Rare genetic associations with human lifespan in UK Biobank are enriched for oncogenic genes

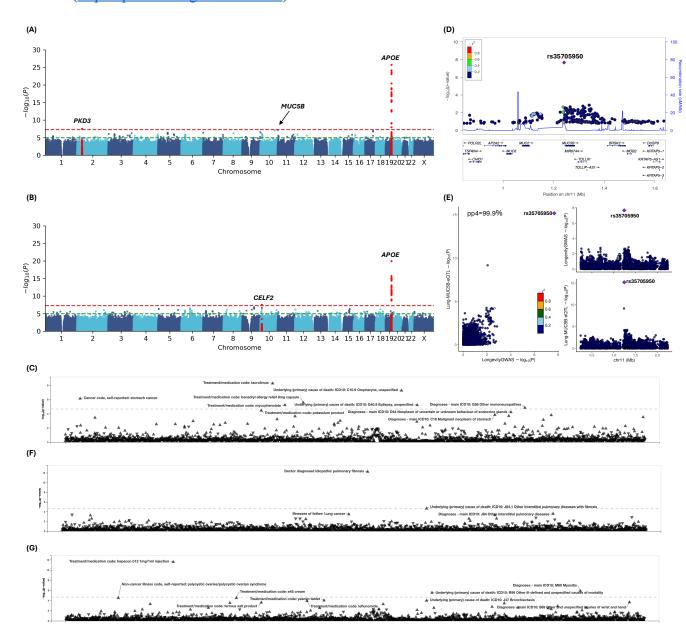
Junyoung Park^{1*}, Andrés Peña-Tauber¹, Lia Talozzi¹, Michael D. Greicius^{1†}, Yann Le Guen^{2†}

Affiliations

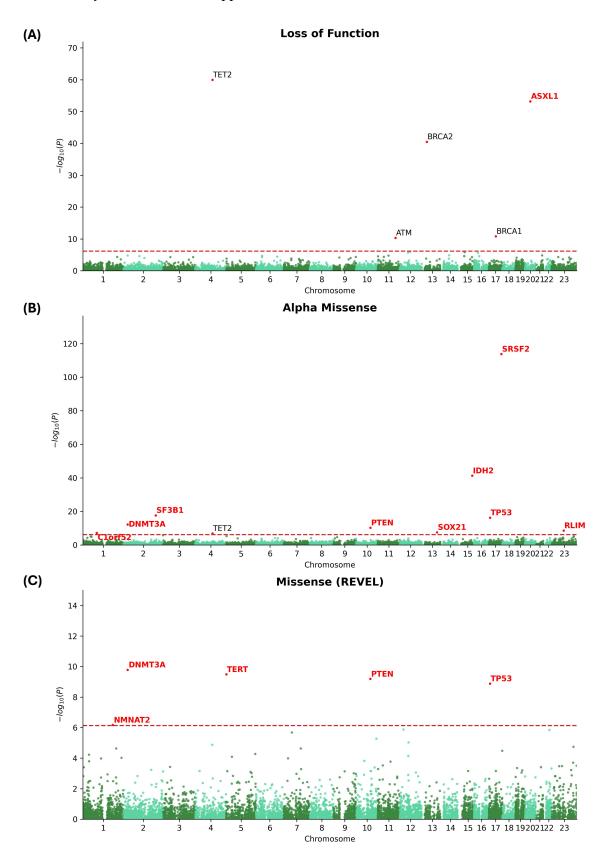
¹Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA.

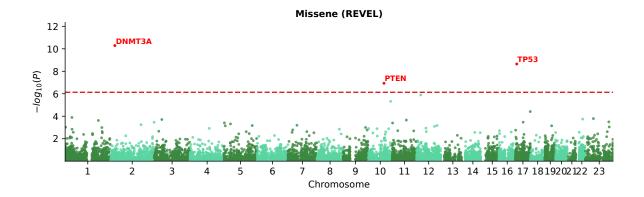
²Quantitative Sciences Unit, Department of Medicine, Stanford University, Stanford, CA, 94304, USA.

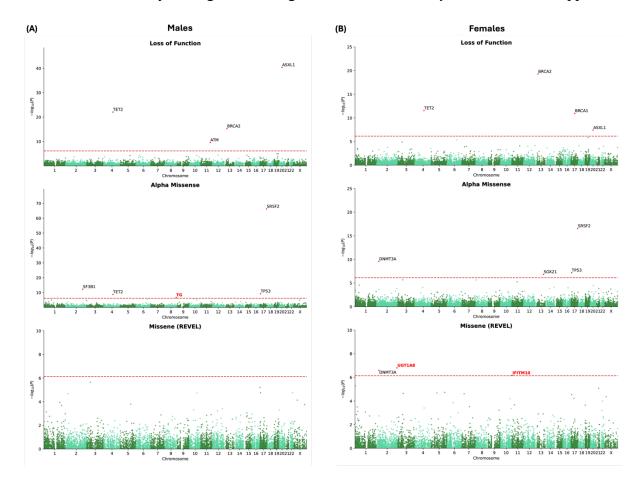
Corresponding authors:

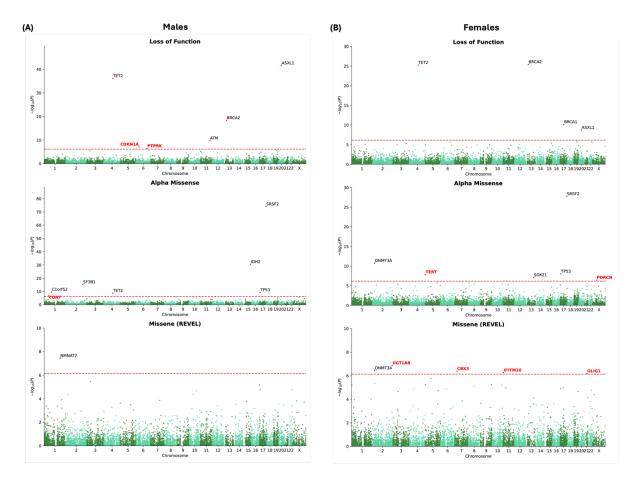

Junyoung Park
Stanford Neuroscience Health Center
290 Jane Stanford Way,
Stanford, CA 94305-5090
jpark01@stanford.edu
(650) 666-2696

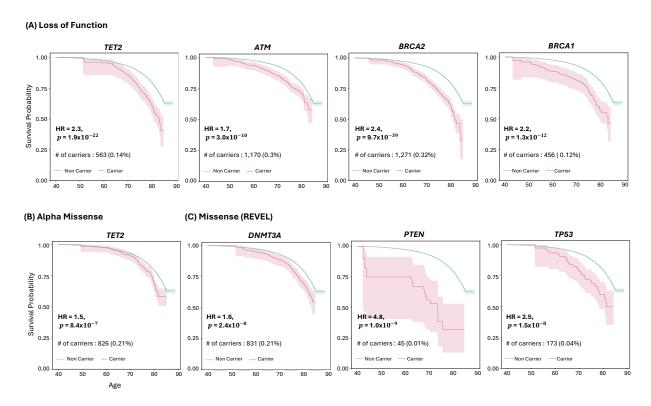
[†]These authors contributed equally

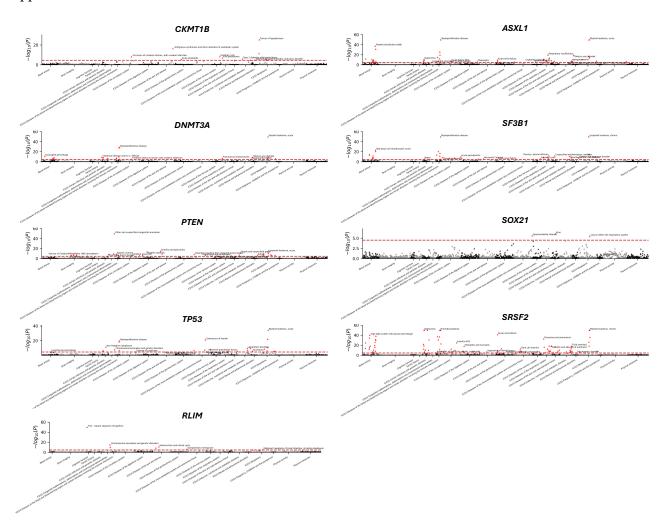

Supplementary Figure 1. Phenome-wide association of rs13190937 on ZSCAN23. This analysis is based on PheWeb (https://pheweb.org/UKB-Neale/).

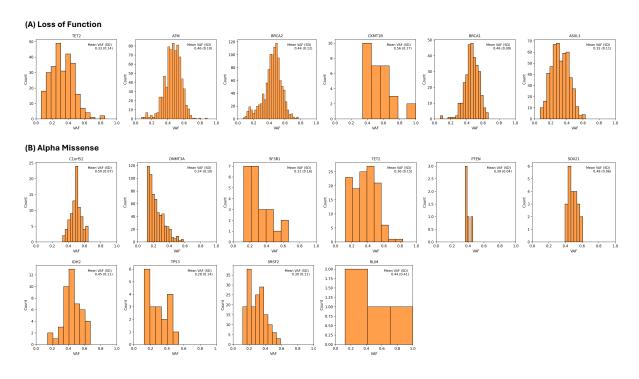

Supplementary Figure 2. Sex-stratified common variant GWAS of lifespan. Manhattan plot in males (A), and females (B). (C) Phenome-wide association of rs577106756 located in *PRKD3*. This analysis is based on PheWeb (https://pheweb.org/UKB-Neale/). Locuszoom (D) and colocalization (E) plots at the *MUC5B* locus in males, colocalized with *MUC5B* eQTL in lung tissue in GTEx. PP4: posterior probability of colocalization. (F) and (G) Phenome-wide association of rs35705950 near *MUC5B* and rs547541271 in *CELF2*, respectively, based on PheWeb (https://pheweb.org/UKB-Neale/).


Supplementary Figure 3. Rare variant SKAT-O association with lifespan considering 3 categories: Loss-of-function (A), AlphaMissense (B), and REVEL (C). Genes highlighted in red represent those not previously identified as significant in [8]. A gene-wide significance threshold of $p=7.4\times 10^{-7}$ was applied.


Supplementary Figure 4. Rare variant burden association with lifespan considering REVEL pathogenic missense variants. Genes highlighted in red represent those not previously identified as significant in [8]. A gene-wide significance threshold of $p=7.4\times10^{-7}$ was applied.


Supplementary Figure 5. Sex-stratified rare variant burden association with lifespan considering 3 categories for each sex: Loss-of-function (A), AlphaMissense (B), and REVEL (C). Genes highlighted in red represent those that were not identified as significant in the whole cohort analysis. A gene-wide significance threshold of $p=7.4\times10^{-7}$ was applied.


Supplementary Figure 6. Sex-stratified rare variants SKAT-O association with lifespan considering 3 categories for each sex: Loss-of-function (A), AlphaMissense (B), and REVEL (C). Genes highlighted in red represent those that were not identified as significant in the whole cohort analysis. A gene-wide significance threshold of $p=7.4\times10^{-7}$ was applied.


Supplementary Figure 7. Survival curves comparing carriers and non-carriers of variants considered on genes with a significant burden of loss-of-function (*TET2*, *ATM*, *BRCA2* and *BRCA1*) (A), AlphaMissense pathogenic (B) variants (*TET2*), missense variants predicted by REVEL (*DNMT3A*, *PTEN* and *TP53*) (C).

Supplementary Figure 8. Phenome-wide association of the burden of rare variants at the nine novel genes identified in our burden test. The variants include those classified as loss-of-function and those identified as AlphaMissense variants. P-values less than 1.0×10^{-50} are capped at 50.

Supplementary Figure 9. Variant allelic fraction distribution per gene for variants considered in each category: Loss-of-function (A) and AlphaMissense (B).

Supplementary Table 1. Demographics of European ancestry in the analyses.

	_	All	8 1		Male	-		Female	
	Total	Living	Deceased	Total	Living	Deceased	Total	Living	Deceased
N	393,833	358,282	35,551	180,970	159,911	21,059	212,863	198,371	14,492
Last known age	70.8 ± 7.9	70.7 ± 8.0	71.2 ± 7.5	70.9 ± 8.0	70.8 ± 8.1	71.3 ± 7.4	70.7 ± 7.9	70.7 ± 7.9	71.1 ± 7.6
APOE ε4 carrier	113,437 (28.8%)	102,360 (28.6%)	,	52,190 (28.8%)	45,635 (28.5%)	6,555 (31.1%)	61,247 (28.8%)	56,725 (28.6%)	4,522 (31.2%)

Supplementary Table 2. Validation of Significant SNPs in FinnGen and LifeGen + UKB Cohorts for human lifespan related phenotypes.

Cohort	Phenotype	SNP	Effect allele	N	Beta	<i>p</i> -value
		rs13190937	A	453,733	-0.011	0.20
FinnGen	Death	rs577106756	A	453,733	-0.07	0.55
(https://r11.finngen.fi)		rs35705950	T	453,733	0.034	6.0×10^{-3}
		rs547541271	T	453,733	-0.018	0.93
T.C.C. + LIMD 2	D (1 (1 1	rs13190937	A	640,183	-0.015	1.4×10^{-4}
LifeGen + UKB ²	Parental age at death	rs35705950	T	583,397	-0.023	6.6×10^{-3}

Supplementary Table 3. Significant genes for burden and SKAT-O association of rare variants, considering missense variants with REVEL > 75 (p<7.4× 10⁻⁷). Gene names in bold font represent associations identified in REVEL without significance in the LoF or AlphaMissense.

Variant Class	Chr	Gene	# of variants	# of carriers	Burden <i>p</i> -value	SKAT-O p-value
	1	NMNAT2	33	76	2.4×10^{-4}	6.7×10^{-7}
	2	DNMT3A	116	831	5.2×10^{-11}	1.7×10^{-10}
REVEL (>75)	5	TERT	31	60	3.9×10^{-4}	3.3×10^{-10}
	10	PTEN	42	56	1.2×10^{-7}	6.5×10^{-10}
	17	TP53	47	173	2.2×10^{-9}	1.3×10^{-9}

Supplementary Table 4. Gene-wide significance for rare variant burden analysis in the validation cohort. This table shows the results of the gene-wide significance tests for the 21 novel genes identified in the discovery dataset, validated in a non-British ancestry sample from the UKB (n=73,281). Ancestry distribution in the validation cohort: White (66.3%), Asian (14.4%), Black (9.9%), Other (5.7%), and Mixed (3.7%). A significance threshold of $p=1.1\times 10^{-3}$ was applied after a Bonferroni correction for multiple testing. Genes that exceeded the Bonferroni correction threshold of 1.1×10^{-3} (0.05/42) are highlighted in bold font.

Variant Class	Chr	Gene	# of variants	# of carriers	Burden <i>p</i> -value	SKAT-O p-value
	4	TET2	67	151	0.02	2.6×10^{-4}
	11	ATM	132	241	9.0×10^{-4}	2.4×10^{-4}
LoF	13	BRCA2	113	218	1.1×10^{-3}	1.8×10^{-3}
Lor	15	CKMT1B	11	16	0.83	1.0
	17	BRCA1	56	87	8.2×10^{-3}	9.2×10^{-3}
	20	ASXL1	28	39	1.2×10^{-5}	6.7×10^{-6}
	1	Clorf52	14	18	0.07	0.07
	2	DNMT3A	59	123	0.85	0.57
	2	SF3B1	19	48	0.95	0.62
	4	TET2	50	82	0.33	0.51
AlphaMissense	10	PTEN	10	33	0.79	0.43
Alphaiviissense	13	SOX21	21	33	0.74	0.29
	15	IDH2	45	65	0.73	2.0×10^{-7}
	17	TP53	16	23	0.10	0.06
	17	SRSF2	8	11	9.2×10^{-9}	2.2×10^{-10}
	X	RLIM	8	25	0.19	0.30
	1	NMNAT2	13	25	0.73	0.78
	2	DNMT3A	52	99	0.57	0.15
REVEL (>75)	5	TERT	5	7	0.55	0.74
	10	PTEN	8	26	0.47	0.66
	17	TP53	28	37	0.94	0.63

LoF: Loss of Function; Chr: chromosome

Supplementary Table 5. Significant genes for burden and SKAT-O association of rare variants in males ($p < 7.4 \times 10^{-7}$). Genes in bold font represent associations that were not significant in the analysis of the entire cohort but were significant only in males.

Variant Class	Chr	Gene	# of variants	# of carriers	Burden <i>p</i> -value	SKAT-O p-value
	4	TET2	162	280	8.8×10^{-23}	7.7×10^{-37}
	6	CDKN1A	8	33	6.0×10^{-5}	7.5×10^{-8}
I F	6	PTPRK	26	40	5.2×10^{-3}	3.7×10^{-7}
LoF	11	ATM	318	520	2.7×10^{-10}	1.7×10^{-10}
	13	BRCA2	172	596	5.3×10^{-16}	4.7×10^{-19}
	20	ASXL1	59	347	4.2×10^{-41}	2.7×10^{-42}
	1	C1orf52	19	76	1.2×10^{-5}	2.2×10^{-10}
	1	COA7	8	11	1.6×10^{-4}	6.7×10^{-8}
	2	SF3B1	43	122	5.5×10^{-13}	5.0×10^{-16}
AlphaMissense	4	TET2	107	405	2.1×10^{-9}	1.8×10^{-9}
(>70)	8	TG	113	657	2.0×10^{-7}	1.2×10^{-6}
	15	IDH2	58	171	1.6×10^{-3}	2.9×10^{-31}
	17	TP53	24	48	6.8×10^{-10}	4.8×10^{-10}
	17	SRSF2	10	104	5.9×10^{-67}	9.0×10^{-75}
REVEL (>75)	1	NMNAT2	21	34	1.1×10^{-4}	3.6×10^{-8}

Supplementary Table 6. Significant genes for burden and SKAT-O association of rare variants in females (p<7.4× 10⁻⁷). Genes in bold font represent associations that were not significant in the analysis of the entire cohort but were significant only in females.

Variant Class	Chr	Gene	# of variants	# of carriers	Burden <i>p</i> -value	SKAT-O p-value
	4	TET2	151	283	2.9×10^{-12}	5.8×10^{-26}
LoF	13	BRCA2	182	675	5.3×10^{-20}	3.7×10^{-26}
Lor	17	BRCA1	80	217	1.1×10^{-11}	7.5×10^{-11}
	20	ASXL1	46	186	4.0×10^{-8}	1.9×10^{-9}
	2	DNMT3A	135	671	2.7×10^{-10}	1.9×10^{-11}
	5	TERT	22	27	1.6×10^{-3}	1.5×10^{-8}
AlphaMissense	13	SOX21	34	251	1.4×10^{-7}	8.1×10^{-8}
(>70)	17	SRSF2	10	37	2.8×10^{-17}	1.9×10^{-28}
	17	TP53	23	52	6.5×10^{-8}	9.7×10^{-9}
	X	PORCN	11	32	5.6×10^{-4}	3.7×10^{-7}
	2	DNMT3A	98	121	2.5×10^{-7}	3.6×10^{-7}
	2	UGT1A8	2	18	1.6×10^{-7}	1.3×10^{-7}
REVEL (>75)	7	СВХ3	7	10	2.4×10^{-5}	4.2×10^{-7}
	11	IFITM10	10	11	7.0×10^{-7}	5.4×10^{-7}
	21	OLIG1	7	18	8.5×10^{-6}	6.4×10^{-7}

Supplementary Table 7. Lead variant association per gene among significant genes in the burden and SKAT-O tests. Only significant variant associations with at least 3 minor allele counts per gene are reported in this table. A significance threshold of $p=8.3\times10^{-5}$ was applied after a Bonferroni correction for multiple testing. The "Reported" column indicates published studies that associated the highlighted variants with specific diseases, curated from ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/).

Variant Class	Chr	Gene	Variant	MA	MAC	REVEL	HR	<i>p</i> -value	Reported
	1	NMNAT2	rs201746612	A	5	0.782	11.0	1.7×10^{-6}	-
	2	DNMT3A	rs751562376	T	17	0.828	3.9	8.0×10^{-4}	Intellectual disability / Autism spectrum disorder ³
REVEL (>75)	5	TERT	rs1043358053	C	5	0.790	16.8	1.7×10^{-8}	-
	10	PTEN	rs587782350	C	3	0.824	14.7	7.2×10^{-3}	Gastric Cancer ⁴
	17	TP53	rs11540652	T	5	0.934	11.5	2.3×10^{-5}	Breast Cancer ⁵

Chr: chromosome; MAC: minor allele count; REVEL: REVEL score; HR: hazard ratio

Supplementary Table 8. Mean variant allelic fraction per gene across participants included in the corresponding gene-level Burden/SKAT-O analysis.

Variant Class	Chr	Gene	# of subjects	# of variants	Mean VAF (SD)
	4	TET2	266	133	0.33 (0.14)
	11	ATM	734	128	0.46 (0.10)
I F	13	BRCA2	1,061	162	0.44 (0.12)
LoF	15	CKMT1B	29	8	0.56 (0.17)
	17	BRCA1	302	74	0.46 (0.09)
	20	ASXL1	502	30	0.32 (0.11)
	1	C1orf52	87	11	0.50 (0.07)
	2	DNMT3A	593	33	0.24 (0.10)
	2	SF3B1	23	5	0.31 (0.16)
	4	TET2	123	41	0.36 (0.15)
41.1.36	10	PTEN	5	3	0.39 (0.04)
AlphaMissense	13	SOX21	22	6	0.49 (0.06)
	15	IDH2	46	14	0.45 (0.11)
	17	TP53	19	7	0.28 (0.14)
	17	SRSF2	164	6	0.30 (0.11)
	X	RLIM	4	2	0.44 (0.41)

Supplementary Table 9. Previously reported SNP associations with lifespan from prior studies (excluding the *APOE* region). This table summarizes SNPs previously associated with lifespan-related phenotypes in published studies that were GWAS significant in their respective studies. Notably, none of the SNPs in this table reached the suggestive threshold ($p=1.0\times10^{-5}$) in our analysis.

Reported phenotype	Study	Chr	Gene	Variant	<i>p</i> -value
		6	LPA	rs55730499	0.04
	Joshi et al. (2017) ⁶	6	HLA-DQA1	rs34831921	9.2×10^{-4}
		15	CHRNA3	rs8042849	1.5×10^{-3}
		1	CLESR2 / PSRC1 / HLA-DRB1	rs602633	0.20
		6	HLA-DQA1	rs28383322	0.09
		6	LPA	rs55730499	0.04
		8	EPHX2	rs7844965	0.22
	Pilling et al. (2017) 7	9	CDKN2B-AS1 (ANRIL)	rs1556516	0.02
		12	SH2B3 / ATXN2	rs7137828	0.55
		14	PROX2	rs61978928	0.15
		15	<i>FURIN</i>	rs17514846	0.23
Parents' attained age		15	CHRNA3	rs1317286	1.9×10^{-3}
		1	MAGI3	rs1230666	0.03
		2	KCNK3	rs1275922	0.42
		4	HTT	rs61348208	0.02
		6	HLA-DQA1	rs34967069	1.7×10^{-3}
		6	LPA	rs10455872	0.03
	Timmers et al. (2019) ²	9	CDKN2B-AS1	rs1556516	0.15
		12	ATXN2/BRAP	rs11065979	0.88
		15	CHRNA3/5	rs8042849	1.5×10^{-4}
		15	FURIN/FES	rs6224	0.35
		16	HP	rs12924886	0.87
		19	LDLR	rs142158911	0.20

References

- 1. Liu JZ, et al. The burden of rare protein-truncating genetic variants on human lifespan. Nature Aging 2, 289-294 (2022).
- 2. Timmers PR, et al. Genomics of 1 million parent lifespans implicates novel pathways and common diseases and distinguishes survival chances. elife **8**, e39856 (2019).
- 3. Yokoi T, Enomoto Y, Naruto T, Kurosawa K, Higurashi N. Tatton-Brown-Rahman syndrome with a novel DNMT3A mutation presented severe intellectual disability and autism spectrum disorder. *Hum Genome Var* **7**, 15 (2020).
- 4. Usui Y, *et al.* Helicobacter pylori, Homologous-Recombination Genes, and Gastric Cancer. *N Engl J Med* **388**, 1181-1190 (2023).
- 5. Jordan JJ, et al. Altered-function p53 missense mutations identified in breast cancers can have subtle effects on transactivation. *Mol Cancer Res* **8**, 701-716 (2010).
- 6. Joshi PK, et al. Genome-wide meta-analysis associates HLA-DQA1/DRB1 and LPA and lifestyle factors with human longevity. *Nature Communications* **8**, 910 (2017).
- 7. Pilling LC, et al. Human longevity: 25 genetic loci associated in 389,166 UK biobank participants. *Aging (Albany NY)* **9**, 2504-2520 (2017).