pathways10–16. Furthermore, CAs are among the most
efficient catalysts known in nature, being able to catalyse the
hydration of >106 molecules of CO2 per second1–5. In vertebrates,
including humans, only a-class CAs are present, with a high num-
ber of isoforms possessing a diverse subcellular/tissue localisation,
catalytic activity and presumably physiologic roles were described
so far1–3,8,11. The 15 human (h) CA isoforms are in fact involved in
a multitude of diseases, and mainly their inhibitors have pharma-
cologic applications for the treatment of a range of diseases
including glaucoma and other ophthalmologic problems, oedema,
epilepsy, obesity, tumours, arthritis, etc17–25. Only sulphonamides
and sulphamate CA inhibitors (CAIs) are in clinical use at this
moment1–3,5,23–25, although many other different chemotypes
were discovered in the last period to exert such an action, among
which coumarins and sulphocoumarins26–31, phenols20,22, mono-/
dithiocarbamates32, and carboxylates33–38. What is notable for
these new chemotypes is the fact that they possess rather differ-
ent inhibition mechanisms from the sulphonamides, which coord-
inate in deprotonated form to the metal ion from the CA active
site1–5. On the contrary, many carboxylates, the coumarins and
the sulphocoumarins (which act as prodrug CAIs26–29), inhibit CAs
by diverse mechanisms5: they either anchor to the zinc-coordi-
nated water molecule/hydroxide ion35–37, occlude the active site
entrance26, or bind out of the active site38. Thus, this chemotype

started to be quite investigated in the last period also because
such derivatives are much more isoform-selective compared to
the classical sulphonamide/sulphamate inhibitors1–5. This is mainly
due to the fact that the binding sites not directly associated with
the metal ion are less conserved among the many hCA isoforms,
and as such non-classical inhibitors bind towards the exit of the
active site, they interact with the non-conserved regions of the
various isoforms, showing in this way a more selective inhibition
profile compared to the sulphonamides and their isosteres3,5,8–10.
Considering our interest in developing novel classes of isoform-
selective CAIs, we report here a new class of carboxylates which
show a selective inhibition profile of the tumor-associated isoform
CA XII.

2. Experimental

2.1. Materials and methods

All starting materials, chemicals, reagents, and solvents were pur-
chased from commercially known reputable sources and were
used without further purifications. IR spectra (KBr, cm�1) were
recorded on Shimadzu 8201 PC FTIR spectrophotometer
(Shimadzu Ltd., Japan). 1H and 13C-NMR spectrum were recorded
using (400MHZ) JEOL-NMR spectrometer (JEOL Ltd., Tokyo, Japan),
and the chemical shifts are reported in d ppm. Elemental analyses
were performed on PerkinElmer 2400 elemental analyser
(PerkinElmer Inc., 940 Winter Street, Waltham, MA, USA), and the
values found were within ±0.3% of the theoretical values. TLC sil-
ica (Type 60 GF254, Merck) and was visualised by UV light at
254 nm were used to check the purity of the compounds and
monitoring the progress of the reaction. Melting points were
recorded in open capillary tubes and are uncorrected (Sigma-
Aldrich Chemie GmbH, 82024 Taufkirchen, Germany).
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2.2. General procedure for the synthesis of 2,4-dioxothiazolidin
acid derivatives 3a–g

The target products 3a–g were prepared in three steps as follow:

i. Synthesis of thiazolidine-2,4-dione (TZD) was prepared
according to the reported method39–41: A mixture of chloro-
acetic acid (0.1mol) and thiourea (0.1mol) in water (10ml)
were placed in a 100ml round bottom flask, the reaction
mixture was stirred at rt for 30min and then cooled down to
0 �C. To the reaction mixture, 8ml of conc. HCl was added
dropwise and after complete addition, the reaction mixture
was refluxed for 16–18 h. The white solid was obtained after
cooling, filtered and washed with water several times to
remove the acid traces, dried and then the product TZD 1
was recrystallised from ethanol to afford white crystals mp
123–124 �C, in 91% yield (literature m.p. 123–125 �C)39.

ii. A solution of TZD 1 was treated with various appropriate
aldehydes via refluxing in ethanol for 24 h in the presence of
piperidine as a catalyst. The reaction mixture was poured
into water followed by acidification with acetic acid to afford
the products 2a–g. The compounds 2a–g were used directly
to the next step without further purification for preparation
of 3a–g.

iii. A mixture of 2a–g (1mmol) and ethyl 2-bromoacetate
(2mmol) was refluxed for 24 h in acetone in presence of
potassium carbonate (2mmol) to furnish the target products
obtained as white solid after evaporation of the solvent. The
crude product was used directly to next step for preparation
of the free carboxylic acid derivatives 3a–g where the solid
product was refluxed with glacial acetic acid and HCl in ratio
(4:1) for 2 h to afford the pure (2,4-dioxothiazolidin-3-yl)
acetic acid derivatives 3a–g after evaporation of the solvent
and then crystallised with ethanol. The spectral data for com-
pounds 3a, 3f, and 3g were in agreement with the
reported ones42–45.

2.2.1. General procedure for the synthesis of 2,4-dioxothiazolidin-
acetic acid derivatives
2-(5-benzylidene-2,4-dioxothiazolidin-3-yl)acetic acid (3a).
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The product was obtained as a white crystal in 93% yield, mp:
214–216 �C. IR (KBr, cm�1): 3423 (OH of COOH), 2940 (CH-aliphatic),
1744, 1686, 1602 (CO). 1H-NMR (DMSO-d6, d ppm): 4.40 (2H, s,
CH2COOH), 7.51–8.00 (5H, m, Ar-H), 8.05 (1H, s, CH¼C). 13C-NMR
(DMSO-d6, d ppm): 42.0 (CH2COOH), 114.3, 120.8, 130.0, 130.6,
133.7, 141.6, 163.1, 166.6, 167.4 (CO). Anal. Calc. for C19H9NO4S
(263.27): C, 54.75; H, 3.45; N, 5.32. Found C, 54.96; H, 3.61; N, 5.53.

The product was obtained as light-yellow crystals in 96% yield,
mp: 226–228 �C. IR (KBr, cm�1): 3371 (OH of COOH), 2950 (CH-ali-
phatic), 1733, 1685, 1600 (CO). 1H-NMR (DMSO-d6, d ppm): 2.34
(3H, s, CH) , 4.36 (2H, s, CH2COOH), 7.33 (2H, d, J¼ 6.6 Hz, Ar-H, H3�

& H5�), 7.51 (2H, d, J¼ 7.2 Hz, Ar-H, H2� & H6�), 7.92 (1H, s,
CH¼C).13C-NMR (DMSO-d6, d ppm): 21.6 (CH3), 42.7 (CH2-COOH),
113.9, 119.8, 130.5, 130.7, 134.4, 141.7, 165.5, 167.4, 168.4 (CO).
Anal. Calc. for C13H11NO4S (277.3): C, 56.31; H, 4.00; N, 5.05. Found
C, 56.44; H, 4.12; N, 5.26.

2-(5-(4-chlorobenzylidene)-2,4-dioxothiazolidin-3-yl)acetic acid (3c).
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The product was obtained as light-yellow crystals in yield 92%,
mp: 250–252 �C. IR (KBr, cm�1): 3383 (OH of COOH), 3008 (CH-aro-
matic), 1738, 1690, 1607 (CO). 1H-NMR (DMSO-d6, d ppm): 4.42
(2H, s, CH2-COOH), 7.59–8.00 (4H, m, Ar-H), 8.03 (1H, s,
CH¼C).13C-NMR (DMSO-d6, d ppm): 42.2 (CH2-COOH), 114.6,
121.3, 129.3, 131.5, 131.7, 132.4, 135.3, 142.1, 164.8, 166.5, 167.8
(CO). Anal. Calc. for C12H8ClNO4S (297.7): C, 48.40; H, 2.70; N, 4.70.
Found C, 48.61; H, 2.83; N, 4.81

2-(5-(2-chlorobenzylidene)-2,4-dioxothiazolidin-3-yl)acetic acid (3d).
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The product was obtained as white crystals in 90% yield, mp:
223–225 �C. IR (KBr, cm�1): 3364 (OH of COOH), 3064 (CH-aro-
matic), (2940) CH-aliphatic, 1490 (C¼C), 1722, 1691, 1608 (CO).
1H-NMR (DMSO-d6, d ppm): 4.43 (2H, s, CH2COOH), 7.55–7.69 (4H,
m, Ar-H), 8.09 (1H, s, CH¼C).13C-NMR (DMSO-d6, d ppm): 42.0
(CH2COOH), 114, 124.1, 128.0, 130.8, 132.0, 137.4, 147.4, 164.3,
166.3, 167.6 (CO). Anal. Calc. for C12H8ClNO4S (297.7): C, 48.41; H,
2.71; N, 4.70. C, 48.65; H, 2.84; N, 4.95.

2-(5-(4-bromobenzylidene)-2,4-dioxothiazolidin-3-yl)acetic acid (3e).
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The product was obtained as yellowish white crystals in yield
94%, mp: 260–262 �C. IR (KBr, cm�1): 3371 (OH of COOH), 2948
(CH-aliphatic), 1696, 1606 (CO).1H-NMR (DMSO-d6, d ppm): 4.37
(2H, s, CH2COOH), 7.56, (2H, d, J¼ 6.6 Hz, Ar-H, H2�& H6�), 7.73 (2H,
d, J¼ 6Hz, Ar-H, H3� & H5�); 7.95(1H, s, CH¼C). 13C-NMR (DMSO-d6,
d ppm): 42.8 (CH2-COOH), 114.2, 121.9, 124.9, 132.4, 132.8, 133.1,
142.4, 165.3, 167.1, 168.4 (CO). Anal. Calc. for C12H8BrNO4S
(342.16): C, 42.12; H, 2.36; N, 4.09. Found C, 42.45; H, 2.59; N, 4.25.

2-(5-(4-methoxybenzylidene)-2,4-dioxothiazolidin-3-yl) acetic acid (3f).
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The product was obtained as yellowish white crystals in yield
91%, mp: 223–225 �C. IR (KBr, cm�1): 3368 (OH of COOH),
2926(CH-aliphatic), 1684, 1589 (CO). 1H-NMR (DMSO-d6, d ppm):
3.81 (3H, s, OCH3), 4.35 (2H, 2, CH2COOH), 7.10 (2H, d, J¼ 7.2 Hz,
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Ar-H, H3� & H5�), 7.60 (2H, d, J¼ 6.6 Hz, Ar-H, H2�& H6�), 7.92 (1H, s,
CH¼C). 13C-NMR (DMSO-d6, d ppm): 42.7 (CH2COOH), 56.0 (OCH3),
115.5, 117.8, 125.7, 132.9, 134.3, 142.7, 161.8, 165.6, 167.4,
168.5(CO). Anal. Calc. for C13H11NO5S (293.29): C, 53.24; H, 3.78; N,
4.78. Found C, 53.09; H, 3.85; N, 4.93.

2-(5-(3-methoxybenzylidene)-2,4-dioxothiazolidin-3-yl) acetic acid (3g).
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The product was obtained as light-yellow crystals in yield 93%,
mp: 184–186 �C.

IR (KBr, cm�1): 3372 (OH of COOH), 2940 (CH-aliphatic), 1734,
1691, 1609 (CO). 1H-NMR (DMSO-d6, d ppm): 3.78 (3H, s, OCH3),
4.36 (2H, s, CH2-COOH), 7.06 (1H, d, J¼ 7.8 Hz, Ar-H, H4�), 7.17 (2H,
s, Ar-H, H2� & H6�), 7.42 (1H, dd, J¼ 7.8 & 4.2 Hz, Ar-H, H5�), 7.93(1H,
s, CH¼C). 13C-NMR (DMSO-d6, d ppm): 42.7 (CH2-COOH), 55.7
(OCH3), 116.0, 117.2, 121.5, 122.4, 130.9, 134.3, 134.5.142.7, 160.1,
165.4, 167.3, 168.4 (CO). Anal. Calc. for C13H11NO5S (293.29): C,
53.24; H, 3.78; N, 4.78. Found C, 53.09; H, 3.85; N, 4.93.

2.3. CA inhibition assay

An Applied Photophysics stopped-flow instrument has been used
for assaying the CA catalysed CO2 hydration activity46. Phenol red
(at a concentration of 0.2mM) was used as indicator, working at
the absorbance maximum of 557 nm, with 20mM Hepes (pH 7.5)
as buffer and 20mM Na2SO4 (for maintaining constant the ionic
strength), following the initial rates of the CA-catalysed CO2 hydra-
tion reaction for a period of 10–100 s. The CO2 concentrations
ranged from 1.7 to 17mM for the determination of the kinetic
parameters and inhibition constants. For each inhibitor, at least six
traces of the initial 5–10% of the reaction have been used for
determining the initial velocity. The uncatalysed rates were deter-
mined in the same manner and subtracted from the total

observed rates. Stock solutions of inhibitor (0.1mM) were pre-
pared in distilled–deionised water, and dilutions up to 0.01 nM
were done thereafter with the assay buffer. Inhibitor and enzyme
solutions were preincubated together for 15min at room tempera-
ture prior to assay in order to allow for the formation of the E–I
complex. The inhibition constants were obtained by nonlinear
least-squares methods using PRISM 3 and the Cheng–Prusoff
equation, as reported earlier47–50, and represent the mean from at
least three different determinations. All CA isoforms were recom-
binant ones obtained in-house as reported earlier51–53.

3. Results and discussion

3.1. Chemistry

Condensation of thiourea with chloroacetic acid afforded 2,4-diox-
othiazolidine 1, which was reacted with aromatic aldehydes lead-
ing to the alkenyl key intermediates 2. These were further N-
alkylated with methyl bromoacetate followed by removal of the
methyl ester protection, which afforded the 2,4-dioxothiazolidinyl
acetic acids 3a–g (Scheme 1).

The nature of groups R attached to the aromatic ring was
chosen in such a way as to induce chemical diversity, with both
electron-attracting and electron-donating moieties being included
in the new derivatives 3a–3g generated by the above-
described approach.

3.2. Carbonic anhydrase inhibition

Carboxylic acid derivatives 3 reported here were assayed for the
in vitro inhibition of four major human CA isoforms, the cytosolic
hCA I and II (widespread isoforms in a multitude of tissues and
organs)1–5, and the tumor-associated, transmembrane ones hCA IX
and XII, recently validated antitumor/antimetastatic targets6,7

(Table 1).
As shown from data of Table 1, unlike the standard sulphona-

mide acetazolamide, which is an efficient, nanomolar hCA I and II
inhibitor, the carboxylic acids 3 did not inhibit these two isoforms
(KIs > 100 mM), a situation also seen with other carboxylates such

Scheme 1. Preparation of 2,4-dioxothiazolidinyl acetic acids 3a–3g.
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as the 2-hydroxy-cinnamic acids formed by the CAs catalysed
hydrolysis of coumarins26. hCA IX was on the other hand inhibited
in the high micromolar range by most of these derivatives, except
3b and 3g which had KIs > 100 mM. The best hCA IX inhibitors
were 3c and 3f which have KIs of 3.1–3.2 mM and incorporate 4-
chloro and 4-methoxy moieties in the aromatic part of the mol-
ecule. Structurally related derivatives such as 3a, 3d, and 3e had
inhibition constants in the range of 22.2–33.3 mM, being thus an
order of magnitude less effective compared to 3c and 3f. Thus,
very minor structural changes lead from a low micromolar to a
high micromolar and to an ineffective hCA IX inhibitor (Table 1).

Surprisingly, hCA XII was effectively inhibited by all carboxy-
lates 3, in the submicromolar range, with KIs of 030–0.93 mM. The
structure-activity relationship is quite flat, since the difference in
activity between these compounds is quite low. What is really
remarkable is the fact that some of these CAIS are highly CA XII-
selective, such as for example 3b and 3g, which do not signifi-
cantly inhibit hCA I, II and IX, but are submicromolar inhibitors of
CA XII, a profile not seen with other classes of compounds
until now.

4. Conclusions

A small series of 2,4-dioxothiazolidinyl acetic acids was prepared
from thiourea, chloroacetic acid, aromatic aldehydes and ethyl-2-
bromoacetate. They were assayed for the inhibition of four physio-
logically relevant CA isoforms, the cytosolic hCA I and II, and the
transmembrane hCA IX and XII, involved among others in tumori-
genesis (hCA IX and XII) and glaucoma (hCA II and XII). The two
cytosolic isoforms were not inhibited by these carboxylates, which
were also rather ineffective as hCA IX inhibitors. On the other
hand, they showed submicromolar hCA XII inhibition, with KIs in
the range of 0.30–0.93 mM, making them highly CA XII-select-
ive inhibitors.
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