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Abstract

Epilepsy will affect nearly 3% of people at some point during their lifetime. Previous copy

number variants (CNVs) studies of epilepsy have used array-based technology and were

restricted to the detection of large or exonic events. In contrast, whole-genome sequencing

(WGS) has the potential to more comprehensively profile CNVs but existing analytic meth-

ods suffer from limited accuracy. We show that this is in part due to the non-uniformity of

read coverage, even after intra-sample normalization. To improve on this, we developed

PopSV, an algorithm that uses multiple samples to control for technical variation and

enables the robust detection of CNVs. Using WGS and PopSV, we performed a comprehen-

sive characterization of CNVs in 198 individuals affected with epilepsy and 301 controls. For

both large and small variants, we found an enrichment of rare exonic events in epilepsy

patients, especially in genes with predicted loss-of-function intolerance. Notably, this

genome-wide survey also revealed an enrichment of rare non-coding CNVs near previously

known epilepsy genes. This enrichment was strongest for non-coding CNVs located within

100 Kbp of an epilepsy gene and in regions associated with changes in the gene expression,

such as expression QTLs or DNase I hypersensitive sites. Finally, we report on 21 poten-

tially damaging events that could be associated with known or new candidate epilepsy

genes. Our results suggest that comprehensive sequence-based profiling of CNVs could

help explain a larger fraction of epilepsy cases.
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Author summary

Epilepsy is a common neurological disorder affecting around 3% of the population. In

some cases, epilepsy is caused by brain trauma or other brain anomalies but there are

often no clear causes. Genetic factors have been associated with epilepsy in the past such

as rare genetic variations found by linkage studies as well as common genetic variations

found by genome-wide association studies and large copy-number variants. We

sequenced the genome of *200 epilepsy patients and *300 healthy controls and com-

pared the distribution of deletion (loss of a copy) and duplication (additional copy) of

genomic regions. Thanks to the sequencing technology and a new method that takes

advantage of the large sample size, we could compare the distribution of small copy-num-

ber variants between epilepsy patients and controls. Overall, we found that small variants

are also associated with epilepsy. Indeed, the genome of epilepsy patients had more exonic

copy-number variants, especially when rare or affecting genes with predicted loss-of-func-

tion intolerance. Focusing on regions around genes that have been previously associated

with epilepsy, we also found more non-coding variants in epilepsy patients, especially

deletions or variants in regulatory regions. Finally, we provide a list of 21 regions in which

we found likely pathogenic variants.

Introduction

Structural variants (SVs) are defined as genetic mutations affecting more than 50 base pairs

and encompass several types of rearrangements: deletion, duplication, novel insertion, inver-

sion and translocation. Deletions and duplications, which affect DNA copy number, are collec-

tively known as copy number variants (CNVs). SVs arise from a broad range of mechanisms

and show a heterogeneous distribution of location and size across the genome [1–3]. Numer-

ous diseases are caused by SVs with a demonstrated detrimental effect [4, 5]. While cytogenetic

approaches and array-based technologies have been used to identify large SVs, whole-genome

sequencing (WGS) has the potential to uncover the full range of SVs both in terms of type and

size [6, 7]. SV detection methods that use read-pair and split read information [8] can detect

deletions and duplications but most CNV-focused approaches look for an increased or

decreased read coverage, the expected consequence of a duplication or a deletion. Coverage-

based methods exist to analyze single samples [9], pairs of samples [10] or multiple samples

[11–13] but the presence of technical bias in WGS remains an important challenge. Indeed,

various features of sequencing experiments, such as mappability [14, 15], GC content [16], rep-

lication timing [17], DNA quality and library preparation [18], have a negative impact on the

uniformity of the read coverage [19].

Epilepsy is a common neurological disorder characterized by recurrent and unprovoked

seizures. It is estimated that up to 3% of the population will suffer from a form of epilepsy at

some point during their lifetime. Although the disease presents a strong genetic component

that can be as high as 95%, typical “monogenic” epilepsy is rare, accounting for only a fraction

of cases [20, 21]. Genetic factors have been associated with epilepsy in the past such as rare

genetic variations found by linkage studies as well as common genetic variations found by

genome-wide association studies [22, 23] For example, a meta-analysis combining multiple

epilepsy cohorts found positive associations with the disease [24], the strongest in SCN1A, a

gene already associated with the genetic mechanism of the disease via linkage studies and sub-

sequent sequencing [25] or more recently as harboring de novo variants [26]. Thanks to array-

based technologies, surveys of large CNVs (>50 Kbp) first associated CNVs in genomic
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hotspots such as 15q11.2 and 16p13.11 with generalized epilepsy [27, 28]. Other studies have

further shown the importance of large and de novo CNVs as well as identified a few associa-

tions with specific genes [29–34]. Rare genic CNVs were typically found in around 10% of epi-

lepsy patients [30, 34, 35] and CNVs larger than 1 Mbp were significantly enriched in patients

compared to controls [33, 35–37]. Unfortunately, small CNVs and other types of SVs could

not be efficiently or consistently detected using these technologies, hence much remains to be

done.

To more comprehensively characterize the role of CNVs in epilepsy, we performed whole-

genome sequencing of epileptic patients from the Canadian Epilepsy Network (CENet), the

largest WGS study on epilepsy to date. In the present study, we assessed the frequency of

CNVs in epileptic individuals using 198 unrelated patients and 301 healthy individuals. Using

this data, we showed that technical variation in WGS remains problematic for CNV detection

despite state-of-the-art intra-sample normalization. To correct for this and to maximize the

potential of the CENet cohorts, we developed a population-based CNV detection algorithm

called PopSV. Our method uses information across samples to avoid systematic biases and to

more precisely detect regions with abnormal coverage. Using two public WGS datasets [38,

39], and additional orthogonal validation, we showed that PopSV outperforms other analytical

methods both in terms of specificity and sensitivity, especially for small CNVs. Using this tool,

we built a comprehensive catalog of CNVs in the CENet epilepsy patients and studied the

properties of these potentially damaging structural events across the genome.

Results

Technical bias in read coverage

We sequenced the genomes of 198 unrelated individuals affected with epilepsy and 301 unre-

lated healthy controls. Because CNV detection relies on read coverage we first investigated the

presence of technical bias and the value of standard corrections and filters (e.g. GC correction,

mappability filtering). The genome was fragmented in 5 Kb bins and we counted the number

of uniquely mapped reads in each bin. In contrast to simulated datasets, we found that the

inter-sample mean coverage in each bin varied between genomic regions even after stringent

corrections and filters (Fig 1a). Supporting this observation, the bin coverage variance across

samples was also lower than expected and varied between regions (S1 Fig). We also observed

experiment-specific biases. In particular, some samples consistently had the highest, or the

lowest, coverage across large portions of the genome (S1 Fig). These observations were not

unique to our data and could also be observed in two public WGS datasets, and persisted even

after correcting the GC bias and mappability using the more elaborate model from the QDNA-

seq pipeline [40] (S2 Fig). Our results across multiple samples suggest that existing GC bias

and mappability corrections [40] cannot correct completely the technical variation in read cov-

erage. This fluctuation of coverage has implications for CNV detection approaches that assume

a uniform distribution [9, 10, 41] after standard bias correction and will lead to false positives.

CNV detection with PopSV

To better control for technical bias, we developed PopSV, a new SV detection method. PopSV

uses read depth across the samples to normalize coverage and detect change in DNA copy

number (Fig 1b). The normalization step here is critical since most approaches will fail to give

acceptable normalized coverage scores (S1 Fig). Moreover, with global median/variance

adjustment or quantile normalization, the remaining subtle experimental variation impairs

the abnormal coverage test (S3 Fig). The targeted normalization used by PopSV was found to

have better statistical properties (S3 Fig). In order to assess the performance of our tool, we
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compared it to several algorithms [8–11] using a dataset that included monozygotic twins and

also performed experimental validation of different types of predicted CNVs in the epilepsy

cohort (see below). We found that PopSV performed as well or better in different aspects.

First, for several algorithms, a large proportion of the detected events in a typical sample were

also identified in almost all samples (60% of the calls found in >95% of the samples, S4 Fig).

PopSV’s calls were better distributed across the frequency spectrum, hence more informative

as we expect the relative frequency of disease-related variants to be rare. In addition, the pedi-

gree structure was more accurately recovered when the CNVs were used to cluster the individ-

uals in the Twins dataset (S5 Fig). The agreement with the pedigree was computed by the

Rand index after clustering the individuals with three hierarchical clustering approaches (see

S1 Text). Looking at the replication between 10 pairs of monozygotic twins, PopSV detected

more replicated CNVs compared to other methods, while maintaining similar replication rates

Fig 1. PopSV approach. a) Technical bias across the genome remains after stringent correction and filtering. The distribution of the bin inter-sample

mean coverage in the epilepsy cohort (red) is compared to null distributions (blue: bins shuffled, green: simulated normal distribution). b) PopSV

approach. First the genome is fragmented and reads mapping in each bin are counted for each sample and GC corrected (1). Next, coverage of the

sample is normalized (2) and each bin is tested by computing a Z-score (3), estimating p-values (4) and identifying abnormal regions (5). c) Number

and proportion of calls from a twin that was replicated in the other monozygotic twin.

https://doi.org/10.1371/journal.pgen.1007285.g001
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(Fig 1c). The CNV calls were further filtered with gradually more stringent significance thresh-

olds and PopSV remained superior in term of number of replicated calls (S6 Fig). When inves-

tigating the overlap of calls between different methods, we noticed that PopSV was better

recovering calls from CNVnator [9], FREEC [10], cn.MOPS [11] or LUMPY [8], especially if

found by two or more methods (S7 Fig). For example, around 92% of the CNVs called by

other methods were also found by PopSV when focusing on calls found in at least two meth-

ods. Similar results were also obtained in a cancer dataset where we looked for replicated

germline CNVs in the paired tumor (S8 Fig). Finally, we repeated the twin analysis using 500

bp bins and observed high consistency with the 5 Kbp calls (S9 Fig). These results suggest that

PopSV can accurately detect around 75% of events that are as large as half the bin size used

(see S1 Text).

CNVs in the CENet cohorts and experimental validation

Having demonstrated the quality of the PopSV calls, we applied our tool to the epilepsy and

control cohorts. The epilepsy cohort comprises 198 individuals diagnosed with either general-

ized (n = 160), focal (n = 32) or unclassified (n = 6) epilepsy. CNVs ranged from 5 Kbp to 3.2

Mbp with an average size of 9.98 Kbp. We observed an average of 870 CNVs per individual

accounting for 8.7 Mb of variant calls (Fig 2a). This is around 9 times more variants and con-

siderably smaller than in typical array-based studies [42, 43], such as the previous epilepsy sur-

veys [30, 31, 34, 35], although a similar size distribution was previously obtained using denser

arrays [4] but were never applied to epilepsy (S10 Fig). Next, we annotated each variant using

four public SV databases [13, 44–46] as well as an internal database of the germline calls from

PopSV in the two public datasets used earlier (see S1 Text). For each CNV, we derived the

maximum frequency across these databases and defined as rare any region consistently anno-

tated in less than 1% of the individuals (Fig 2b). In total, we identified 12,480 regions with rare

CNVs in the epilepsy cohort including: 8,022 (64.3%) with heterozygous deletions, 21 (0.2%)

with homozygous deletions and 4,850 (38.9%) with duplications. Although the overall amount

of rare CNVs was not higher in epilepsy patients, the proportion of deletion was significantly

higher compared to controls (χ2 test: P-value 10−7). Next, we selected 151 CNVs and further

validated them using a Taqman CNV assay and Real-Time PCR. To explore PopSV’s perfor-

mance across different CNV profiles, we selected variants of different types, sizes and frequen-

cies. We found that the calls were concordant in 90.7% of the cases (Table 1 and S2 Table).

As expected, the estimated false positive rate was slightly higher for rare or smaller variants

(12.1% for rare CNVs; 15.1% for CNV <20 Kbp). Furthermore, we noted that calls supported

by both PopSV and LUMPY (when available) had a similar validation rate as calls found by

PopSV only (86.2% and 87.5% respectively).

CNV enrichment in exonic regions

To assess the role of CNVs in the pathogenic mechanism of epilepsy, we evaluated the preva-

lence of exonic CNVs in our epileptic cohort compared with healthy controls. First, focusing

on CNVs larger than 50 Kbp, we found no difference between epileptic patients and controls

(Fig 2c). As expected, we observed fewer CNVs overlapping exonic sequence than expected by

chance but similar levels for both groups. The number of CNVs overlapping exonic sequences

of genes intolerant to loss-of-function mutations [47] was even lower. Interestingly, the coding

regions of those genes were significantly more affected by CNVs in epileptic patients compared

with controls (permutation P-value<0.001, Fig 2c and S11 Fig). Because they are more likely

pathogenic and of greater interest, we performed the same analysis using rare CNVs only.

Here, we observed the increased exonic burden described previously for large rare CNVs [35–

Global characterization of copy number variants in epilepsy patients

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007285 April 12, 2018 5 / 24

https://doi.org/10.1371/journal.pgen.1007285


37]. In contrast to previous studies, we could also detect and compare small CNVs (<50 Kbp)

in epileptic patients and healthy controls. We found similar enrichment patterns than for large

CNVs (Fig 2c and S11 Fig), suggesting that small rare exonic CNVs are also associated with

epilepsy. Indeed, there was no significant difference between epileptic patients and controls

when considering all small CNVs and all genes. The exonic enrichment was significant for

genes with predicted loss-of-function intolerance and for rare variants (permutation P-

value<0.001, Fig 2c and S11 Fig). In both cohorts, most of the rare exonic CNVs were private,

i.e. present in only one individual. However, we observed that rare exonic CNVs were less

likely private in the epileptic patients (permutation P-value<0.001, S12 Fig). We replicated

this result using only individuals with a similar population background (French-Canadians,

S12 Fig). Overall we concluded that rare CNVs were not only enriched in exons but also

affected exons more recurrently in the epilepsy cohort as compared to controls.

Fig 2. CNVs in the epilepsy and control cohorts. a) Regions with a CNV in each epilepsy patient. b) Each CNV in the CNV catalog of the

epilepsy and control cohorts was annotated with its maximum frequency in five CNV databases. c) Enrichment in exonic sequence for all CNVs

(left) and rare CNVs (right), larger than 50 Kbp (top) or smaller than 50 Kbp (bottom). The fold-enrichment (y-axis) represents how many CNVs

overlap coding sequences compared to control regions randomly distributed in the genome.

https://doi.org/10.1371/journal.pgen.1007285.g002
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CNV enrichment in and near epilepsy genes

We then sought to evaluate if there was an excess of CNVs disrupting epilepsy-related genes or

nearby functional regions. We first retrieved genes whose exons were hit by rare deletions or

duplications and evaluated how many were known epilepsy genes based on a list of 154 genes

previously associated with epilepsy [48] (Fig 3a). Because epilepsy genes tend to be large, we

controlled for the gene size when testing for enrichment (S13 Fig). In the epilepsy cohort only,

we noted a clear enrichment for epilepsy genes hit by rare deletions (S13 Fig). Moreover, the

enrichment became stronger for rare CNVs. For instance, the exons of 921 genes were dis-

rupted in the epilepsy cohort when considering deletions completely absent from the public

and internal databases, 17 of which were epilepsy genes (P-value 0.015, Fig 3b). In addition, we

observed significantly more epilepsy patients with a rare non-coding CNV close to an epilepsy

gene compared to control individuals (S14 Fig). Interestingly, this enrichment was stronger

for non-coding deletions (S14 Fig). We further explored the distribution of rare non-coding

deletions by testing each epilepsy gene for a difference in mutation load between patients and

controls. The GABRD gene had the strongest and only nominally significant association with

four non-coding deletions among the 198 epileptic patients and none in the 301 controls.

GABRD encodes the delta subunit of the gamma-aminobutyric acid A receptor and has been

associated with juvenile myoclonic epilepsy [49]. In our cohort, two of the four patients with a

rare non-coding deletion close to GABRD had been diagnosed with this syndrome, including

one patient with a 2.7 Kbp deletion located only 3 Kbp upstream of GABRD’s transcription

start site (S15 Fig). Although none survived multiple testing correction, we noted that the

strongest associations were all in the direction of a higher mutation load in the epilepsy cohort

rather than in the control cohort.

To get a better idea of the functional regions close to epilepsy genes, we retrieved their asso-

ciated eQTLs in the GTEx database [50] and the DNase hypersensitivity sites associated with

their promoter regions [51]. Notably, focusing on rare non-coding CNVs overlapping these

functional regions, the enrichment in epileptic patients was greatly strengthened and clearly

present up to 100 Kbp from an epilepsy gene (Kolmogorov-Smirnov test: P-value 9 × 10−5, Fig

3c). Comparing epilepsy patients and controls, the odds ratio of having such a CNV at a

Table 1. Real-Time PCR validation rates of PopSV calls.

Region Validation rate

Total 151 0.907

CNV type

Deletion

Duplication

102

49

0.902

0.918

Frequency in databases

0

(0, 0.01]

(0.01, 1]

26

24

101

0.923

0.833

0.921

Carrier in CENet cohorts

1

2

> 2

21

19

111

0.857

0.947

0.910

Size (Kbp)

< 20

(20, 100]

> 100

73

38

40

0.849

0.974

0.950

Number and proportion of regions validated for CNVs of different types, sizes and frequencies.

https://doi.org/10.1371/journal.pgen.1007285.t001
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distance of 100 Kbp or less from an exon was 1.33 and gradually increased the closer to the

exon (2.9 for CNVs at 5 Kbp or less, S16 Fig). These non-coding CNVs were rare even in the

epileptic cohort, but collectively represented an important fraction of affected patients. While

20 patients (10.1%) had exonic CNVs in epilepsy genes that were not seen in any control or in

the public and internal databases, this number rose to 57 patients (28.8%) when counting non-

coding CNVs in functional regions located at less than 100 Kbp of an epilepsy gene. These

non-coding CNVs were never seen in the controls nor the CNV databases and overlap with

annotated enhancer of epilepsy genes. Although their functional impact remains putative, we

believe these CNVs to be of high-interest for the identification of disease causing genes.

Among these CNVs of high-interest, a duplication of a regulatory region 5 Kbp downstream

of CSNK1E was detected and validated in two different patients but absent from our controls

and the public and internal databases (S15 Fig). Another example is a short deletion of an

extremely conserved region downstream of FAM63B, detected in one patient and overlapping

expression QTLs for this epilepsy gene (S15 Fig).

Fig 3. CNVs and epilepsy genes. a) Number of rare CNVs in or close to exons of protein-coding genes (top) or epilepsy genes (bottom), in the

epilepsy cohort. b) Number of epilepsy genes hit by exonic deletions in the epilepsy cohort and never seen in the public and internal databases

(dotted line), compared to the expected distribution in all genes and size-matched genes (histograms). c) Rare non-coding CNVs in functional

regions near epilepsy genes. The graph shows the cumulative number of individuals (y-axis) with a rare non-coding CNV located at X Kbp or less

(x-axis) from the exonic sequence of a known epilepsy gene. We used CNVs overlapping regions functionally associated with the epilepsy gene

(eQTL or promoter-associated DNase site).

https://doi.org/10.1371/journal.pgen.1007285.g003
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Putatively pathogenic CNVs

Next, we used an array of criteria to select the rare CNVs (less than 1% in 301 controls) with

the highest disruptive potential in the epilepsy cohort. Priority was given to exonic CNVs in

genes already known to be associated with epilepsy. For CNVs in other genes, we also priori-

tize recurrent variants and deletions in genes highly intolerant to loss-of-function mutations.

In total, we identified 21 such putative pathogenic CNVs (Tables 2 and 3 and S3 Table). Out of

these, 8 directly affected a gene previously associated with epilepsy [48] (Table 2). In particular,

we identified a deletion resulting in the loss of more than half of the DEPDC5 gene in a patient

affected with partial epilepsy. A number of point mutations have previously been reported in

this gene for the same condition [52, 53]. We also identified two deletions and one duplication

in CHD2 gene (see Fig 4). The first deletion is large and affects a major portion of the gene

while the second is a small 4.6 Kbp deletion of exon 13, the last exon of CHD2’s second isoform

(S17 Fig). No exon-disruptive CNVs were reported in any individuals from the control cohort.

Table 2. Pathogenic profiles in known epilepsy genes.

Patient Epilepsy

type

Syndrome Copy

number

Chr. CNV start CNV end Epilepsy gene

with exon

disrupted

Taqman probe Discovery Replication

Patients Controls Patients Controls

CNET0108 Generalized Eyelid

myoclonia

epilepsy with

absence

1 1 44195001 44460000 ST3GAL3 Hs05759463_cn 1 DEL 0 0 -

CNET0159 Generalized Eyelid

myoclonia

epilepsy with

absence

1 8 141925001 142010000 PTK2 Hs06202928_cn 1 DEL 0 0 -

CNET0093 Generalized Juvenile onset;

GTCs, Abs,

Comp Partial

1 10 95525001 95545000 LGI1 Hs02682696_cn 1 DEL 0 0 -

CNET0140 Generalized Idiopathic

generalized

epilepsies

1 13 35750001 35785000 NBEA Hs05286691_cn 1 DEL 0 0 -

CNET0144 Generalized Eyelid

myoclonia

epilepsy with

absence

1 15 22745001 23275000 NIPA2 Hs04452887_cn 3 DEL 2 DEL 4 DEL

(2DUP)

1 DEL (5

DUP)

CNET0009 Generalized Idiopathic

generalized

epilepsies

1 15 30910001 32445000 CHRNA7 Hs03909657_cn 1 DEL 0 3 DEL (1 DUP)

CNET0119 Generalized Eyelid

myoclonia

epilepsy with

absence

1 15 93300001 93515000 CHD2 Hs05385106_cn 1 DEL 0 0 -

CNET0143 Generalized Childhood

absence

epilepsy

1 93489776 93494317 Hs026436998_cn 1 DEL 0 0 -

CNET0130 Generalized Eyelid

myoclonia

epilepsy with

absence

3 93445001 93450000 Hs01379802_cn 1 DUP 0 0 -

CNET0074 Focal Frontal Lobe

Epilepsy

1 22 32125001 32255000 DEPDC5 Hs01632214_cn 1 DEL 0 0 -

The 198 epileptic patients and 301 controls represent the discovery set. The replication set contains 325 epileptic patients and 380 controls. Variants that were not tested

are marked with “-”.

https://doi.org/10.1371/journal.pgen.1007285.t002
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This gene was previously associated with patients suffering from photosensitive epilepsy [54].

Interestingly, all three patients carrying the CNVs in CHD2 have been diagnosed with eyelid

myoclonia epilepsy with absence, the same diagnosis that was largely enriched in the Galizia

et al. study. Other known epilepsy genes affected by deletions include LGI1 and the 15q13.3

region.

Four of the 21 putative pathogenic CNVs were found in more than one individual (see

Table 3 for precise numbers). To assess their global prevalence we tested them in an additional

cohort of 325 epileptic patients and 380 ethnically matched controls (Table 3). Two regions

were replicated: the first region in chromosome 2 consists of duplication of the genes TTC27,

LTPB1 and BIRC6. In total, 4 patients carried this duplication and it was not reported in any of

the two sets of controls. The second region was found on chromosome 16 and encompasses sev-

eral genes. Two deletions were found in epileptic patients for this region and 1 epileptic individ-

ual and 1 control were also carriers of a duplication in the same region. This region corresponds

to a genomic hotspot whose deletions were previously associated with epilepsy [30] and other

neurological disorders. Finally, the remaining putative pathogenic CNVs were also associated

with a number of genes (S3 Table). However, as we lack additional evidence for those specific

CNV regions, we propose that these genes should be assessed in independent epilepsy cohorts.

Of note, one patient had a rare 170 Kbp deletion encompassing three exons of the PTPRD gene

which is predicted to be highly intolerant to loss-of-function mutations (pLI = 1) [47]. Rare

deletions in this gene were previously found in four independent individuals with attention-def-

icit hyperactivity disorder [55] and associated with intellectual disability [56]. In addition, de

novo deletions were found in an individual with autism [57] and more recently in a patient with

Table 3. Recurrent CNVs with a pathogenic profile.

Patient Epilepsy

type

Syndrome Copy

number

Chr. CNV

start

CNV end Gene with exon

disrupted

Taqman probe Discovery Replication

Patients Controls Patients Controls

CNET0184 Generalized Lennox-

Gastaut

syndrome

3 2 32625001 33335000 TTC27;LTBP1;
BIRC6

Hs03387774_cn 2 DUP 0 2 DUP 0

CNET0097 Generalized Eyelid

myoclonia

epilepsy with

absence

3

CNET0020 Generalized Juvenile

myoclonic

epilepsy

1 12 7995001 8125000 SLC2A3;SLC2A14 Hs04406005_cn 2 DEL 2 DEL 2 DEL 2 DEL

CNET0198 Focal Frontal lobe

epilepsy

1

CNET0012 Generalized Idiopathic

generalized

epilepsy

3 15 90845001 90955000 ZNF774;IQGAP1 Hs03895490_cn 2 DUP 0 (1 DEL) 0

CNET0167 Generalized Childhood

absence

epilepsy

3

CNET0063 Generalized Idiopathic

generalized

epilepsies

3 16 15460001 16290000 KIAA0430;
MPV17L; NPIPA5;
C16orf45; ABCC6;
NDE1; FOPNL;
ABCC1;MYH11

Hs05396556_cn 1 DUP

+ 1 DEL

0 1 DEL 1 DUP

CNET0037 Generalized Idiopathic

generalized

epilepsies

1

The 198 epileptic patients and 301 controls represent the discovery set. The replication set contains 325 epileptic patients and 380 controls.

https://doi.org/10.1371/journal.pgen.1007285.t003
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epileptic encephalopathy [32]. A common intronic variant in PTPRD was also associated with

remission of seizures after treatment in a clinical cohort of epilepsy patients [58].

Discussion

Although several tools exist for the detection of CNVs using WGS data, we found that none of

them could efficiently account for technical biases, thus resulting in limited sensitivity. To

improve on this, we developed a new tool, PopSV, which we demonstrated was able to accu-

rately detect CNVs, including rare and small events.

A key aspect of our approach is the use of a set of reference samples to identify abnormal

read coverage. In this context, the choice and number of reference samples will have an effect

on the analysis. Results from running PopSV using different reference cohort sizes suggest that

CNV calls are consistent across runs but that a higher number of reference samples increases

the sensitivity and robustness of the CNV detection (S18 Fig). Based on these results, we rec-

ommend PopSV when 20 samples or more can be used as reference. In a given study, all

samples can be used as a reference, or a subset of a few hundreds if the total sample size is

extremely large. Although variants with frequency around 50% might not be detected, PopSV

excels at detecting less frequent variants, smaller variants or variants in challenging regions

such as repeat-rich regions. In a case/control design, the control samples could be used as ref-

erence in order to maximize the detection of case-specific variants. In the current study we

used both epilepsy patients and controls as reference in order to be able to directly compare

the observed CNV distributions. Finally, in a cancer project with paired normal and tumor

Fig 4. Exonic CNVs in CHD2 detected by PopSV. The ‘CNV’ panel shows the exonic deletions (blue) and duplications (red) called by PopSV. The

‘Coverage’ panel shows the read depth signal in the affected individuals (colored points/lines) and the coverage distribution in the reference samples

(boxplot and grey point).

https://doi.org/10.1371/journal.pgen.1007285.g004
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samples, only normal samples should be used as reference such that PopSV can detect somatic

CNVs of any frequency.

To maximize performance, the same library preparation, sequencing and data pre-process-

ing should be employed on all the samples. To identify potential batch effects, a principal

component analysis of read coverage was implemented as part of the PopSV package and is

recommended to assess the homogeneity of the reference samples. The read length and aligner

can lead to drastic changes in the read coverage and should be consistent across the cohort

when analyzed with PopSV. This is particularly important in repeat-rich regions. Although the

different datasets were produced by different sequencing and pre-processing protocols and

showed varying degrees of technical bias (Fig 1a, S1 and S2 Figs), the performance of PopSV

was comparable when benchmarking the methods in the two public datasets and experimen-

tally validating calls in the CENet cohort.

PopSV’s approach does not require a uniform read coverage and integrate the coverage vari-

ation separately in each studied region. For these reasons, it would be straightforward to analyze

targeted sequencing data, such as exome-sequencing. PopSV could also be extended for the

detection of other types of SVs such as balanced SVs. To do this, instead of counting properly

mapped reads, the method could be modified to test for an excess of discordant reads. Finally,

additional modules could be added to PopSV to help characterize the detected variants. For

instance, instead of computing a copy-number estimate from the average coverage in the refer-

ence, a HMM approach including all samples could provide a better genotyping strategy. Simi-

lar to other approaches [9, 16], an additional step in the pipeline could explore the effect of the

bin size on the variation in read coverage across the population and suggest an optimal bin size.

As in previous array-based studies [35–37], we observed an enrichment of large rare exonic

CNVs in patients compared to controls. However, thanks to the resolution of WGS and

PopSV, we found that the global distribution of small CNVs (<50 Kbp) in 198 unrelated epi-

lepsy patients was also skewed towards rare exonic CNVs. In addition, genes disrupted by rare

deletions in patients were enriched for previously known epilepsy genes. These observations

support the association of small CNVs with epilepsy and could not have been detected in pre-

vious array-based studies.

We also observed a clear enrichment of non-coding CNVs in the neighborhood of previ-

ously implicated genes. When focusing on CNVs seen only in the epilepsy cohort and around

epilepsy genes, 10.1% of epilepsy patients have an exonic CNVs and our results shows that up

to 28.8% of patients harbor non-coding CNVs of high-interest in the proximity of epilepsy

genes. These non-coding variants are present in the epilepsy cohort only and located in anno-

tated regulatory regions associated to known epilepsy genes. Although it is challenging to

directly test their functional impact, their frequency and location suggest a putative impor-

tance in the genetic mechanism of epilepsy and should be further investigated in the future.

Finally, to better understand the impact of these findings on an individual scale, we selected

CNVs with the highest pathogenic potential within our patients. These CNVs highlighted

known but also potentially new epilepsy genes. Using a second epilepsy cohort, we were also

able to identify two chromosomal regions that were recurrently disrupted by CNVs. These

findings highlight the benefits of having a comprehensive survey of CNVs when trying to

understand the genetic causes of a disease.

Materials and methods

Ethics statement

This study was approved by the Research Ethics Board at the Sick Kids Hospital (REB number

1000033784) and the ethics committee at the Centre Hospitalier Universitaire de Montréal
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(project number 2003-1394,ND02.058-BSP(CA)). Before their inclusion in this study,

patients or parents (when needed) had to give written informed consents.

Epilepsy patients and sequencing

Patients were recruited through two main recruitment sites at the Centre Hospitalier Universi-

taire de Montréal (CHUM) and the Sick Kids Hospital in Toronto as part of the Canadian

Epilepsy Network (CENet). The main cohort of this study was constituted of 198 unrelated

patients with various types of epilepsy; 85 males and 113 females. The mean age at onset of the

disease for our cohort was 9.2 (±6.7) years. S1 Table presents a detailed description of the clini-

cal features for the various individuals recruited in this study. 301 unrelated healthy parents of

other probands from CENet were also included in this study and used as a control cohort.

DNA was exclusively extracted from blood DNA.

Libraries were generated using the TruSeq DNA PCR-Free Library Preparation Kit (Illu-

mina) and paired-end reads of size 125 bp were sequenced on a HiSeq 2500 to an average cov-

erage of 37.6x ± 5.6x. Reads were aligned to reference Homo_sapiens b37 with BWA [59].

Finally, Picard was used to merge, realign and mark duplicate reads. Raw sequence data has

been deposited in the European Genome-phenome Archive, under the accession code

EGAS00001002825. For more details, see S1 Text.

Public WGS datasets

Two high-coverage public datasets were used to benchmark PopSV against existing methods.

A Twin study provided WGS sequencing data for 45 individuals, including 10 monozygotic

twin quartets from the Quebec Study of Newborn Twins [38]. All patients gave informed con-

sent in written form to participate in the Quebec Study of Newborn Twins. Ethic boards from

the Centre de Recherche du CHUM, from the Université Laval and from the Montreal Neuro-

logical Institute approved this study. DNA was extracted from blood and sequencing was

done on an Illumina HiSeq 2500 (paired-end mode, fragment length 300 bp). The reads

were aligned using a modified version of the Burrows-Wheeler Aligner [59] (bwa version

0.6.2-r126-tpx with threading enabled). The options were ‘bwa aln -t 12 -q 5’ and
‘bwa sampe -t 12’. Aligned reads are available on the European Nucleotide Archive

under ENA PRJEB8308. The 45 samples had an average sequencing depth of 40x (minimum

34x / maximum 57x).

A cancer dataset from a study of renal cell carcinoma [39] was also used. 95 pairs of nor-

mal/tumor tissues were sequenced using GAIIx and HiSeq2000 instruments. Paired-end reads

of size 100 bp totaled an average sequencing depth of 54x (minimum 26x / maximum 164x).

Reads were trimmed with FASTX-Toolkit and mapped per lane with BWA [59] backtrack to

the GRCh37 reference genome. Picard was used to adjust pairs coordinates, flag duplicates

and merge lanes. Finally, realignment was done with GATK. Raw sequence data has been

deposited in the European Genome-phenome Archive, under the accession code

EGAS00001000083. More details can be found in Scelo et al. [39].

Testing for technical biases in WGS

To investigate the bias in read depth (RD), we fragmented the genome in non-overlapping

bins of 5 Kbp and counted the number of properly mapped reads. In each sample, we cor-

rected for GC bias and removed bins with extremely low or high coverage (see S1 Text). Then,

read counts across all samples were combined and quantile-normalized. Using simulations

and permutations, we constructed two control RD datasets with no region-specific or sample-

specific bias. We computed the mean and standard deviation of the coverage in each bin across
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samples. Next, to investigate experiment-specific bias, we retrieved which sample had the high-

est coverage in each bin. Then we computed, for each sample, the proportion of the genome

where it had the highest coverage. The same analysis was performed monitoring the lowest

coverage. This analysis was performed separately on the CENet dataset, the Twin dataset and

the normal samples from the cancer dataset. On the Twin dataset, the same analysis was also

run after correcting the read coverage following the QDNAseq pipeline [40] (see S1 Text).

PopSV

The main idea behind PopSV is to assess whether the coverage observed in a given location of

the genome diverges significantly from the coverage observed in a set of reference samples.

PopSV was implemented in an R package (see Data and code availability). The genome is first

segmented into bins and the number of reads with proper mapping in each bin is counted for

each sample. In a typical design, the genome is segmented in non-overlapping consecutive

windows of equal size, but custom designs could also be used. With PopSV, we propose a new

normalization procedure which we call targeted normalization that retrieves, for each bin,

other genomic regions with similar profile across the reference samples and uses these bins to

normalize read coverage (see S1 Text). Our targeted normalization was compared to global

approaches that adjust for the median coverage, or quantile-based approaches. After normali-

zation, the value observed in each bin is compared with the profiles observed in the reference

samples and a Z-score is calculated (Fig 1b). False Discovery Rate (FDR) is estimated based on

these Z-score distributions and a bin is marked as abnormal based on a user-defined FDR

threshold. Consecutive abnormal bins are merged and considered as one variant. In PopSV’s

R package, circular binary segmentation [60] can also be used to merge bins into variant

regions. Copy number was estimated by dividing the coverage in a region by the average cov-

erage across the reference samples, multiplied by 2 (see S1 Text).

Validation and benchmark of PopSV

We compared PopSV to CNVnator [9], FREEC [10] and cn.MOPS [11], three popular RD

methods that can be applied to WGS datasets. We also ran LUMPY [8] which uses an orthogo-

nal mapping signal: the insert size, orientation and split mapping of paired reads. For LUMPY,

all the CNVs (deletions and duplications) and intra-chromosomal translocations (labeled as

‘BND’ in Lumpy’s output) larger than 300 bp were kept for the upcoming analysis. These

methods were run on the two publicly available datasets, using 5 Kbp bins for the RD

methods.

First, we compared the frequency at which a region is affected by a CNV using the calls

from the different methods. To investigate the presence of systematic calls in each method, we

compute how many of the calls in a typical sample are called at different frequencies in the

dataset. For example, on average, how many calls in one sample are called in more than 90% of

the samples. In the Twin dataset, the samples were clustered using the CNV calls from each

method. Different linkage criteria were used for the hierarchical clustering (see S1 Text). The

Rand index estimated the concordance between the clustering and the known pedigree (fam-

ily-level). Next, we measured the number of CNVs identified in each twin that were also found

in their monozygotic twin. We removed calls present in more than 50% of the samples to

ensure that systematic errors were not biasing our replication estimates. Hence, a replicated

call is most likely true as it is present in a minority of samples but consistently in the twin pair.

For CNVnator, LUMPY and PopSV, the eval1/eval2 columns, number of supporting reads

and adjusted P-values (respectively) were used to gradually filter low-quality calls and explore

their effect on the replication metrics. In addition to their replication, we annotated the calls
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when their region overlapped a call found by other methods in the same sample. For calls

found by at least two methods, we computed the proportion of calls from a method found by

each of the other methods.

The approach described previously comparing pairs of twins was also applied in the cancer

dataset, on pairs of normal/tumor samples. In this case, a replicated call is found in the normal

sample and in the paired tumor sample. Finally, we compared calls using small bins (500 bp)

and calls using larger bins (5 Kbp). This comparison explores the quality of the calls, the size of

detectable events and the resolution for different bin sizes. First, we counted how many small

bin calls supported any large bin call. We then looked at the proportion of small bin calls of dif-

ferent sizes that were also found in the large bin calls.

CNV detection in the CENet cohorts

CNVs were called using PopSV using 5 Kbp bins and all the samples from both the epilepsy

and control cohorts as reference. We annotated the frequency of the CNVs using germline

CNV calls from the Twin and cancer datasets (internal database) as well as four public CNV

databases from the 1000 Genomes Project [13, 45], the Genome of Netherlands [44] and the

Simons Genome Diversity Project [46]. CNVs were annotated with the maximum frequency

in the databases. Hence, a rare CNV is defined as present in less than 1% of the samples in

each of the five CNV databases.

To test for a difference in deletion/duplication ratio among rare CNVs, we compared the

numbers of rare deletions and duplications in the epilepsy patients and controls using a χ2 test.

The same test was performed after downsampling the controls to the sample size of the epi-

lepsy cohort.

Validation by Taqman RT-PCR

We first selected CNV calls in epilepsy patients that spanned at least 2 consecutive bins. We

kept exonic CNVs of different sizes and overlapping a Taqman probe. A second batch of

CNVs, containing small non-coding CNVs, was also sent for validation. Here, hundreds of

non-coding CNVs spanning only one bin were randomly selected. When possible the break-

points were manually fine-tuned from manual inspection of a base-pair level coverage repre-

sentation or using IGV [61]; the breakpoints remained unchanged when they could not be

refined. Finally, we kept regions overlapping a Taqman probe.

Probes were selected using the assay search tool on the Thermofisher website. All probes

were tested for patients and controls that were called in PopSV as well as an additional 10 con-

trol individuals to ensure the validity of the probe. For each CNV, one assay was chosen in the

middle of the genomic region of interest and located in an exon when possible. All reactions

with TaqMan Copy Number Assays were performed in duplex using the FAM dye label based

assay for the target of interest (Taqman copy number assay, Made to order, #4400291, Applied

Biosystems by Life Technologies) and the VIC dye label based TaqMan Copy Number Refer-

ence Assay for RNase P (4403326, Life technologies). Amplification reactions (10μL), which

were performed in quadruplicate, consisted of: 10 ng gDNA, 1X TaqMan Copy Number

Assay, 1X TaqMan Copy Number Reference Assay, RNase P, 1X TaqMan Genotyping Master

Mix (4371355, Life Technologies) or 1X SensiFAST Probe Lo-ROX Kit (BIO-84020, Frogga-

bio). PCR was performed with an Applied Biosystems QuantStudio7 flex Real-Time PCR sys-

tem using the standard curve settings and the default universal cycling conditions: 95 ˚C 10

minutes followed by 40 cycles: 95 ˚C 15 seconds, 60 ˚C 60 seconds. Data was analyzed with

QuantStudio Real-Time PCR system software v1.2 (Applied Biosystems by Life Technologies)

using autobaseline and manual Ct threshold of 0.2. Results export files were opened in
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CopyCaller™ Software v2.0 for sample copy number analysis by the relative quantitation

method. The median ΔCt was used as the calibrator sample in the analysis settings.

CNV enrichment in exonic regions

For each cohort (epilepsy and control), we retrieved the CNV catalog by merging CNV that

are recurrent in multiple samples. Hence, the CNV catalog represents all the different CNVs

found in each cohort. Because the epilepsy and control cohorts have different sample sizes, the

CNV catalogs for each cohort were built using 150 randomly selected samples. For each sub-

sampling and each cohort, control regions were selected to fit the size distribution of the CNV

catalog and the overlap with centromeres, telomeres and assembly gaps (see S1 Text). The

fold-enrichment represents how much more/less of the CNVs overlap an exon compared to

the control regions. To robustly compare the two cohorts, we computed the median difference

in fold-enrichment between the CNV catalogs from patients and controls across 100 sub-sam-

pled catalogs. The cohort labels of the CNV catalogs were then permuted 10,000 times and the

analysis repeated to derive a null distribution for the median difference in fold enrichment. A

permuted P-value was computed from the observed difference and the null distribution.

Small (<50Kbp) and large (>50 Kbp) CNVs were analyzed separately. Exons from genes

predicted to be loss-of-function intolerant [47] (probability of loss-of-function intolerance >

0.9) were also analyzed separately. The same analysis was repeated using only rare CNVs, i.e.

being present in less than 1% of PopSV calls in the Twins and renal cancer datasets, and in

four public datasets (see S1 Text).

In each cohort, we then retrieved the CNV catalog of rare exonic CNVs. We evaluated the

proportion of the CNVs in the catalog that are private (i.e. seen in only one sample). The con-

trol cohort was down-sampled a thousand times to the same sample size as the epilepsy cohort

to provide a confidence interval and empirical P-value (see S1 Text). We also visualize the pro-

portion of CNVs in the catalog seen in 2 samples or more, 3 samples or more, etc (S12 Fig).

We performed the same analysis after removing the top 20 samples with the highest number of

non-private rare exonic CNVs. The analysis was also repeated using French-Canadian individ-

uals only.

CNV enrichment in and near epilepsy genes

We used the list of genes associated with epilepsy from the EpilepsyGene resource [48] which

consists of 154 genes strongly associated with epilepsy. We tested different sets of CNVs: dele-

tion or duplications in the epilepsy cohort, control individuals and samples from the twin

study, and using different threshold of maximum frequency. For each set of CNVs, we counted

how many of the genes hit were known epilepsy genes. To control for the size of epilepsy genes

and CNV-hit genes, we randomly selected genes with sizes similar to the genes hit by CNVs

and evaluated how many were epilepsy genes. After sampling 10,000 gene sets, we computed

an empirical P-value (see S1 Text).

To investigate rare non-coding CNVs close to known epilepsy genes, we counted how

many patients have such a CNV at different thresholds of distance to the nearest exon. We

compared this cumulative distribution to the control cohort, after down-sampling it to the

sample size as the epilepsy cohort. We performed the same analysis using deletions only. Each

epilepsy gene was also tested for an excess of rare non-coding deletions in patients versus con-

trols using a Fisher test. Next, we restricted our analysis to rare non-coding CNVs that overlap

an eQTL associated with the epilepsy genes [50] or a DNase I hypersensitive site associated

with the promoter of epilepsy genes [51]. A Kolmogorov-Smirnov test was used to test the dif-

ference in distribution. Finally, using different values for the maximum distance to the nearest
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epilepsy gene, we computed the odds ratio of having such a CNV between epilepsy patients

and controls.

Putatively pathogenic CNVs

Exonic CNVs larger than 10 Kbp and found in less than 1% of the 301 controls were first

selected. We further retained either CNVs overlapping the exon of a known epilepsy-associ-

ated gene [48] or deletions overlapping the exon of a loss-of-function intolerant gene [47], or

CNVs present in two or more of our epilepsy patients. All the putatively pathogenic CNVs

were validated by Taqman RT-PCR.

Data and code availability

The PopSV R package and its documentation are available at http://jmonlong.github.io/

PopSV/. Scripts are provided to run the pipeline on different high performance computing sys-

tems. The code used for the analysis and to produce figures and numbers is documented at

http://github.com/jmonlong/epipopsv and archived in https://doi.org/10.5281/zenodo.

1172181. Necessary data, including the CNV calls, was deposited at https://figshare.com/s/

20dfdedcc4718e465185. Raw sequence data has been deposited in the European Genome-phe-

nome Archive, under the accession code EGAS00001002825.

Supporting information

S1 Text. Supplementary text for the experiments and methods.

(PDF)

S1 Table. Clinical features of epileptic patients. The Excel file contains the type of epilepsy,

age of onset, sex, family history, pharmaco-resistance and potential intellectual disabilities.

(XLSX)

S2 Table. PopSV calls validated by RT-PCR. The Excel file contains the location of each

region, the CNV type, the number of carriers in the CENet cohorts, the maximum proportion

of carriers in the CNV databases, Taqman probe ID and validation status.

(XLSX)

S3 Table. Other pathogenic profiles.

(PDF)

S1 Fig. Variation and bias in whole-genome sequencing experiments in the epilepsy cohort.

a) Distribution of the bin inter-sample standard deviation coverage (red) and null distribution

(blue: bins shuffled, green: simulated normal distribution). b) Proportion of the genome in

which a given sample (x-axis) has the highest (red) or lowest (blue) RD. In the absence of bias

all samples should be the most extreme at the same frequency (dotted horizontal line).

(PDF)

S2 Fig. Variation and bias in whole-genome sequencing experiments in the normals from

CageKid (a,d,g), the twin dataset (b,e,h) and the twin dataset after using QDNAseq [40]

correction (c,f,i). a-c) Distribution of the bin inter-sample standard deviation coverage (red)

and null distribution (blue: bins shuffled, green: simulated normal distribution). d-f) Same for

the bin inter-sample standard deviation coverage. g-i) Proportion of the genome in which a

given sample (x-axis) has the highest (red) or lowest (blue) RD. In the absence of bias all sam-

ples should be the most extreme at the same frequency (dotted horizontal line).

(PDF)
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S3 Fig. Comparison of different normalization approaches. a) For each normalization

approach, the sample with the least normal Z-score distribution is shown. b) After targeted

normalization, a lower proportion of the genome looks problematic for the analysis. Fewer

bins have non-normal bin counts (top-left), the sample ranks are more random suggesting less

sample-specific bias (top-right), and Z-scores fit better a Normal distribution on average (bot-

tom-left) and in the worst sample (bottom-right). The dotted line is computed from simulated

bin counts.

(PDF)

S4 Fig. Frequency of calls in an average sample from the twin study. The bars show the pro-

portion of calls in an average samples (y-axis), grouped by the frequency of the call in the data-

set (x-axis), for different methods.

(PDF)

S5 Fig. CNV clustering and twin pedigree. The hierarchical cluster tree from the CNV calls is

cut at different levels (x-axis), cluster groups are compared to the known pedigree using the

Rand index (y-axis). Different clustering linkage criteria (point style) are used and the one

showing the best Rand index is highlighted by the line.

(PDF)

S6 Fig. Replication in monozygotic twins for different significance thresholds. Each point

represents the number of replicated calls per sample (average across samples) and the propor-

tion of replicated calls per sample. The vertical error bar shows the variation of the replication

rate across the samples. The points and lines were computed by filtering calls at different sig-

nificance levels (q-value for PopSV, number of supporting reads for LUMPY and eval1/eval2

for CNVnator, see S1 Text).

(PDF)

S7 Fig. Calls found by several methods. Focusing on calls found by at least two methods, the

heatmap shows the proportion of calls from one method (x-axis) that were also found by

another (y-axis) on average per sample.

(PDF)

S8 Fig. Benchmark across paired normal/tumor in CageKid. Number (a) and proportion

(b) of germline calls replicated in the paired tumor in CageKid. c) Number and proportion of

replicated calls when filtering calls at different significance levels. d) Focusing on calls found

by at least two methods, the color shows the proportion of calls from one method (x-axis) that

were also found by another (y-axis) on average per sample.

(PDF)

S9 Fig. Comparison of PopSV results using different bin sizes. a) 5 Kbp calls of different

sizes (x-axis) are split according to the proportion of the call supported by 500 bp calls. The Z-

score of 500 bp bins in 5 Kbp calls is consistent with the call for deletion b) and duplication c)

signal. 5 Kbp calls with lower significance (e.g. single-bin calls) are less supported by 500 bp

calls (a) but their Z-scores are in the consistent direction (b,c) although not always significant

enough to be called. d) Proportion of 500 bp calls of different sizes (x-axis) overlapping a 5

Kbp call.

(PDF)

S10 Fig. CNV size in our cohort and four array-based studies. The bars show the average

number of CNVs called in a sample in the different cohorts. Redon 2006 [42] and Itsara 2009
[43] are population studies using technology similar to previous epilepsy studies. Addis 2016
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[34] is a recent study of large CNVs in absence epilepsy. Conrad 2010 [4] is a population study

that used multiple arrays to increase its resolution.

(PDF)

S11 Fig. Exonic enrichment significance. The grey violin plot represents the difference in

fold-enrichment between patients and controls across 10,000 permutations where the patient/

control labels had been shuffled. The red point represents the observed difference between

patients and controls (Fig 2c).

(PDF)

S12 Fig. Rare exonic CNVs are less private in the epilepsy cohort. Proportion of rare exonic

CNVs (y-axis) seen in X or more individuals (x-axis). The ribbon shows the 5%–95% confi-

dence interval. In b), only French-Canadians individuals were analyzed and we down-sampled

the epilepsy cohort to match the sample size of the French-Canadians controls. In c), the top

20 samples with the most non-private rare exonic SVs were removed.

(PDF)

S13 Fig. Enrichment in epilepsy genes. a) Epilepsy genes (red) are genes known to be associ-

ated with epilepsy. The control genes (dotted blue) are random genes selected so that the size

distribution is similar to the sizes of genes hit by CNVs (plain blue). b) In three different data-

sets (color), genes hit by rare deletion (top) or duplications (bottom) at different frequency

thresholds (x-axis) were tested for enrichment in epilepsy genes (y-axis, point-size).

(PDF)

S14 Fig. Rare non-coding CNVs near epilepsy genes. The graphs show the cumulative num-

ber of individuals (y-axis) with a rare non-coding variants located at X Kbp or less (x-axis)

from the exonic sequence of a known epilepsy gene. The controls were down-sampled to the

sample size of the epilepsy cohort. The ribbon shows the 5%/95% confidence interval. In a),

deletions and duplications were considered; in b), only deletions were used.

(PDF)

S15 Fig. Non-coding CNVs with putative pathogenicity. a) 2.7 Kbp deletion in an epilepsy

patient, never seen in controls or CNV databases. Three other epilepsy patients have a

rare non-coding deletions located at less than 200 Kbp from the GABRD gene. b) 8.8 Kbp

duplication in two epilepsy patients, never seen in controls or CNV databases and overlap-

ping a regulatory region associated with CSNK1E. c) 6.5 Kbp deletion of an ultra-conserved

regions downstream of FAM63B. Two expression QTLs for this gene are highlighted with

arrows.

(PDF)

S16 Fig. The enrichment in rare non-coding CNVs overlapping functional regions increases

close to epilepsy genes. The graph shows the log odds ratio of having a rare non-coding CNV

located at X Kbp or less (x-axis) from the exonic sequence of a known epilepsy gene. The y-axis

shows the log odds ratio between epilepsy patients and controls. The controls were down-sam-

pled to the sample size of the epilepsy cohort. We used CNVs overlapping regions functionally

associated with the epilepsy gene (eQTL or promoter-associated DNase site).

(PDF)

S17 Fig. Small deletion of exon 13 in CHD2. Abnormal mapping of the read pairs highlighted

in red support the deletion detected by PopSV using the read coverage. The deletion region is

highlighted in orange.

(PDF)
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S18 Fig. Reference cohort size and CNV detection quality. PopSV was run on the Twins

study using 10, 20, 30 or 45 samples as reference (color). In a), the y-axis shows how many

calls from the down-sampled run were found in the original 45-refs run. The x-axis represents

the FDR threshold (lower threshold being more stringent). b) Replication in monozygotic

twins. For different cohort sizes and FDR thresholds, the number (x-axis) and proportion (y-

axis) of calls replicated in the other monozygotic twin is shown. In both graphs, the lines repre-

sents the median per sample and the ribbon the minimum/maximum values.

(PDF)

S19 Fig. Targeted normalization. The coverage across the reference samples (blue) in the bin

to normalize is used to find supporting bins across the genome. These supporting bins only

are used to compute the normalization factor. The same supporting bins will be used to nor-

malize the bin count in a test sample (red).

(PDF)
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