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Transcriptional regulatory networks underlying
gene expression changes in Huntington’s disease
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Abstract

Transcriptional changes occur presymptomatically and through-
out Huntington’s disease (HD), motivating the study of transcrip-
tional regulatory networks (TRNs) in HD. We reconstructed a
genome-scale model for the target genes of 718 transcription
factors (TFs) in the mouse striatum by integrating a model of
genomic binding sites with transcriptome profiling of striatal
tissue from HD mouse models. We identified 48 differentially
expressed TF-target gene modules associated with age- and CAG
repeat length-dependent gene expression changes in Htt CAG
knock-in mouse striatum and replicated many of these associa-
tions in independent transcriptomic and proteomic datasets.
Thirteen of 48 of these predicted TF-target gene modules were
also differentially expressed in striatal tissue from human
disease. We experimentally validated a specific model prediction
that SMAD3 regulates HD-related gene expression changes using
chromatin immunoprecipitation and deep sequencing (ChIP-seq)
of mouse striatum. We found CAG repeat length-dependent
changes in the genomic occupancy of SMAD3 and confirmed our
model’s prediction that many SMAD3 target genes are downregu-
lated early in HD.
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Introduction

Massive changes in gene expression accompany many human

diseases, yet we still know relatively little about how specific tran-

scription factors (TFs) mediate these changes. Comprehensive char-

acterization of disease-related transcriptional regulatory networks

(TRNs) can help clarify potential disease mechanisms and prioritize

targets for novel therapeutics. A variety of approaches have been

developed to reconstruct interactions between TFs and their target

genes, including models focused on reconstructing the physical loca-

tions of transcription factor binding (Gerstein et al, 2012; Neph et al,

2012), as well as computational algorithms utilizing gene co-

expression to infer regulatory relationships (Friedman et al, 2000;

Bonneau et al, 2006; Margolin et al, 2006; Huynh-Thu et al, 2010;

Marbach et al, 2012; Reiss et al, 2015). These approaches have

yielded insights into the regulation of a range of biological systems,

yet accurate, genome-scale models of mammalian TRNs remain

elusive.

Several lines of evidence point to a specific role for transcrip-

tional regulatory changes in Huntington’s disease (HD). HD is a fatal

neurodegenerative disease caused by dominant inheritance of a

polyglutamine (polyQ)-coding expanded trinucleotide (CAG) repeat

in the HTT gene (MacDonald et al, 1993). Widespread transcrip-

tional changes have been detected in post-mortem brain tissue from

HD cases versus controls (Hodges et al, 2006), and transcriptional

changes are among the earliest detectable phenotypes in HD mouse

models (Luthi-Carter et al, 2000; Seredenina & Luthi-Carter, 2012;

preprint: Bragg et al, 2016; Langfelder et al, 2016; Ament et al,

2017). These transcriptional changes are particularly prominent in

the striatum, the most profoundly impacted brain region in HD

(Vonsattel et al, 1985; Tabrizi et al, 2013). Replicable gene expres-

sion changes in the striatum of HD patients and HD mouse models

include downregulation of genes related to synaptic function in

medium spiny neurons accompanied by upregulation of genes
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related to neuroinflammation (Seredenina & Luthi-Carter, 2012;

Labadorf et al, 2015).

Some of these transcriptional changes may be directly related to

the functions of the huntingtin (HTT) protein. Both wild-type and

mutant HTT (mHTT) protein have been shown to associate with

genomic DNA, and mHTT also interacts with histone-modifying

enzymes and is associated with changes in chromatin states (Benn

et al, 2008; Thomas et al, 2008; Seong et al, 2010). Wild-type HTT

protein has been shown to regulate the activity of some TFs

(Zuccato et al, 2007). Also, high concentrations of nuclear mHTT

aggregates sequester TF and co-factor proteins and interfere with

genomic target finding, though it is unknown whether this occurs at

physiological concentrations of mHTT (Wheeler et al, 2000;

Shirasaki et al, 2012; Li et al, 2016). Roles for several TFs in HD have

been characterized (Zuccato et al, 2003; Arlotta et al, 2008; Tang

et al, 2012; Dickey et al, 2015), but we lack a global model for the

relationships between HD-related changes in the activity of specific

TFs and the downstream pathological processes that they regulate.

The availability of large transcriptomics datasets related to HD is

now making it possible to begin comprehensive network analysis of

the disease, particularly in mouse models. Langfelder et al (2016)

generated RNA-seq from the striatum of 144 knock-in mice

heterozygous for an allelic series of HD mutations with differing

CAG repeat lengths, as well as 64 wild-type littermate controls. They

used gene co-expression networks to identify modules of co-

expressed genes with altered expression in HD. However, their anal-

yses did not attempt to identify any of the TFs responsible for these

gene expression changes.

Here, we investigated the roles of core TFs that are predicted to

drive the gene expression changes in HD, using a comprehensive

network biology approach. We used a machine learning strategy to

reconstruct a genome-scale model for TF-target gene interactions in

the mouse striatum, combining publicly available DNase-seq with

brain transcriptomics data from HD mouse models. We identified 48

core TFs whose predicted target genes were overrepresented among

differentially expressed genes in at least five of fifteen conditions

defined by a mouse’s age and CAG repeat length, and we replicated

the predicted core TFs and differential gene expression associations

in multiple datasets from HD mouse models and from HD cases and

controls. Based on the coordinated downregulation in HD knock-in

mice of transcripts and proteins for Smad3 and its predicted target

genes, we hypothesized that SMAD3 may be a core regulator of

early gene expression changes in HD. Using chromatin immunopre-

cipitation and deep sequencing (ChIP-seq), we demonstrate CAG

repeat-dependent changes in SMAD3 occupancy and downregula-

tion of SMAD3 target genes in mouse brain tissue. In conclusion,

the results from our TRN analysis and ChIP-seq studies of HD reveal

new insights into predicted transcription factor drivers of complex

gene expression changes in this neurodegenerative disease.

Results

A genome-scale transcriptional regulatory network model of the
mouse striatum

We reconstructed a model of TF-target gene interactions in the

mouse striatum by integrating information about transcription factor

binding sites (TFBSs) with evidence from gene co-expression in the

mouse striatum (Fig 1A). We predicted the binding sites for 871 TFs

in the mouse genome using digital genomic footprinting. We identi-

fied footprints in DNase-seq data from 23 mouse tissues (Yue et al,

2014) using Wellington (Piper et al, 2013). Footprints are defined as

short genomic regions with reduced accessibility to the DNase-I

enzyme in at least one tissue. Our goal in combining DNase-seq data

from multiple tissues was to reconstruct a single TFBS model that

could make useful predictions about TF-target genes, even in condi-

tions for which DNase-seq data were not available. We identified

3,242,454 DNase-I footprints. Genomic footprints are often indica-

tive of occupancy by a DNA-binding protein. We scanned these foot-

prints for 2,547 sequence motifs from TRANSFAC (Matys et al,

2006), JASPAR (Mathelier et al, 2014), UniProbe (Hume et al,

2015), and high-throughput SELEX (Jolma et al, 2013) to predict

binding sites for specific TFs (TFBSs), and we compared these

TFBSs to the locations of transcription start sites. We considered a

TF to be a potential regulator of a gene if it had at least one binding

site within a 5-kb region upstream and downstream of the TSS,

which had been shown previously to maximize target gene predic-

tion from digital genomic footprinting of the human genome

(Plaisier et al, 2016).

To assess the accuracy of this TFBS model, we compared our TFBS

predictions to ChIP-seq experiments from ENCODE (Yue et al, 2014)

and ChEA (Lachmann et al, 2010; Appendix Fig S1). For 50 of 52 TFs,

there was significant overlap between the sets of target genes

predicted by our TFBS model versus ChIP-seq (FDR < 1%). Our TFBS

model had a median 78% recall of target genes identified by ChIP-seq

and a median 22% precision. That is, our model identified the major-

ity of true-positive target genes but also made a large number of false-

positive predictions. Low precision is expected in this model, since

TFs typically occupy only a subset of their binding sites in a given

tissue. Nonetheless, low precision indicates a need for additional filter-

ing steps to identify target genes that are relevant in a specific context.

We sought to identify TF-target gene interactions that are active

in the mouse striatum, by evaluating gene co-expression patterns in

RNA-seq transcriptome profiles from the striatum of 208 mice

(Langfelder et al, 2016). The general idea is that active regulation of

a target gene by a TF is likely to be associated with strong TF-gene

co-expression, and TFBSs allow us to identify direct regulatory inter-

actions. This step also removes TFs with low expression: Of the 871

TFs with TFBS predictions, we retained as potential regulators the

718 TFs that were expressed in the striatum. We fit a regression

model to predict the expression of each gene based on the combined

expression patterns of TFs with one or more TFBSs �5 kb of that

gene’s transcription start site. We used LASSO regularization to

select the subset of TFs whose expression patterns together predicted

the expression of the target gene. This approach extends several

previous regression methods for TRN reconstruction (Tibshirani,

1996; Bonneau et al, 2006; Friedman et al, 2010; Chandrasekaran

et al, 2011; Haury et al, 2012) by introducing TFBS-based

constraints. In preliminary work, we considered a range of LASSO

and elastic net (a = 0.2, 0.4, 0.6, 0.8, 1.0) regularization penalties

and evaluated performance in fivefold cross-validation (see Materials

and Methods). We selected LASSO based on the highest correlation

between prediction accuracy in training versus test sets.

We validated the predictive accuracy of our TRN model by

comparing predicted versus observed expression levels of each
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gene. Our model explained > 50% of expression variation for

13,009 genes in training data (Fig 1B). Prediction accuracy in five-

fold cross-validation was nearly identical to prediction accuracy in

training data. That is, genes whose expression was accurately

predicted in the training data were also accurately predicted in the

test sets (r = 0.94; Fig 1B). Genes whose expression was not accu-

rately predicted generally had low expression in the striatum

(Appendix Fig S2). We removed poorly predicted genes, based on

their training set accuracy before moving to the test set. The final

TRN model contains 13,009 target genes regulated by 718 TFs via

176,518 interactions (Dataset EV1). Our model predicts a median of

14 TFs regulating each target gene and a median of 147 target genes

per TF (Fig 1C and D). Fifteen TFs were predicted to regulate

> 1,000 target genes (Appendix Fig S3). Importantly, TF-target gene

interactions retained in our striatum-specific TRN model were

enriched for genomic footprints in whole brains of 8-week-old

A

B

C E

D

Figure 1. Reconstruction and validation of a transcriptional regulatory network (TRN) model of the mouse striatum.

A Schematic for reconstruction of tissue-specific TRN models by combining information about TF binding sites with evidence from co-expression.
B Training (black) and test set (blue) prediction accuracy for genes in the mouse striatum TRN model. Genes are ordered on the x-axis according to their training set

prediction accuracy (r2, predicted versus actual expression). The dotted black line indicates the cut off for the number of genes which the model explained > 50% of
expression variation in training data.

C Distribution for the number of predicted regulators per target gene.
D Distribution for the number of predicted target genes per TF.
E Enrichments of TF-target gene interactions in the mouse striatum TRN for TFBSs supported by DNase footprints identified in 23 tissues.
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C57BL/6 male mice (P = 1.4e-82) and in fetal brain (P = 2.1e-88),

supporting the idea that these TF-target gene interactions reflect TF

binding sites in the brain (Fig 1E).

We defined “TF-target gene modules” as the sets of genes

predicted to be direct targets of each of the 718 TFs. Of these 718

TF-target gene modules, 135 were enriched for a functional category

from Gene Ontology (Ashburner et al, 2000; FDR < 5%, adjusting

for 4,624 GO terms). Of the 718 TF modules, 337 were enriched

(P < 0.01) for genes expressed specifically in a major neuronal or

non-neuronal striatal cell type (Doyle et al, 2008; Dougherty et al,

2010; Zhang et al, 2014), including known cell-type-specific activi-

ties for both neuronal (e.g., Npas1-3) and glia-specific TFs (e.g.,

Olig1, Olig2) (Appendix Fig S4). These results suggest that many

TRN modules reflect the activities of TFs on biological processes

within specific cell types.

Prediction of core TFs associated with transcriptional changes in
HD mouse models

We next sought to identify TFs that are core regulators of transcrip-

tional changes in HD. Of the 208 mice in the RNA-seq dataset used

for network reconstruction, 144 were heterozygous for a human

HTT exon 1 allele knocked into the endogenous Htt locus (Wheeler

et al, 1999; Menalled et al, 2003; Langfelder et al, 2016), and the

remaining 64 mice were C57BL/6J littermate controls. Six distinct

Htt alleles differing in the length of the CAG repeat were used. In

humans, the shortest of these alleles—HttQ20—is non-pathogenic,

and the remaining alleles—HttQ80, HttQ92, HttQ111, HttQ140, and

HttQ175—are associated with progressively earlier onset of pheno-

types. We used RNA-seq data generated by Langfelder et al

(Langfelder et al, 2016) from four male and four female mice of

each genotype at each of three time points: 2-month-old, 6-month-

old, and 10-month-old mice. These mouse models undergo subtle

age- and allele-dependent changes in behavior, and all of the ages

profiled precede detectable neuronal cell death (Carty et al, 2015;

Rothe et al, 2015; Alexandrov et al, 2016; preprint: Bragg et al,

2016).

We evaluated gene expression differences between HttQ20/+ mice

and mice with each of the five pathogenic Htt alleles at each time

point, a total of 15 comparisons. The extent of gene expression

changes increased in an age- and CAG length-dependent fashion,

with extensive overlap between the DEGs identified in each condi-

tion (Fig 2). A total of 8,985 genes showed some evidence of dif-

ferential expression (DEGs; P < 0.01) in at least one of the 15

conditions, of which 5,132 were significant at a stringent false

discovery rate < 1%. These results suggest that robust and replica-

ble gene expression changes occur in the striatum of these HD

mouse models at ages well before the onset of neuronal cell death

or other overt pathology.

The predicted target genes of 209 TFs were overrepresented for

DEGs in at least one of the 15 conditions (three ages × five mouse

models; Fisher’s exact test, P < 1e-6; Dataset EV2). Repeating this

analysis in 1,000 permuted datasets indicated that enrichments at

this level of significance never occurred in more than four condi-

tions (i.e., zero instances in 718,000 tests across 1,000 permutations

of 718 TF-target gene networks). We therefore focused on a core set

of 48 TFs whose predicted target genes were overrepresented for

DEGs in five or more conditions. Notably, 44 of these 48 TFs were

differentially expressed (FDR < 0.01) in at least one of the 15 condi-

tions (Appendix Fig S5). We refer to these 48 TFs as core TFs.

Replication of core TFs in independent datasets

We sought to replicate the associations of core TFs in HD by testing

for enrichment of TF-target gene modules for differentially

expressed genes or proteins in independent HD-related datasets.

First, we conducted a meta-analysis of differentially expressed TF-

target gene modules in four independent microarray gene expres-

sion profiling studies of striatal tissue from HD mouse models (Kuhn

et al, 2007; Becanovic et al, 2010; Fossale et al, 2011; Giles et al,

2012). Targets of 46 of the 48 core TFs were enriched for DEGs

(meta-analysis P-value < 0.01; Fig 3A and B) in the microarray data.

The overlap between TFs whose target genes were differentially

expressed in HD versus control mice in microarray datasets and the

core TFs from our primary dataset was significantly greater than

expected by chance (Fisher’s exact test: P = 5.7e-32). These results

suggest that transcriptional changes in most of the core TF-target

gene modules were preserved across multiple datasets and mouse

models of HD.

Next, we asked whether the target genes of core TFs were also

differentially abundant at the protein level. We studied quantitative

proteomics data from the striatum of 64 6-month-old HD knock-in

mice (Langfelder et al, 2016). These were a subset of the mice pro-

filed with RNA-seq in our primary dataset. Targets of 22 of the 48

core TFs were enriched for differentially abundant proteins (Fisher’s

exact test, P < 0.01; Fig 3A and B). The overlap between TFs whose

target genes were differentially abundant between CAG-expanded

versus wild-type mice and the core regulator TFs was significantly

greater than expected by chance (Fisher’s exact test: P = 5.7e-20).

Third, we asked whether TFs predicted to drive early gene

expression changes in mouse models of HD might also regulate gene

expression changes in human disease. This analysis is complicated
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Figure 2. Robust changes in striatal gene expression in 2-, 6-, and 10-
month-old HD knock-in mice.

Counts of differentially expressed genes in eachmousemodel at each time point

(allele shown versus Q20; edgeR log ratio test; nominal P-value < 0.01).
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Figure 3. Replication of core TFs in independent datasets.

A Venn diagram showing overlap between core regulator TF-target gene modules identified in the primary RNA-seq dataset, compared to TF-target gene modules
enriched for differentially expressed genes in three independent datasets.

B �log10(P-values) for the strength of enrichment of each of the core regulator TF-target gene modules for differentially expressed genes in each of the four datasets.
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by the fact that striatal samples available from post-mortem HD

patients are almost universally from late-stage disease, whereas our

studies in mice focus on much earlier time points. In addition, the

striatum is heavily degraded in late-stage HD, with many dead

neurons and extensive astrogliosis (Vonsattel et al, 1985). For these

reasons, transcriptomic changes in HD cases versus controls that

are closely related to pathogenesis may be masked by a multitude of

transcriptomic changes that are secondary to pathology. To over-

come these issues and maximize our ability to detect overlap with

the mouse models, we performed two tests in which we considered

either a restrictive set of TFs from the HD mouse models (the 48

core regulators), as well as a broader set of TFs (all 209 TFs whose

predicted target genes were enriched in at least one condition from

our primary mouse RNA-seq dataset). We reconstructed a TRN

model specific to the human striatum by integrating a map of TFBSs

(Plaisier et al, 2016) based on digital genomic footprinting of 41

human cell types (Neph et al, 2012) with microarray gene expres-

sion profiles of post-mortem striatal tissue from 36 HD cases and 30

controls (Hodges et al, 2006). As in our TRN model for the mouse

striatum, we fit a LASSO regression model to predict the expression

of each gene in human striatum from the expression levels of TFs

with predicted TFBSs within 5 kb of its transcription start sites

(Appendix Fig S6). A total of 616 TFs had one-to-one orthology and

≥ 10 predicted target genes in both the mouse and human striatum

TRN models. Using these 616 human TF-target gene modules, we

tested the enrichment of differentially expressed genes in the

caudate nucleus (part of the dorsal striatum) from HD cases versus

controls (Hodges et al, 2006; Durrenberger et al, 2015). Predicted

target genes for 13 of the 48 core TFs from mouse striatum were also

overrepresented among differentially expressed genes in HD cases

versus controls. This overlap was not statistically greater than

expected by chance (odds ratio = 1.79; P = 0.05; Fig 3A and B).

However, when we considered the broader set of 209 TF-target gene

modules from the primary mouse RNA-seq dataset, we found signif-

icant overlap for TF-target gene modules that were downregulated

both in HD and in HD mouse models (28 shared TF-target gene

modules; odds ratio = 3.6, P = 5.0e-5; Appendix Fig S6D) and for

TF-target gene modules that were upregulated both in HD and in

HD mouse models (26 shared TF-target gene modules; odds

ratio = 1.8, P = 0.02; Appendix Fig S6E). These results suggest that

some transcriptional programs are shared between the earliest

stages of molecular progression (assayed in mouse models) and late

stages of human disease. However, the human data support for rela-

tively few of the core 48 TFs from mouse models.

Fourth, we asked whether core TFs in striatum also regulate HTT

CAG length-dependent gene expression changes in other tissues. We

analyzed gene expression in the cortex, hippocampus, cerebellum,

and liver of HTT knock-in mice, using RNA-seq of these tissues from

168 of the mice in our primary striatal dataset (Langfelder et al,

2016). For each tissue, we reconstructed a transcriptional regulatory

network model equivalent to our TRN model for mouse striatum,

and we tested for the enrichment of Htt-allele-dependent gene

expression changes among the predicted targets of each TF (Dataset

EV3). We found a statistically significant overlap between the 48

core TFs in striatum versus the TF-target gene modules enriched for

differentially expressed genes in each of the other four tissues (48

core TFs in striatum versus enriched modules in cortex: 16 shared

TFs, odds ratio = 2.6, P = 3.4e-3; striatum versus hippocampus: 21

shared TFs, odds ratio = 3.0, P = 4.1e-4; striatum versus cerebel-

lum: 17 shared TFs, odds ratio = 2.17, P = 1.3e-2; striatum versus

liver: 25 shared TFs, odds ratio = 3.3, P = 8.2e-5). These analyses

revealed a wide range of tissue specificity for the associations of the

48 core striatal TFs with HTT CAG length-dependent gene expres-

sion changes (Appendix Fig S7). For instance, the predicted targets

of RXRG were enriched for differentially expressed genes in all five

tissues, whereas targets of IRF2 were enriched only in striatum.

Notably, targets of 13 of the 48 core regulator TFs were enriched

for differentially expressed genes in all four striatal datasets: GLI3,

IRF2, KLF16, NPAS2, PAX6, RARB, RFX2, RXRG, SMAD3, TCF12,

TEF, UBP1, and VEZF1. These 13 TFs may be especially interesting

for follow-up studies.

Biological associations of core TFs

We evaluated relationships among the 48 core TFs based on cluster-

ing and network topology. Plotting TF-to-TF regulatory interactions

among the 48 core TFs (Fig 4A–D) revealed two distinct TF-to-TF

sub-networks, characterized by numerous positive interactions

within sub-networks and by fewer, mostly inhibitory interactions

between sub-networks. The target genes of TFs in the first sub-

network were predominantly downregulated in HD, while the target

genes of TFs in the second sub-network were predominantly upreg-

ulated. Hierarchical clustering of the 48 core TFs based on the

expression patterns of their predicted target genes revealed similar

groupings of TFs whose target genes were predominantly down-

versus upregulated (Fig 5).

We studied the predicted target genes of each core TF to charac-

terize possible roles for these TFs in HD. Downregulated TF-target

gene modules were overrepresented for genes specifically expressed

in DRD1+ and DRD2+ medium spiny neurons (Fig 5). Functional

enrichments within these modules were mostly related to synaptic

function, including metal ion transmembrane transporters (targets

of NPAS2, P = 2.3e-4), voltage-gated ion channels (targets of MAFA,

P = 8.1e-4), and protein localization to cell surface (targets of RXRG,

P = 1.7e-4). These network changes may be linked to synapse loss

in medium spiny neurons, which is known to occur in knock-in

mouse models of HD (Deng et al, 2013).

Some upregulated TF-target gene modules were overrepresented

for genes specifically expressed in oligodendrocytes or astrocytes,

while others were overrepresented for genes specifically expressed

in neurons (Fig 5). Functional enrichments within these modules

included Gene Ontology terms related to apoptosis (“positive regula-

tion of extrinsic apoptotic signaling pathway via death domain

receptors,” targets of WT1, P = 1.8e-4) and DNA repair (targets of

RUNX2, “single-strand selective uracil DNA N-glycosylase activity,”

P = 2.0e-4). Therefore, core TFs whose target genes were predomi-

nantly upregulated may contribute to a variety of pathological

processes both in neurons and in glia. Oligodendrocyte counts have

been shown to be increased in HD mutation carriers, whereas

micro- and astrogliosis are thought to begin later in disease progres-

sion (Vonsattel et al, 1985).

An open question in the field is whether the same sequence of

pathogenic events underlies disease progression in juvenile-onset

HD due to HTT alleles with CAG tracts with > 60 repeats versus

adult-onset HD due to HTT alleles with � 40–60 CAG repeats

(Nance & Myers, 2001). This question is of practical relevance for
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modeling HD in mice, since mouse models with very long CAG

tracts are often used in research due to their faster rates of pheno-

typic progression within a 2-year lifespan. To address this question,

we evaluated overlap between TF-target gene modules activated at

the earliest time points in mice with each of the five pathogenic Htt

alleles in our dataset. In the mice with the longest Htt alleles—

HttQ175 and HttQ140—the target genes of core TFs first became

enriched for differentially expressed genes in 2-month-old mice. In

mice with relatively short Htt alleles—HttQ111, HttQ92, and HttQ80—

target genes of core TFs became enriched for differentially expressed

genes beginning in 6-month-old mice. We found that eight modules—

the predicted target genes of IRF2, MAFA, KLF16, LMO2, NPAS2,

RUNX2, RXRG, and VEZF1—were significantly enriched for DEGs in at

least three of these five conditions (2-month-old HttQ175/+, 2-month-

old HttQ140/+, 6-month-old HttQ111/+, 6-month-old HttQ92/+, and 6-

month-old HttQ80/+). A limitation of this analysis is that the alleles

used in this study are associated with juvenile-onset disease, and the

extent to which these results extend to adult-onset alleles remains to

be determined. Nonetheless, these results suggest that many aspects of

the trajectory of transcriptional changes are shared across the CAG

lengths that have been studied. Notably, all the TFs whose target genes

were enriched for differentially expressed genes at the very earliest

time points were enriched primarily for genes that were downregulated

in HD. Strong enrichments of TF-target gene modules for upregulated

genes occurred only at slightly later time points.

Genome-wide characterization of SMAD3 binding sites in the
mouse striatum supports a role in early gene dysregulation in HD

We selected the TF SMAD3 for functional validation for the follow-

ing reasons. SMAD3 was one of 13 core TFs whose predicted target

genes were overrepresented among differentially expressed genes

across all four independent datasets. SMAD3’s predicted target

genes were predominantly downregulated in an age- and CAG

length-dependent fashion, beginning at or before 6 months of age

(Fig 5). SMAD3 acts primarily downstream of TGF-b signaling,

making it a potential drug target. In addition, an initial screen of

antibodies to several of the core TFs revealed a high-quality SMAD3

antibody, suitable for chromatin immunoprecipitation.

Decreased expression of SMAD3 target genes could result from a

change in SMAD3 expression. In addition, changes in the expression

levels of SMAD3 target genes could result from a change in TGF-b
signaling, as SMAD3 activation and nuclear localization depend on

its phosphorylation at Ser423 and Ser425 by the TGF-b receptor (Liu

et al, 1997). To evaluate these possibilities, we examined Smad3

RNA, phospho-Ser423/425-SMAD3 protein, and total SMAD3

protein in the striatum of HD knock-in mice versus wild-type

controls. We detected an age- and CAG length-dependent decrease

in Smad3 RNA, similar to the expression of its predicted target genes

(Fig 6A). In addition, Western blots revealed a trend toward a lower

ratio of phospho-Ser423/425-SMAD3 to total SMAD3 in the striatum
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Figure 4. Predicted TF-to-TF interactions among 48 putative core regulators of transcriptional changes in mouse models of Huntington’s disease.

A–D Nodes and edges indicate direct regulatory interactions between TFs predicted by the mouse striatum TRN model. Solid black arrows and dotted red arrows
indicate positive versus inhibitory regulation, respectively, and the width of the line is proportional to the predicted effect size. Blue and orange shading of nodes
indicates that the TF’s target genes are overrepresented for downregulated versus upregulated genes in HD mouse models, respectively. If a TF’s target genes are
enriched in both directions, the stronger enrichment is shown. Each panel indicates the network state in a specific condition: (A) 2-month-old HttQ92/+ mice, (B) 6-
month-old HttQ92/+ mice, (C) 2-month-old HttQ175/+ mice, or (D) 6-month-old HttQ175/+ mice.
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of 4- and 11-month-old HttQ111/+ mice, compared to wild-type

controls (ANOVA, genotype: F1,16 = 3.714, P = 0.072; age: F1,16 =

4.590, P = 0.048; interaction: F1,16 = 0.304, P = 0.589), suggesting a

possible decrease in the activation by TGF-b (Appendix Fig S8). By

contrast, we did not detect a significant change in total SMAD3

protein in these mice (ANOVA, genotype: F1,16 = 0.487, P = 0.495;

age: F1,16 = 0.506, P = 0.487; interaction: F1,16 = 1.085, P = 0.313;

Appendix Fig S8). Similarly, quantitative proteomics of an allelic

series of 6-month-old HD knock-in mice revealed a non-significant

trend toward decreased total SMAD3 protein (Pearson’s correlation;

SMAD3 versus Htt CAG length: r = �0.25, P-value = 0.12). In

summary, we find evidence for decreased Smad3 RNA expression

and a trend toward decreased SMAD3 activation by TGF-b in the

striatum of HD knock-in mice, though any changes in SMAD3

protein are subtle. Overall, these results support our prediction from

network modeling that decreased SMAD3 activity is an early event

in the striatum of Htt CAG knock-in mice.

Next, we characterized the binding sites of SMAD3 in the stria-

tum of 4-month-old HttQ111/+ mice and wild-type littermate controls

to validate and extend our network predictions. We performed

Figure 5. Enrichments of the 48 core TFs for differentially expressed genes in each condition and for cell-type-specific genes.

Heatmap showing the enrichments of each TF’s target genes for down- and upregulated genes for each Htt allele at each time point as well as enrichments of each TF’s target

genes for genes expressed specifically in one of sevenmajor cell types in themouse striatum. Arrows at top indicate the 13 TFswith replication in all four independent datasets.

8 of 16 Molecular Systems Biology 14: e7435 | 2018 ª 2018 The Authors

Molecular Systems Biology TF networks in Huntington’s disease Seth A Ament et al



-100-200 0 100 200

1e-3

2e-3

3e-3

Distance from Summit (bp)

P
ro

ba
bi

lit
y 

of
 M

ot
if

Pde1b Ppp1r1aNckap1lKcnt1 Camsap1Adcy5 Sec22a

Smad3 WT

Smad3 Q111

RNA Pol II

Input DNA

Smad3 Peaks

RefSeq Genes

G H I

5419 51721 632

position

bit
s

1

2

1 2 3 4 5 6 7 8 9 10 11 12 13

Distance to TSS (kb)

P
ro

po
rti

on
 o

f P
ea

ks

< 0
.1

0.1
 − 

1
1 −

 5
5 −

 10

10
 − 

50

50
 − 

10
0

> 1
00

0.8

0.6

0.4

0.2

0

Pde1b
Mapk4
Ccm2
Cap1
Akt2
Camkk2
Gipc2
1110018G07Rik
5330417C22Rik
Zmynd8
Bcr
Inf2
Rap1gap
Ric8b
Sez6
Phactr1
Kif17
Vti1b
Tpm1
E130012A19Rik
Dclk1
Kcnt1
2310067B10Rik
Pitpnm2
Camk2b
Mprip
Sh3bp1
Kcnh3
Plekhg5
N4bp3
Copg
Atp8b2
Myo18a
Ccdc88c
Pde10a
Adcy5
Myh7
Zfyve28
Arpp21
Tcf7
Rhobtb2
Kdm4b
Rgs14
Tsnax
Nagk
Vill
Abcb10
Ece2
Abca7
Limk2

-7 70

z-score

Q
80

Q
92

Q
11

1
Q

14
0

Q
17

5
Q

80
Q

92
Q

11
1

Q
14

0
Q

17
5

Q
80

Q
92

Q
11

1
Q

14
0

Q
17

5

2 m 6 m 10 m

A

B C

D E

F

wildtype HttQ111/+

HttQ111/+ < WT HttQ111/+ > WT

DHS

Figure 6.

ª 2018 The Authors Molecular Systems Biology 14: e7435 | 2018 9 of 16

Seth A Ament et al TF networks in Huntington’s disease Molecular Systems Biology



chromatin immunoprecipitation and deep sequencing using an anti-

body specific to SMAD3 (ChIP-seq; n = 2 pooled samples per group,

with each pool containing DNA from three mice). Peak-calling

revealed 57,772 SMAD3 peaks (MACS2.1, FDR < 0.01 and > 10

reads in at least two of the four samples). Of the 57,772 SMAD3

peaks, 34,633 (59.9%) were located within 10 kb of transcription

start sites (TSSs), including at least one peak within 10 kb of the

TSSs for 11,727 genes (Fig 6B). The summits of SMAD3 peaks were

enriched for the SMAD2:SMAD3:SMAD4 motif (P-value = 7.2e-85;

Fig 6C). Importantly, the TSSs for 753 of the 938 computationally

predicted SMAD3 target genes in our TRN model were located

within 10 kb of at least one ChIP-based SMAD3 binding site. This

overlap was significantly greater than expected by chance (odds

ratio = 4.33, P-value = 2.8e-84).

We characterized the relationship between SMAD3 occupancy

and transcriptional activation by measuring the genomic occupancy

of RNA polymerase II (RNAPII) in the striatum of HttQ111/+ and

wild-type mice. RNAPII occupancy is a marker of active transcrip-

tion and of active transcription start sites. Occupancy of SMAD3 and

occupancy of RNAPII were positively correlated, across all genomic

regions (r = 0.70) and specifically within SMAD3 peaks (r = 0.71).

Thus, SMAD3 binding is associated with active transcription.

Similarly, we characterized the relationship between SMAD3

occupancy and chromatin accessibility, using publicly available

DNase-seq of midbrain tissue from wild-type mice. Of the 57,772

SMAD3 peaks, 22,650 (39.2%) overlapped a DNase-hypersensitive

site in the midbrain. Occupancy of SMAD3 was positively correlated

with DNase-I hypersensitivity across all genomic regions (r = 0.33)

and specifically within SMAD3 peaks (r = 0.25). Thus, SMAD3 bind-

ing sites are enriched for signatures of active enhancers.

We ranked genes from highest to lowest SMAD3 regulatory

potential based on the number of SMAD3 peaks within 10 kb of

their transcriptional start sites. We focused on the top 837 genes

with SMAD3 peak counts > 2 standard deviations above the mean.

These top 837 SMAD3 target genes were enriched (FDR < 0.01)

for 24 non-overlapping clusters of Gene Ontology terms

(Appendix Table S1). These enriched GO terms prominently

featured pathways related to gene regulation (“mRNA processing”,

P = 4.2e-9; “histone modification”, P = 1.7e-7; “transcriptional

repressor complex”, P = 3.7e-5), as well as functions more specifi-

cally related to brain function (“neuromuscular process controlling

balance”, P = 1.2e-7; “brain development”, P = 1.27e-6; “neuronal

cell body”, P = 2.5e-5).

We performed quantitative and qualitative analyses to compare

SMAD3 occupancy in HttQ111/+ versus wild-type mice. Of the

57,772 SMAD3 peaks, 51,721 (89.5%) were identified in both

HttQ111/+ and wild-type mice. A total of 5,419 peaks (9.4%) were

identified only in wild-type mice, while only 632 peaks (1.1%) were

identified only in HttQ111/+ mice (Fig 6D). Quantitative analyses of

differential binding with edgeR revealed four peaks whose occu-

pancy was significantly different (FDR < 0.05) between HttQ111/+

and wild-type mice. All four of these peaks were more weakly occu-

pied in HttQ111/+ mice. A total of 138 peaks had nominally signifi-

cant differences in occupancy between genotypes (P < 0.01). Of

these 138 peaks, 133 (96.4%) were more weakly occupied in

HttQ111/+ mice (Fig 6E). These results suggest that SMAD3 occu-

pancy is decreased at a subset of its binding sites in 4-month-old

HttQ111/+ mice.

Finally, we tested whether the top 837 SMAD3 target genes from

ChIP-seq were differentially expressed in HD knock-in mice. The top

837 SMAD3 target genes from ChIP-seq were significantly overrepre-

sented among genes that became downregulated in the striatum of

HD knock-in mice (223 downregulated SMAD3 target genes; odds

ratio = 2.0, P-value = 3.4e-15; Fig 6F). Example target gene tracks

are shown in Fig 6G–I including differentially expressed genes

Adcy5, Kcnt1, and Pde1b. By contrast, SMAD3 target genes were not

overrepresented among genes that became upregulated in the stria-

tum of HD mouse models (143 upregulated SMAD3 target genes,

odds ratio = 0.92, P = 0.40). These results are consistent with our

computational model, in which SMAD3 target genes were primarily

downregulated in HD knock-in mice. Therefore, reduced SMAD3

binding is associated with downregulation of its target genes in HD

mouse models.

Discussion

Here, we identified putative core TFs regulating gene expression

changes in HD by reconstructing genome-scale transcriptional regu-

latory network models for the mouse and human striatum. Identify-

ing core TFs in HD provides insights into the mechanisms of this

devastating, incurable disease. This method to reconstruct models

of mammalian transcriptional regulatory networks can be readily

applied to find regulators underlying any trait of interest.

Our model extends prior knowledge about the TFs involved in

HD. A role in HD for RARB is supported by ChIP-seq and transcrip-

tome profiling of striatal tissue from Rarb�/� mice (Niewiadomska-

Cimicka et al, 2016). A role in HD for FOXO1 is supported by experi-

mental evidence that FOXO signaling influences the vulnerability of

striatal neurons to mutant huntingtin (Parker et al, 2012). A role in

HD for RELB is supported by experimental evidence that NF-jB
signaling mediates aberrant neuroinflammatory responses in HD

and HD mouse models (Hsiao et al, 2013). Notably, microglia

counts in 10–12 months HttQ111/+ mice indicate that these cells are

◀ Figure 6. SMAD3 expression, genomic occupancy, and target gene expression in the striatum of HD mouse models.

A Progressive age- and Htt-allele-dependent changes in the expression of SMAD3 in mouse striatum. Bars indicate z-scores for the expression level in heterozygous
mice with each pathogenic Htt allele compared to age-matched HttQ20/+ mice.

B Distribution of the distances of 57,772 SMAD3 peaks identified by ChIP-seq to the nearest transcription start site (TSS).
C The summits of SMAD3 peaks are enriched for the sequence motif recognized by SMAD3 (JASPAR CORE MA0513.1, shown in inset).
D Overlap between peaks identified in HttQ111/+ versus wild-type mice.
E SMAD3 occupancy is decreased at a subset of peaks in HttQ111/+ versus wild-type mice. x-axis and y-axis represent the log2(fold change) and �log10(P-value),

respectively, for each peak region.
F Age- and Htt-allele-dependent expression patterns of the top 50 most strongly differentially expressed SMAD3 target genes.
G–I Genomic occupancy of SMAD3 and RNA polymerase II and accessibility of genomic DNA to DNase-I near (G) Adcy5, (H) Kcnt1, and (I) Pde1b.
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not proliferating (preprint: Bragg et al, 2016), suggesting that the

transcriptional changes observed in our study represent a proin-

flammatory state, rather than microgliosis per se. Other predicted

core TFs, including KLF16 and RXRG, have previously been noted

among differentially expressed genes in mouse models of HD

(Seredenina & Luthi-Carter, 2012). In some cases, known functions

for core TFs suggest hypotheses about their roles in HD. For

instance, NPAS2 is a component of the molecular clock, so its

dysfunction could contribute to circadian disturbances in HD

(Morton et al, 2005). Notably, the predicted target genes for several

TFs whose functions in HD have been studied by other investigators

—for example, REST (Zuccato et al, 2003), SREBF2 (Valenza et al,

2005), and FOXP1 (Tang et al, 2012)—were overrepresented for

differentially expressed genes in our model, but only at later time

points or more weakly than our top 48 core regulator TFs.

Our results suggest that HD involves parallel, asynchronous

changes in distinct down- versus upregulated TF sub-networks.

Targets of TFs in the downregulated sub-network are enriched for

synaptic genes and appear to be primarily neuronal. Targets of TFs in

the upregulated sub-network are enriched for stress response path-

ways (e.g., DNA damage repair, apoptosis). These upregulated

networks appear to involve processes occurring in both neurons and

glia. Downregulation of synaptic gene networks preceded upregula-

tion of stress response gene networks, suggesting that the synaptic

changes are more proximal to the mutant HTT protein. A large body

of prior work provides independent support for synaptic changes in

medium spiny neurons and of activated gliosis in HD pathogenesis

(Singhrao et al, 1999; Deng et al, 2013; Hsiao et al, 2013).

Replication across four independent datasets revealed 13 TFs

whose target genes were most consistently enriched among differen-

tially expressed genes. We propose that these TFs should be prioritized

for follow-up experiments, both to validate predicted target genes and

to evaluate specific biological functions for each TF. For instance, it

will be interesting to determine which (if any) of the core TFs have

direct protein–protein interactions with the HTT protein and to test

our model’s predictions about TF perturbations with specific aspects

of HD pathology. The target genes for most of these 13 TFs were

enriched for genes that were downregulated in HD and for neuron-

specific genes, consistent with the idea that pathological changes origi-

nate in medium spiny neurons. It is important to note that indepen-

dent datasets comprised from different mouse models, ages, and data

collection centers might dilute the reproducibility of key comparisons.

We feel that our analysis approach—comparing across multiple inde-

pendent studies—is therefore more stringent and retains only those

predictions for which there is consistent reproducibility.

Network modeling of SMAD3 target genes, changes in SMAD3

expression and phosphorylation, and SMAD3 ChIP-seq suggest that

SMAD3 and its target genes are downregulated in the striatum of

HD knock-in mice. Previous studies have described changes in

SMADs and upstream components of the TGF-b signaling pathway

in cellular and mouse models of HD, as well as in blood from HD

cases versus controls, but the direction of these effects was contra-

dictory between studies (Battaglia et al, 2011; Ring et al, 2015;

Bowles et al, 2017). Our results are the first characterization of this

system in the striatum of a genetically accurate mouse model with

physiological expression of mutant HTT and provide the first

evidence linking TGF-b and SMAD3 to downstream transcriptomic

changes in HD mouse models. These findings suggest an intriguing

possibility that agonists of TGF-b signaling could have therapeutic

benefit in HD patients. Consistent with this possibility, TGF-b treat-

ment reduced apoptotic cell death in neural stem cells with

expanded HTT CAG tracts (Ring et al, 2015).

Our method to reconstruct TRNs by integrating information

about TF occupancy with gene co-expression is likely to be broadly

applicable, providing a strategy to optimize both mechanistic and

quantitative accuracy. TRN reconstruction methods are based

purely on gene co-expression struggle to distinguish direct versus

indirect interactions. Physical models of TF occupancy provide poor

quantitative predictions because many TF binding sites are non-

functional or do not regulate the nearest gene. Our study demon-

strates that integrated TRN modeling can be utilized effectively to

study neurodegenerative diseases such as HD, combining data from

the ENCODE project with disease-specific transcriptome profiling.

Materials and Methods

Referenced datasets

We obtained RNA-seq and microarray gene expression profiling

data from the following GEO Datasets (http://www.ncbi.nlm.

nih.gov/geo/): GSE65776 (Langfelder et al, 2016), GSE73508,

GSE18551 (Becanovic et al, 2010), GSE32417 (Giles et al, 2012),

GSE9038 (Fossale et al, 2011), GSE9857 (Kuhn et al, 2007),

GSE26927 (Durrenberger et al, 2015), and GSE3790 (Hodges et al,

2006). We obtained proteomics data from the PRIDE archive

(https://www.ebi.ac.uk/pride/archive/), accession PXD003442

(Langfelder et al, 2016). For RNA-seq data (GSE65776), we down-

loaded read counts and FPKM estimates, mapped to ENSEMBL gene

models. For Affymetrix microarrays (GSE18551, GSE32417,

GSE9038, GSE9857, GSE26927, and GSE3790), we downloaded raw

image files and used the affy package in R to perform within-sample

RMA normalization and between-sample quantile normalization.

For proteomics data, we downloaded MaxQuant protein quantities.

Genomic footprinting

DNase-I digestion of genomic DNA followed by deep sequencing

(DNase-seq) enables the identification of genomic footprints across

the complete genome. We predicted genome-wide transcription

factor binding sites (TFBSs) in the mouse and human genomes based

on instances of TF sequence motifs in digital genomic footprints

from the ENCODE project. Short regions of genomic DNA occupied

by DNA-binding proteins produce characteristic “footprints” with

altered sensitivity to the DNase-I enzyme. DNase-I digestion of

genomic DNA followed by deep sequencing (DNase-seq) enables the

identification of genomic footprints across the complete genome.

For the human TFBS model, we used a previously described

database (Plaisier et al, 2016) of footprints from DNase-seq of 41

cell types (Neph et al, 2012). For the mouse TFBS model, we down-

loaded digital genomic footprinting data (deep DNase-seq) for 23

mouse tissues and cell types (Yue et al, 2014) from the UCSC

ENCODE portal on October 29, 2013: ftp://hgdownload.cse.ucsc.ed

u/goldenPath/mm9/database/. We detected footprints in each

sample with Wellington (Piper et al, 2013), using a significance

threshold, P < 1e-10. Using FIMO (Grant et al, 2011), we scanned
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the mouse genome (mm9) for instances of 2,547 motifs from

TRANSFAC (Matys et al, 2006), JASPAR (Mathelier et al, 2014),

UniPROBE (Hume et al, 2015), and high-throughput SELEX (Jolma

et al, 2013). We intersected footprints from all tissues with motif

instances to generate a genome-wide map of predicted TFBSs. A

motif can be recognized by multiple TFs with similar DNA-binding

domains. We assigned motifs to TF families using annotations from

the TFClass database (Wingender et al, 2013). In total, our model

included motifs recognized by 871 TFs.

Regression-based transcriptional regulatory network models

We fit a regression model to predict the expression of each gene in

mouse striatum, cortex, hippocampus, cerebellum, and liver, as well

as in human striatum, based on the expression patterns of TFs that

had predicted binding sites within 5 kb of that gene’s transcription

start sites. We applied LASSO regularization to penalize regression

coefficients and remove TFs with weak effects, using the glmnet

package in R. These methods were optimized across several large

transcriptomics datasets, prior to their application to the Hunting-

ton’s disease data. To reconstruct the TRN model for mouse stria-

tum, we used RNA-seq data from the striatum of 208 mice

(Langfelder et al, 2016). Prior to network reconstruction, we evalu-

ated within- and between-group variance and detected outlier

samples using hierarchical clustering and multidimensional scaling.

No major differences in variance were identified between groups,

and no outlier samples were detected or removed.

We considered a variety of model parameterization during the

initial model formulation. We considered elastic net regression and

ridge regression as alternatives to LASSO regression. We selected

LASSO based on the least falloff in performance from the training data

to test sets in fivefold cross-validation. We note that when multiple

TFs have correlated expression, the LASSO will generally retain only

one for the final model. This feature of the LASSO has been consid-

ered advantageous, since it can eliminate indirect interactions.

However, this feature also has a downside in that there is virtually no

doubt that the TFs selected by our model underestimate the true

number of TF-target gene interactions. We would only pick up domi-

nant effects where a linear model works reasonably well. Our primary

interest is ultimately in using this approach to find a relatively small

number of targets based on multiple lines of evidence. We are less

concerned here with finding everything than in trying to make sure

what we do find is as highly enriched for true positives as possible.

We also considered a variety of strategies to select an appropriate

penalty parameter. For instance, we could apply an independent

penalty parameter for each gene, or we could use a uniform penalty

parameter across all genes. We found that optimal performance was

obtained in both training data and fivefold cross-validation when

we applied a uniform penalty parameter across all genes. We

assigned this penalty parameter by evaluating performance in cross-

validation across a range of possible parameters for a random subset

of 100 genes. For each gene, we identified the most stringent penalty

such that the unfitted variance was < 1 standard error greater than

the minimum unfitted variance across all the penalty parameters

considered. We selected the median penalty defined by this proce-

dure across the 100 randomly selected gene.

Not all genes’ expression can be accurately predicted based on

the expression of TFs. To select genes for the final model, we

evaluated the variance explained by the model in a training set

consisting of 80% of the data. We selected those genes for which

the model explained > 50% of expression variance in the training

set and carried these genes forward to a test set, consisting of the

remaining 20% of genes. We found that training set performance

accurately predicted test performance (r = 0.94). We therefore fit a

final model for genes whose expression could be accurately

predicted in the training set. The result of these procedures is a

tissue-specific TRN model, predicting the TFs that regulate each

gene in the striatum and assigning a positive or negative weight for

each TF’s effect on that gene’s expression in the striatum.

Enrichments of TF-target gene modules in ChIP-seq data

We downloaded ChIP-seq data from the ENCODE website (encode-

project.org, accessed on August 20, 2015) for 33 mouse transcrip-

tion factors included in our TRN model. We identified genes whose

transcription start sites were located within 5 kb of a narrowPeak in

each ChIP experiment. We also downloaded a table of ChIP-to-gene

annotations for 19 additional mouse TFs from the ChEA website

(http://amp.pharm.mssm.edu/lib/chea.jsp, accessed on August 6,

2015). We tested for enrichments of the target genes identified by

ChIP for each of these 52 TFs to predicted TFBSs from our model.

Enrichments of TF-target gene modules for gene ontology terms

We downloaded Gene Ontology (GO) annotations for mouse genes

from GO.db on November 4, 2015, using the topGO R package. We

extracted the genes annotated to each GO term and its children, and

we used Fisher’s exact tests to characterize enrichments of TF-target

gene modules for the 4,624 GO terms that contain between 10 and

500 genes.

Enrichments of TF-target gene modules for cell-type-
specific genes

We characterized sets of genes expressed in each striatal cell type

using gene expression profiles from purified cell types (Doyle et al,

2008; Zhang et al, 2014) and the pAppendix R package for cell-type-

specific expression analysis (Dougherty et al, 2010). We used

Fisher’s exact tests to characterize enrichments of TF-target gene

modules for genes expressed specifically in each cell type.

Enrichments of TF-target gene modules for differentially
expressed genes

We identified genes that were differentially expressed in HD versus

control samples. In the primary dataset, we compared mice with the

non-pathogenic Q20 allele and mice with each of the other five alle-

les, separately for 2-, 6-, and 10-month-old mice. We used the edgeR

R package to fit generalized linear models and test for significance

of each contrast. We used Fisher’s exact tests to characterize enrich-

ments of downregulated genes and upregulated genes in each condi-

tion (significance threshold for differentially expressed genes,

P < 0.01) for the target genes of each TF. We considered enrich-

ments to be statistically significant at a raw P-value threshold < 1e-

6, or an adjusted P-value < 0.02 after accounting for 19,170 tests

(639 TFs × 5 Htt alleles × 3 time points × 2 tests/condition).
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To identify top TFs, accounting for non-independence among

genes and conditions, we calculated an empirical false discovery

rate for these enrichments. We repeated the edgeR and enrichment

analyses 1,000 times with permuted sample labels. We found that

no module had a P-value < 1e-6 in more than four conditions in any

of the permuted datasets. Therefore, we focused on TFs whose

target genes were overrepresented for differentially expressed genes

in five or more conditions.

We performed similar analyses to characterize TF-target gene

modules enriched for genes that were differentially expressed in

replication samples. We used the limma R package to calculate dif-

ferentially expressed genes in each of the four microarray studies

from mouse striatum (Kuhn et al, 2007; Becanovic et al, 2010;

Fossale et al, 2011; Giles et al, 2012). We calculated enrichments of

the DEGs from each study for TF-target gene modules. We then

combined the enrichment P-values across the four studies using

Fisher’s method to produce a meta-analysis P-value for the associa-

tion of each TF-target gene module in HD mouse models.

We used quantitative proteomics data from 6-month-old HttQ20/+,

HttQ80/+, HttQ92/+, HttQ111/+, HttQ140/+, and HttQ175/+ mice (n = 8

per group) (Langfelder et al, 2016). We characterized proteins whose

abundance was correlated with Htt CAG length in the striatum of

6-month-old mice, using MaxQuant protein quantities. We then calcu-

lated enrichments of CAG length-correlated proteins (Pearson’s corre-

lation, P < 0.01) for each TF-target gene module with Fisher’s exact

test, separately for proteins whose abundance was positively or nega-

tively correlated with CAG length.

We used the limma R package to fit a linear model to character-

ize differentially expressed genes in each of two microarray datasets

(Hodges et al, 2006; Durrenberger et al, 2015) profiling dorsal stria-

tum of HD cases versus controls, treating sex as a covariate. We

calculated enrichments of the DEGs from each study for TF-target

gene modules. We then combined the enrichment P-values across

the two studies using Fisher’s method to produce a meta-analysis

P-value for the association of each TF-target gene module with HD.

Mouse breeding, genotyping, and microdissection

The B6.HttQ111/+mice (Strain 003456; JAX) used for the ChIP-seq

study have a targeted mutation replacing a portion of mouse Htt

(formerly Hdh) exon 1 with the corresponding portion of human

HTT (formerly IT15) exon 1, including an expanded CAG tract (orig-

inally 109 repeats). Mice used in the present study were on the

C57BL/6J inbred strain background (Langfelder et al, 2016; Ament

et al, 2017). Cohorts of heterozygote and wild-type littermate mice

were generated by crossing B6.HttQ111/+ and B6.Htt+/+ mice. Male

mice were sacrificed at 122 � 2 days of age (or 16 weeks) and

11 months via a sodium pentobarbital-based euthanasia solution

(Fatal Plus, Henry Schein). Both hemispheres of each animal’s brain

were microdissected on ice into striatum, cortex, and remaining

brain regions. These tissues were snap-frozen and stored in �80°C.

Experiments were approved by an institutional review board in

accordance with NIH animal care guidelines.

Western blot

Male and female HttQ111/+ and wild-type littermates at 4 and

11 months of age were euthanized with sodium pentobarbital and

brains microdissected as described above. Striatal tissue was

disrupted and homogenized in lysis buffer (Cell Signaling Technol-

ogy, #9803) containing protease and phosphatase inhibitors

(Thermo, #78443) using a syringe and 26-ga needle and then soni-

cated twice for five-seconds on ice. Debris was pelleted by centrifug-

ing for 20 min at 13,000 g assay. Protein concentration was

determined by BCA assay (Thermo, #PI23225), and 50 lg of dena-

tured protein was prepared in LDS sample buffer (Invitrogen,

NP0008). For quantitative Western blot analysis, the experimenter

was blinded to both genotype and age and the protein was loaded in

randomized order then run on 10% bis-tris polyacrylamide gels with

MOPS running buffer (Invitrogen, NP0004, NP0001, and NP0302).

Protein was transferred to low-fluorescence PVDF membranes

(Immobilon-FL; Millipore) and total protein quantified for loading

normalization (LiCor, #926-11010; LiCor Odyssey Fc Imager). All

membrane wash steps were performed in tris-buffered saline with

0.05% Tween-20. Membranes were blocked (LiCor #927-50100) for

45 min before incubation in primary antibody against phospho-

SMAD3 (Abcam ab52903; 1:500, 72 h at 4°C) and total SMAD3

(Invitrogen #MA5-15663; 1:500, 72 h at 4°C) prepared in the block-

ing solution with 0.05% Tween-20. Secondary antibodies used were

goat anti-rabbit and goat anti-mouse (LiCor #925-32210, #925-

32211, #925-68070, and #925-68071; 1:150,000) made in blocking

buffer with 0.05% Tween-20 and 0.01% SDS. Quantitation of signal

was performed using Image Studio v5.2 (LiCor) with the experi-

menter remaining blinded to genotype and age. SMAD3 signal was

normalized to total protein stain.

High-resolution X-ChIP-seq

We prepared duplicate ChIP samples for each antibody from

4-month-old HttQ111/+ and from age-matched wild-type mice. For

each ChIP preparation, chromatin DNA was prepared using the

combined striatal tissue from both hemispheres of three mice.

Preliminary experiments suggested that this was the minimal

amount of material required to provide enough material for multiple

IPs. Striata were transferred to a glass dounce on ice and homoge-

nized in cold PBS with protease inhibitors. High-resolution X-ChIP-

seq was performed as described (Skene et al, 2010), with slight

modifications. IPs were performed using Abcam anti-SMAD3 anti-

body ab28379 [ChIP grade] or anti-RNA polymerase II CTD repeat

YSPTSPS antibody [8WG16] [ChIP Grade] ab817. Sequencing

libraries were prepared from the isolated ChIP DNA and from input

DNA controls as previously described (Orsi et al, 2015). Libraries

were sequenced on an Illumina HiSeq 2500 sequencer to a depth of

~17–25 million paired-end 25-bp reads per sample. Sequence reads

have been deposited in GEO, accession GSE88775.

ChIP-seq analysis

Sequencing reads were aligned to the mouse genome (mm9) using

bowtie2 (Langmead & Salzberg, 2012). Peak-calling on each sample

was performed with MACS v2.1 (Zhang et al, 2008), scaling each

library to the size of the input DNA sequence library to improve

comparability between samples. We retained peak regions with a

significant MACS P-value (FDR < 0.01 and a read count ≥ 10 in at

least two of the individual ChIP samples). Enrichment of the SMAD3

motif (JASPAR CORE MA0513.1) was performed with CentriMo
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(Bailey & Machanick, 2012), using the 250-bp regions around peak

summits obtained by running MACS on the combined reads from all

the samples. Peaks were mapped to genes using the chipenrich R

package (Welch et al, 2014), and genes were ranked by the number

of peaks within 10 kb of each gene’s transcription start sites. Gene

Ontology enrichment analysis of the top SMAD3 target genes (peak

counts > 2 SD above the mean) was performed using Fisher’s exact

test, using the same set of GO terms used to analyze the computa-

tionally derived TF-target gene modules. Statistical analysis of dif-

ferential occupancy in HttQ111/+ versus wild-type mice was

performed with edgeR (Robinson et al, 2010).

Software and primary data resources

Code for analysis of gene expression, transcriptional regulatory

networks, and ChIP-seq data for this manuscript are publicly avail-

able in the github repository located at https://github.com/seth-ame

nt/hd-trn. BedGraph files and raw sequencing data for SMAD3 and

RNA Pol2 ChIP-seq can be accessed at the GEO repository

GSE88775.

Expanded View for this article is available online.
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