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Abstract
Background: The delta smelt (Hypomesus transpacificus) is a pelagic fish species listed as
endangered under both the USA Federal and Californian State Endangered Species Acts and
considered an indicator of ecosystem health in its habitat range, which is limited to the Sacramento-
San Joaquin estuary in California, USA. Anthropogenic contaminants are one of multiple stressors
affecting this system, and among them, current-use insecticides are of major concern. Interrogative
tools are required to successfully monitor effects of contaminants on the delta smelt, and to
research potential causes of population decline in this species. We have created a microarray to
investigate genome-wide effects of potentially causative stressors, and applied this tool to assess
effects of the pyrethroid insecticide esfenvalerate on larval delta smelt. Selected genes were further
investigated as molecular biomarkers using quantitative PCR analyses.

Results: Exposure to esfenvalerate affected swimming behavior of larval delta smelt at
concentrations as low as 0.0625 μg.L-1, and significant differences in expression were measured in
genes involved in neuromuscular activity. Alterations in the expression of genes associated with
immune responses, along with apoptosis, redox, osmotic stress, detoxification, and growth and
development appear to have been invoked by esfenvalerate exposure. Swimming impairment
correlated significantly with expression of aspartoacylase (ASPA), an enzyme involved in brain cell
function and associated with numerous human diseases. Selected genes were investigated for their
use as molecular biomarkers, and strong links were determined between measured
downregulation in ASPA and observed behavioral responses in fish exposed to environmentally
relevant pyrethroid concentrations.
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Conclusions: The results of this study show that microarray technology is a useful approach in
screening for, and generation of molecular biomarkers in endangered, non-model organisms,
identifying specific genes that can be directly linked with sublethal toxicological endpoints; such as
changes in expression levels of neuromuscular genes resulting in measurable swimming
impairments. The developed microarrays were successfully applied on larval fish exposed to
esfenvalerate, a known contaminant of the Sacramento-San Joaquin estuary, and has permitted the
identification of specific biomarkers which could provide insight into the factors contributing to
delta smelt population decline.

Background
The delta smelt (Hypomesus transpacificus) is a pelagic fish
species endemic to the Sacramento-San Joaquin estuary,
whose abundance has dramatically declined since the
1980s, and more precipitously in recent years [1-4]. It was
listed as endangered in 2009, under both the Federal
Endangered Species Act (ESA) and California Endangered
Species Act (CESA). Considerable efforts are presently
being made to understand the causes of this recent popu-
lation decline [4,5], especially because several other
pelagic species have shown similar population trends.
Delta habitats have been compromised by a number of
complex factors, both known and unknown, potentially
affecting aquatic species throughout the Sacramento-San
Joaquin watersheds and estuary [4]. Pollution, in the form
of chemicals contained in runoff from agricultural and
urban areas, and old mining sites, treated wastewater
effluent, along with the effects of water exports, invasive
species and habitat destruction are amongst potential
causes for the population decline of several pelagic species
[5].

Identifying the sublethal impacts of environmental stres-
sors and their mechanistic effects on resident individuals
and populations is a major challenge in ecotoxicology.
Contaminants may not only affect organism survival, but
can compromise ecological fitness of individual species
via sublethal physiological, behavioral or immunological
effects (e.g. [6-10]), consequently altering food web and
ecosystem dynamics. However, such physiological end-
points are often difficult to determine in field studies,
because they either require behavioral observation and
measurements, or because affected individuals will not
survive in the wild. Similarly, widely used ecotoxicologi-
cal tools such as standard toxicity tests [11,12] cannot eas-
ily be adapted to resident species of concern, and,
conversely, it is problematic to extrapolate test results
obtained with surrogate species to resident species of con-
cern [13]. Recent comparative studies have demonstrated
a need for identifying effects directly in the species of con-
cern, as traditional model organisms may differ in sensi-
tivity and physiological response to environmental
contaminants and other stressors [14,15].

Carefully selected molecular biomarkers can provide spe-
cies-specific and sensitive, mechanistic information on
the overall health of an organism, as toxic responses are
often preceded by alterations in gene expression [16,17].
In particular microarray gene profiling is a powerful tool
for defining genome-wide effects of environmental
change on biological function [16,18,19]. The predictive
value of microarrays as screening tools, as well as our
understanding of these responses and their application in
the field of ecotoxicology is rapidly growing. This technol-
ogy can be applied in vertebrates and invertebrates,
plants, algae, cell lines and unicellular organisms [20]. In
addition, links are being established between specific
molecular biomarkers identified by microarray technol-
ogy, and higher-level life history parameters, such as
metabolism, growth and reproduction [16,18,21,22].
Gene expression studies carried out over short-term expo-
sures have allowed for the prediction of chronic stressor
effects, such as reduced fecundity and embryonic arrest,
somatic growth, and population dynamics [16,18,21,23].
Thus, specific gene responses in studied organisms would
not only be indicative of health status, but when used in
conservation studies, could highlight potential causes for
population decline. However, few biomarkers are cur-
rently understood well enough to provide conclusive evi-
dence of contaminant impacts on aquatic species in field
monitoring, and extrapolating effects seen at the biomar-
ker level to individual or population-level toxicity contin-
ues to be a challenge. For molecular biomarkers to be used
as successful monitoring tools of individual, population
and ecosystem damage, strong links need to continue to
be established between gene expression and health status.

To better understand the sublethal effects of contaminants
upon H. transpacificus, and to identify biomarkers for
future field investigations, we have constructed a microar-
ray with 8,448 Expressed Sequence Tags (ESTs). No
genomic information was available on any database at the
time this project began, other than a few mitochondrial
sequences used in taxonomic studies [24]. We describe
here, the construction and first application of this tool to
identify genes in the delta smelt, specifically responding
to exposure to esfenvalerate, a pyrethroid insecticide, and
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present gene expression quantitation of selected biomark-
ers, utilizing these to explain observed swimming abnor-
malities. We used esfenvalerate in our study because
biochemical responses and adverse effects on the whole
organisms are relatively well understood [25] and there-
fore would aid interpretation of results in this "proof of
principle" test. Esfenvalerate [(S)-a-cyano-3-phenoxyben-
zyl-(S)-2-(-4-chlorophenyl)-3-methylbutyrate] is a syn-
thetic pyrethroid insecticide, widely used in agriculture,
with a high risk to aquatic organisms [26]. It causes neu-
rological damage by blocking sodium and potassium
channels, resulting in repetitive neurological discharge
[25]. In addition, pyrethroid insecticides are highly solu-
ble in myelin sheaths of nerves, causing demyelination,
resulting in conduction deficiencies through nerve lesions
[27], directly affecting swimming ability, and impinging
on foraging and migration. Fish are highly sensitive to this
insecticide, with for example effects on bluegill behavior
at measured concentrations as low as 0.025 μg/L-1[28].
Pyrethroids have also been reported to affect growth,
induce immune responses, reduce hepatic glycogen levels
and delay spawning [9,29].

The main focus of this study was not the development of
the microarray, rather the identification of molecular
biomarkers specific to the delta smelt and stressors found
in the San Joaquin-Sacramento delta. We present here
results from annotated genes identified through microar-
ray analyses and specifically quantitative PCR analyses of
selected molecular biomarkers.

Results and Discussion
Effects of esfenvalerate exposure: mortality and swimming 
behavior
Fish larvae are known to be highly sensitive to esfenvaler-
ate, with effects on swimming performance and enhanced
susceptibility to predation resulting from concentrations
as low as 0.0625 μg/L-1[10]. Behavior alterations are con-
strued as being consequential to the reported neurological
mode of action of this pesticide, further affecting foraging,
migration and reproduction [30]. Toxicity of pyrethroids
in the Sacramento-San Joaquin estuary is likely alleviated
by the presence of particles and organic matter, and to
date concentrations of esfenvalerate detected in the water
column were low, however, concentrations in winter
storm runoff from agricultural lands have been reported
up to 0.093 μg.L-1 [31], influencing our decision to inves-
tigate dose response exposures to both high and environ-
mentally relevant concentrations in confirmatory studies.

In terms of mortality, 10-d old delta smelt were only
slightly more sensitive in this study (LC50,24 h = 0.19 μg.L-

1) than 52-d old (LC50,24 h = 0.24 μg.L-1), however swim-
ming performance of the younger larvae was affected at a
concentration approximating one third of that observed

affecting older fish (figure 1). Swimming abnormality in
10-d old larvae, intensified with increasing esfenvalerate
concentration at 4 h, escalating significantly after 24 h
exposure (figure 1a). This swimming abnormality was
also concentration dependent in 52-d old fish, however
swimming effects resulting from different time point
measurements differed only at the highest exposure con-
centration of 0.250 μg.L-1 (figure 1b), where effects on
motion increased from 22.5% anomaly at 4 h to 45% at
24 h. Behavioral abnormalities, reduced food intake and
growth, as well as increased susceptibility to predation
were reported in fathead minnow larvae exposed to esfen-
valerate for 4 h to concentrations above 0.455 μg.L-1 [10].
Significant swimming impairments were determined in
this study at 0.250 μg.L-1, thus delta smelt are highly sen-
sitive to sublethal esfenvalerate exposure. Furthermore,
bioaccumulation in rainbow trout have resulted in con-
centrations 400 times higher than background ambient
levels http://extoxnet.orst.edu.

Microarray application and q-PCR
Through the application of the delta smelt microarrays,
and combined analytical methods, we have identified 288
ESTs, from which a number of genes of interest could be
used to measure the effect of esfenvalerate and potentially
other pyrethroid insecticides; further investigating their
use as biomarkers in this species. Of the sequenced ESTs
that responded significantly, 118 genes were successfully
annotated; 170 matched unnamed or hypothetical pro-
teins, or did not match the described annotation selection
criteria; i.e. BLASTx searches resulted in expect-values
greater than 1 × 10-5 and scores below 50. Based on gene
ontology; molecular function, biological processes and
cellular components, 94 unique genes were functionally
classified (figure 2 and table 1) and described below.
Based on the proportions of ESTs responding to success-
fully annotated unique genes (33%), it is estimated that of
the 8,448 ESTs printed on the microarray, there could be
above 2,500 unique genes identified in the delta smelt.
These numbers however represent responses to a single
contaminant, and should not be construed as final as
there will have an intrinsic bias exerted upon them, how-
ever, the proportion of repeated sequences in the analyses
was very low, with a maximum of nine repetitions for
CHK1 checkpoint homologue and not more than one or
two duplication for a few others. It is also important to
note that the microarray was manufactured with incom-
plete genome data, thus information presented in figure 2
represents proportions of a limited number of available
genes.

Differences between methods used allow for greater min-
ing of possible biomarkers. The method by Loguinov et al
[32] identified a single differentially expressed gene at
0.125 μg/L-1 esfenvalerate (with no significant homol-
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ogy). The addition of LIMMA GUI analysis, also identify-
ing this single gene, generated a broader list of genes for
biomarker selection.

A large percentage of uniquely annotated genes, respond-
ing to esfenvalerate exposure; 49%, were classified as
involved in various biological processes. These included
genes encoding for ribosomal proteins, t-RNA synthases,

telomerases, uncoupling proteins and genes involved in
chromosome maintenance. Of greater interest was the
identification of genes involved in neuromuscular activ-
ity; representing 19% of identified sequences, a further
12% eliciting immune responses, along with 6% related
to oxidative stress, respiration and iron storage and 5%
relevant to apoptosis. Digestion appears to have also been
affected, along with growth and development, repre-

Swimming behavior and mortalityFigure 1
Swimming behavior and mortality. Percentage swimming normality and survival in (a.) 10-d old and (b.) 52-d old H. trans-
pacificus exposed to esfenvalerate, ± standard errors (n = 10). * Indicates significant reduction in survival or swimming per-
formance compared to solvent control.
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Fold Change 
(+/-)

P-VALUE 
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Table 1: Classification of differential gene expression of esfenvalerate responding genes in 52-d old H. transpacificus following 24 h exposu

BLASTX top hit Species match Accession No. Score E-value Concentration

Neuromuscular

titin a Danio rerio ABG48500 110 4.00E-23 0.0625

smooth muscle cell-specific protein SM22 alpha Epinephelus coioides ABW04145 349 1.00E-94 0.1250

toxin-1 Oncorhynchus mykiss AAM21198 116 5.00E-25 0.1250

thymosin beta-12 Lateolabrax japonicus P33248 80 2.00E-13 0.1250

similar to 19.9 kD myosin light chain isoform 1 Danio rerio XP_685183 332 1.00E-89 0.1250

ictacalcin Ictalurus punctatus AAY86967 145 1.00E-33 0.1250

tropomyosin Theragra chalcogramma BAC44994 281 2.00E-74 0.1250

N-acylsphingosine amidohydrolase Takifugu rubripes AAM43813 367 e-100 0.1250

alanine-glyoxylate aminotransferase Platichthys flesus CAH59400 345 2.00E-93 0.1250

titin b Danio rerio ABG48499 65 5.00E-09 0.1250

alpha-2,8-polysialyltransferase IV Oncorhynchus mykiss BAC77411 70 1.00E-10 0.1250

hedgehog acyltransferase-like, a Danio rerio NP_957181 295 1.00E-78 0.1250

parvalbumin Cyprinus carpio CAC83659 173 7.00E-42 0.1250

BTEB transcription factor Pimephales promelas ABO28528 107 1.00E-21 0.0625

myosin regulatory light chain 2 Salmo salar CAD89610 330 7.00E-89 0.1250

similar to Clca1 protein Danio rerio XP_694323 198 2.00E-49 0.0625

ependymin Perca flavescens ABU49423 168 2.00E-40 0.0625

aspartoacylase Danio rerio NP_001103573 384 e-105 0.0625

Immune

carboxypeptidase B Paralichthys olivaceus BAC53789 365 2.00E-99 0.1250

fish-egg lectin (FEL) Cyprinus carpio P68512 192 2.00E-47 0.1250

procathepsin B Oncorhynchus mykiss AAK69705 346 1.00E-93 0.0625

gamma-glutamyl hydrolase Danio rerio NP_998487 223 6.00E-57 0.0625

membrane glycoprotein Human coronavirus ABD75532 53 1.00E-05 0.0625

beta-2 microglobulin Salmo salar AAG17525 176 8.00E-43 0.1250

microtubule-associated protein 1 light chain 3 alpha Danio rerio NP_999904 238 3.00E-61 0.0625

microtubule-associated protein, RP/EB family, member Danio rerio NP_998805 272 1.00E-71 0.0625

T-cell receptor beta chain ANA 11, putative Brugia malayi EDP38115 63 2.00E-08 0.1250

glycerophosphodiester phosphodiesterase domain containing 1 Danio rerio NP_001004118 322 2E-86 0.0625

CHK1 checkpoint homolog Xenopus tropicalis CAJ83813 92 2.00E-17 0.1250

Apoptosis

tissue inhibitor of metalloproteinase 2 Oncorhynchus mykiss AAU14867 265 3.00E-69 0.1250

cathepsin H Danio rerio NP_997853 300 5.00E-80 0.1250

caspase-3 Dicentrarchus labrax ABC70996 223 6.00E-68 0.1250

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=ABG48500
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=ABW04145
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AAM21198
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=P33248
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=XP_685183
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AAY86967
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BAC44994
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AAM43813
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CAH59400
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=ABG48499
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BAC77411
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NP_957181
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CAC83659
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=ABO28528
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CAD89610
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=XP_694323
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=ABU49423
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NP_001103573
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BAC53789
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=P68512
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AAK69705
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NP_998487
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=ABD75532
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AAG17525
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NP_999904
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NP_998805
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EDP38115
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NP_001004118
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CAJ83813
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AAU14867
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NP_997853
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=ABC70996
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-1.1270 0.0061

-1.1507 0.0047

1.3333 0.0042

1.2968 0.0052

1.1769 0.0080

1.1543 0.0036

-1.1340 0.0073

-1.2429 0.0625 *

-1.1388 0.0072

-1.1568 0.0625 *

-1.2321 0.0625 *

-1.1053 0.0021

1.4959 0.0056

1.4211 0.0095
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-1.0618 0.0097
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caspase-1 Dicentrarchus labrax ABB05054 79 3.00E-13 0.1250

cathepsin S-like Oncorhynchus mykiss AAV32964 291 1.00E-77 0.1250

Redox and metal ion binding

hydroxymethylbilane synthase Danio rerio CAM15096 369 e-101 0.1250

hemopexin Danio rerio NP_001104617 313 2.00E-83 0.1250

transferrin Salvelinus fontinalis BAA84100 326 1.00E-87 0.1250

similar to leprecan-like 1 protein Danio rerio XP_695073 183 1.00E-44 0.1250

similar to synaptic glycoprotein SC2 Danio rerio XP_693420 430 e-119 0.1250

similar to LOC407663 protein Danio rerio XP_698537 124 6.00E-27 0.0625

Growth and development

yghl1 (Putative growth hormone like protein-1) Seriola quinqueradiata BAB62526 153 1.00E-35 0.1250

ZPA domain containing protein Oryzias latipes NP_001098216 168 3.00E-40 0.0625

Detoxification

pregnane × receptor Oncorhynchus mykiss ABP38412 206 2.00E-51 0.0625

Osmotic stress

hyperosmotic glycine rich protein Salmo salar AAO32675 134 8.00E-30 0.1250

Digestion

similar to Apoa4 protein isoform 2 (Apolipoprotein) Danio rerio XP_698920 296 7.00E-79 0.1250

chymotrypsinogen 2-like protein Sparus aurata AAT45254 460 e-128 0.1250

pancreatic carboxypeptidase A1 precursor copy 2 Tetraodon nigroviridis AAR16321 242 9.00E-63 0.1250

pancreatic protein with two somatomedin B domains Paralichthys olivaceus BAA88246 214 e-100 0.1250

chitinase (Zgc:55941) Danio rerio AAH44549 369 e-100 0.1250

Genes selected for quantitative PCR analyses are shown in bold. * indicates genes responding at 0.0625 μg.L-1 esfenvalerate and ** indicates gene respo
Remaining genes responded only at 0.125 μg.L1 esfenvalerate exposure. Information represents proportions of a limited number of available genes on th

Table 1: Classification of differential gene expression of esfenvalerate responding genes in 52-d old H. transpacificus following 24 h exposur
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sented by genes coding for pancreatic enzymes, a zona
pellucida protein; inferred to be choriogenin, and a
growth hormone.

A selected group of genes, highlighted in bold in the gene
list in table 1, were validated using q-PCR and further
investigated for use as molecular biomarkers. These
results are described below, in conjunction with differen-
tially expressed genes identified through microarray appli-
cation.

Specific effects of esfenvalerate exposure on gene 
expression
Pyrethroid insecticides are known sodium and potassium
channel modulators [25], with axon demyelinating effects
[27]. This the proof-of-principle microarray assessment of
esfenvalerate exposure of 52-d old delta smelt, was suc-

cessfully used to screen for, and further understand its
mode of action, identifying neuromuscular responses,
that were confirmed as highly significant through qPCR,
corroborating known effects of this pesticide, but also
pointing at other significant effects upon growth and
development, digestion and the immune system. Gene
expression assessed by qPCR on 10-d old delta smelt that
verified these genomic responses are presented below.
Correlations in expression between q-PCR investigated
genes are shown in table 2 and fold changes in gene
expression are summarized in figure 3 and table 3.

i. Neuromuscular responses
Parvalbumin expression in 10 d old larvae was induced
1.8-fold (t-test, p = 0.008) at 0.0313 μg.L-1 esfenvalerate,
reducing in expression at higher concentrations. Localized
in fast-contracting muscles, some endocrine tissues, in the

Functional classification of gene expressionFigure 2
Functional classification of gene expression. Functional classification of genes responding to esfenvalerate exposure 
(0.0625 and 0.125 μg.L-1) in 52-d old delta smelt. Percentages were calculated based on function and biological processes of 94 
unique differentially expressed genes.
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nervous system in GABAergic interneurons and in the
brain [33], parvalbumin removes calcium from myofi-
brils, protecting neurons from hyper-excitability and facil-
itating muscle relaxation [34]. Accumulation of calcium
in muscular tissue contributes to muscle degradation,
muscular dystrophy and muscle fiber necrosis [35]. Estro-
gen is required for parvalbumin expression, thus estrogen
receptor-β co-expresses with parvalbumin [36]. Estrogen
is also required in brain development and has a protective
neurological role, by regulating the activity of GABAergic
systems within the hippocampus, basal forebrain and

hypothalamus [37]. Differential expression of parvalbu-
min on exposure to esfenvalerate may be resultant of
estrogenic effects. Pyrethroid pesticides have steroid
receptor-binding activity [38] linked with endocrine dis-
ruption [39], thus exposure is likely to affect the popula-
tion dynamics of wildlife not only through
neuromuscular impairments, but also by affecting repro-
ductive output [29,40]. Parvalbumin, could therefore, be
a good indicator of possible endocrine-disruption as well
as neuromuscular impairments.

Table 2: Pairwise correlations of gene expression in esfenvalerate exposed 10-d old delta smelt.

Aspartoacylase Titin a Microglobulin Caspase-3 Parvalbumin Hemopexin ZPA Myozenin Creatine 
Kinase

PXR

Aspartoacylase 1
(0)

Titin a 0.490 (0.402) 1
(0)

Microglobulin 0.576 (0.310) 0.954 
(0.012)

1
(0)

Caspase-3 0.344 (0.571) 0.919 
(0.027)

0.921 (0.026) 1
(0)

Parvalbumin 0.284 (0.644) 0.953 
(0.012)

0.928 (0.023) 0.981 
(0.003)

1
(0)

Hemopexin 0.629 (0.256) 0.819 
(0.090)

0.951 (0.013) 0.860 (0.061) 0.822 (0.088) 1
(0)

ZPA -0.017 (0.979) 0.788 
(0.113)

0.646 (0.239) 0.853 (0.066) 0.871 (0.054) 0.472 (0.422) 1
(0)

Myozenin 0.309 (0.613) 0.898 
(0.038)

0.949 (0.014) 0.909 
(0.033)

0.943 (0.016) 0.892 
(0.042)

0.677 (0.210) 1
(0)

Creatine 
Kinase

0.255 (0.679) 0.916 
(0.029)

0.865 (0.058) 0.984 
(0.003)

0.978 (0.004) 0.759 (0.137) 0.932 
(0.021)

0.859 
(0.062)

1
(0)

PXR 0.880
(0.049)

0.087
(0.890)

0.208
(0.737)

-0.113
(0.857)

-0.153
(0.805)

0.307
(0.616)

-0.475
(0.418)

-0.038
(0.952)

-0.218
(0.725)

1
(0)

Numbers represent correlation coefficients; r, and significance probabilities; (p), between ten selected biomarkers assessed with quantitative PCR. Bold p-values highlight 
significant correlations.

Table 3: Mean and standard deviations in fold changes in gene expression of ten selected biomarkers in esfenvalerate exposed, 10-d 
old, delta smelt, assessed by quantitative PCR.

Gene\Concentration 0.000 0.031 0.063 0.125 0.250

Aspartoacylase Mean 1.000 0.629 0.346 0.299 0.244
SE 0.240 0.100 0.078 0.035 0.088

Titin Mean 1.000 1.515 0.909 0.933 0.475
SE 0.529 0.198 0.095 0.192 0.096

Microglobulin Mean 1.000 1.420 0.760 0.828 0.628
SE 0.404 0.127 0.104 0.154 0.221

Caspase Mean 1.000 2.024 1.136 0.818 0.670
SE 0.336 0.432 0.043 0.117 0.094

Parvalbumin Mean 1.000 1.718 1.097 1.037 0.771
SE 0.241 0.151 0.125 0.062 0.107

Hemopexin Mean 1.000 1.501 0.521 0.548 0.612
SE 0.089 0.296 0.051 0.147 0.295

ZPA Mean 1.000 1.612 1.455 1.165 0.912
SE 0.415 0.321 0.224 0.210 0.574

Myozenin Mean 1.000 1.730 0.857 1.069 0.835
SE 0.212 0.205 0.121 0.093 0.188

Creatine Kinase Mean 1.000 1.799 1.265 0.968 0.750
SE 0.270 0.249 0.272 0.162 0.145

PXR Mean 1.000 0.737 0.668 0.737 0.729
SE 0.126 0.083 0.124 0.080 0.178
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Interestingly, expression of aspartoacylase (ASPA) in
exposed 10-d old delta smelt larvae was significantly
affected at all concentrations, downregulating with
increasing esfenvalerate concentration in a dose response
manner, and correlating significantly with swimming
anomaly at 24 h (r = 0.913, p = 0.029). Aspartoacylase cat-
alyzes hydrolysis of N-acetyl-L-aspartate (NAA) to aspar-
tate and acetate in the vertebrate brain [41]. Variations in
NAA measured in urine, blood and brain, have been used
as diagnosis of nervous system diseases such as Alzhe-
imer's and multiple sclerosis [42,43]. Measurements of
NAA, along with ADP levels determined by creatine
kinase activity, are used to evaluate the energetic state of
the brain, a positive linear correlation existing between
NAA and ADP synthesis [44]. Deficiency in ASPA activity
leads to degeneration of the myelin; an ensheathment
that isolates and controls axonal activity, it is associated
with schizophrenia [45], and is the established cause of
leukodystrophy in Canavan's disease [43]. Abnormal
myelination is known to result from acyltransferase defi-
ciency [46]. Ependymin, a myelin associated glycoprotein

related to memory formation and involved in neuronal
regeneration [47], was also negatively affected by esfenva-
lerate. Myelin has been postulated as a probable modula-
tor of ASPA activity [48] further affecting this critical
pathway of neurological function. ASPA protein activity is
a strong biomarker of brain damage and neurological
impairment investigation, used regularly in human and
veterinary disease diagnostics [49].

Creatine kinase was significantly up-regulated at 0.0313
μg.L-1 esfenvalerate (t-test, p < 0.05). Creatine kinase pro-
tein is used not only as a diagnosis of brain energetic value
as mentioned above, but also of diseases like cardiac inf-
arction and skeletal muscle necrosis [50]. In muscle, crea-
tine kinase is specifically bound to sarcoendoplasmic
reticulum, and regulates calcium uptake and ATP/ADP
ratios [51], thus is directly involved in muscle contraction.
Of interest here, are the pathway links and correlating
responses (r = 0.98) between parvalbumin; facilitating
muscle relaxation by binding calcium, and creatine
kinase, which regulates calcium uptake. These two param-

Molecular biomarkers responsesFigure 3
Molecular biomarkers responses. Fold changes in gene expression of ten selected biomarkers in esfenvalerate exposed, 
10-d old, delta smelt, assessed by quantitative PCR. Significance in expression differences, as determined by One-way ANOVA, 
is shown in brackets in legend.
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eters on their own indicate muscular activity impairments,
creating strong links with observed larval swimming
behavior.

Titin expression also correlated significantly with parval-
bumin (r = 0.95) and creatine kinase (r = 0.92), though
not statistically significant in q-PCR assessments of 10-d
old smelt larvae. Titin is an important protein also
involved in muscle contraction, responsible for muscle
elasticity and is the molecular scaffold for thick actin fila-
ment formation, forming a connection between filaments
and the muscle Z-line [52]. Myozenin, another protein
involved in muscle contraction, was significantly influ-
enced by esfenvalerate exposure (t-test, p < 0.05) in 10-d
old larvae. Co-regulating with Titin (r = 0.90), myozenin
is a Z-line, α-actinin- and γ-filamin-binding protein
expressed predominantly in skeletal muscle, and has been
suggested as a biomarker for muscular dystrophy and
other neuromuscular disorders [53].

ii Immune responses
In this study we have identified a significant alteration in
expression of several genes involved in immune
responses, most of them with links to neurological dam-
age. β-microglobulin, a small protein normally found on
the surface of many cells, including lymphocytes, is
known to be involved in cell protection [54]. β-
microglobulin is almost exclusively catabolized in the kid-
ney and its excretion is an indication of long term neph-
rotoxicity [55]. High concentrations of β-microglobulin
are reported to inhibit generation of functional dendritic
cells [56], thus an increased amount in the blood or urine
may be a sign of neural degeneration and of certain dis-
eases, including some types of cancer, such as multiple
myeloma or lymphoma. β-microglobulin levels are also
reported to rise following viral infection and its reduced
expression can compromise the immune system [57].
Interestingly, exposure to esfenvalerate resulted in a sig-
nificant increase of pathogen susceptibility in chinook
salmon [9]. β-microglobulin assessment with q-PCR did
not show any significance in expression in 10 d old larvae
(t-test, p = 0.131), however, an overall increase was
observed at low concentrations of esfenvalerate, correlat-
ing significantly with expression of other genes investi-
gated, further discussed below.

Multiple sclerosis is caused by an immunological attack
on myelin [58], decreasing NAA and resulting in neuro-
logical instability. Furthermore, oxidative stress is induc-
tive of apoptosis of myelin-reactive T cells [59]. A putative
T cell receptor gene was identified through microarray
screening, probably reacting to pyrethroid exposure, act-
ing upon the myelin sheath and causing further neurolog-
ical damage and cell death.

iii Apoptotic responses
Caspases (cysteine-aspartic acid protease) belong to a fam-
ily of cysteine proteases that cleave other proteins, such as
the precursor forms of the inflammatory cytokines inter-
leukin 1-β and interleukin 18, into active mature peptides
and are also involved in programmed cell death; or apop-
tosis [60]. Enzymatic activity requires an aspartic acid res-
idue, and plays a critical role in the regulation of
proinflammatory cytokines [61] that are associated with
septic shock and autoimmune syndromes [62]. Upregula-
tion of proinflammatory cytokines were reported in viral
infected salmon, which further increased in expression
following esfenvalerate exposure [63]. Caspases contrib-
ute to the pathogenesis of neurodegenerative disorders
such as ischemia, Krabbes and Huntington's diseases,
Alzheimer's, and other leukodystrophic diseases resulting
in neural degeneration [64,65]. Moreover, caspase inhibi-
tors have been suggested as therapeutic treatments for
neurodegenerative diseases [66]. Low concentrations of
esfenvalerate; 0.0313 μg.L-1, significantly induced cas-
pase-3 expression 2-fold (t-test, p = 0.002) in 10-d old
delta smelt. As caspases are activated by aspartic acid,
induction may be suggestive of increases in substrate resi-
dues, along with inflammatory cytokines, probable effects
upon the immune system, and subsequent neurodegener-
ation. Furthermore, a decrease in ASPA expression could
be suggestive of reduced breakdown of NNA to aspartate
and acetate, required as substrate for caspase activity, and
synthesis of proteins required in repair mechanisms.

iv. Redox and metal ion binding
Upregulation of hemopexin was confirmed by quantita-
tive PCR in 10-d old delta smelt exposed to 0.0313 μg.L-1

esfenvalerate. Hemopexin-like protein, a gene sequence
displaying vast similarities to warm-temperature-acclima-
tion-related-65 protein (WAP65) on BLAST homologies
with Japanese medaka (Oryzias latipes), was identified as
significantly upregulated through microarray screening.
Hemopexin is synthesized by Schwann cells following
nerve injury [67], accumulation has been reported in the
peripheral nervous system following axonal lesions, and
is specifically regulated during repair, returning to normal
levels on axonal regeneration [68]. Wallerian degenera-
tion occurs after axonal injury and is critical for repair, it
is characterized by axonal and myelin degeneration [69],
is accompanied by macrophage invasion and subsequent
synthesis of hemopexin [67]. Hemopexin appears to play
a significant role in neural regeneration, but may be
resultant of oxidative stress mediated T cell activity on
myelin sheaths (described above, under immune
responses). Though upregulation follows nerve injury and
there are strong connections with apoptosis, we classify
hemopexin under oxidative stress as it has a high affinity
with heme and reportedly plays a strong role in both
heme transport and preventing heme-catalyzed oxidative
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damage [70]. Moreover, pyrethroids have been shown to
generate free radicals and induce oxidative stress [71].
Heme is known to respond to nerve injury, and has been
suggested to play a role in neurodegenerative disorders
[72], and hemopexin-mediated heme transport was
reported to significantly decrease levels of transferrin
receptor mRNA in HeLa cells [70]. Transferrin was also
identified by microarray screening as significantly upregu-
lated by esfenvalerate exposure. The primary role of trans-
ferrin is the delivery of iron across the blood brain barrier,
and its expression in brain is not only related to myelin
production, but may be a permissive agent in the process
of myelination [73]. Furthermore, hemopexin and trans-
ferrin reportedly act by similar receptor-mediated mecha-
nisms [74].

v. Growth and development
Microarray analyses identified a gene with high homology
to egg envelope glycoproteins within the zona pellucida
(ZPA) referred to as choriogenins, in fish [75]. This was
significantly expressed in 52-d old larvae, however, no sta-
tistical differences in expression of ZPA were measured
with qPCR in 10-d old larvae exposed to esfenvalerate.
Choriogenin is reportedly more sensitive to endocrine dis-
rupting chemicals (EDCs) than estrogen receptors and
vitellogenin [76]. Composed primarily of glycoproteins
with various functions during fertilization and develop-
ment, choriogenin has been suggested as a biomarker of
exposure to endocrine disrupting chemicals, as it is
induced in late stage embryos, larvae and adult male fish
exposed to estrogens [76,77]. Choriogenin is synthesized
in liver of adult females, in response to estrogen, trans-
ported in blood and incorporated into the fish egg enve-
lope; chorion or zona pellucida (ZPA), an extracellular
matrix that surrounds the oocyte and early embryo [78].
Expression was notably elevated at low pyrethroid con-
centration, and it responded in a similar fashion to creat-
ine kinase (r = 0.93), though no significant links were
identified between these two biomarkers.

vi. Detoxification
Pregnane × receptor (PXR), involved in the detection of
toxic substances and a key regulator of xenobiotic metab-
olism, was identified through microarray assessments, as
downregulated in 52-d old larvae. PXR is a steroid recep-
tor and transcriptional regulator of detoxification mecha-
nisms such as cytochrome oxidases, and phase II
conjugating enzymes such as glutathione-S-tranferases
[79,80]. Downregulation of PXR expression has been
linked with growth inhibition and cell death in rats and
human cell lines following exposure to medroxyproges-
terone and estradiol, known PXR ligands [80], further
supporting identified apoptotic responses, steroid recep-
tor-binding and endocrine disruption activity of esfenva-
lerate [38,39]. PXR expression was not significantly

different in q-PCR assessments of 10-d old larvae exposed
to esfenvalerate, however, overall expression declined in a
dose response manner, correlating with ASPA (r = 0.880;
p = 0.049), making it a notable candidate of xenobiotic
detection for future biomarker investigations in the delta
smelt.

vii Osmotic Stress
A hyperosmotic glycine rich protein was identified with
the microarrays as significantly downregulated by expo-
sure to 0.0625 μg.L-1 esfenvalerate in 52-d old larvae.
Osmoregulation is physiologically controlled by chemical
messages from the endocrine system, along with cell sig-
nalling and nerve transmission [81]. Pyrethroids have
been suggested to induce osmotic imbalances in common
carp larvae [82] which are linked to effects on ATPase
activity responsible for maintaining the Sodium trans-
membrane electrochemical gradient [83]. Larval fish are
under direct exposure to osmotic stress as their endocrine
system is not fully developed [84]. Parvalbumin and cho-
riogenin expression have indicated possible effects on the
endocrine system, thus expression of this hyperosmotic
glycine rich protein may be directly caused by conditions
affecting endocrine regulation.

viii Digestion
Chitinase was identified through microarray analysis as
being downregulated by esfenvalerate exposure. Chitinase
is the principal enzyme involved in digesting chitin, a
major component of insect and crustacean exoskeleton
[85]. Larval smelt were fed on artemia during the pre-
exposure acclimation period. Not only chitinase but,
other digestive enzymes; apolipoproteins, pancreatic
enzymes, carboxypeptidase precursors and chemot-
rypsinogen, were also significantly upregulated following
exposure in 52-d old larvae. Effects on digestion alone will
undoubtedly have significant effects on growth, which
when combined with hypothesized feeding reduction
resulting from impaired swimming would lead to signifi-
cant malnutrition. Contaminants affect a whole ecosys-
tem, at all levels, and dramatic reductions in copepods,
cladoceran and amphipod populations; organisms pre-
dated upon by the delta smelt, have been reported in the
Sacramento delta [86]. Scarcity in food and reduced inges-
tion ability, besides digestion will significantly affect pop-
ulation dynamics of any specie.

Conclusions
Microarray technology was used as an initial screening of
probable genes responding to esfenvalerate exposure
therefore no multiple testing correction was applied. We
have, however, examined and confirmed effect of esfenva-
lerate upon some of the genes in a different age group of
larval delta smelt, identifying significant responses that
are primarily linked with swimming behavior. Some
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responding genes can be classified within different func-
tional groups. Due to the measured behavioral responses,
the classification approach contains a certain bias towards
understanding neuromuscular effects. It is interesting that
qPCR measurements have identified a greater response at
the lower concentrations, implying homeostatic altera-
tions, at environmentally relevant concentrations. Most
genes did not display a desired dose response correlation
associated with usable biomarkers, but did support
responses within the suite of genes investigated, some-
what validating their use within a broader biomarker
approach. Hemopexin for example is known to be
involved in axon repair, and the myelin sheath surround-
ing the axon needs to be degraded for this repair to be
processed, hypothesizing therefore that ASPA downregu-
lation is resultant of neurological damage. The subse-
quent decrease of hemopexin expression at higher
exposure concentrations, and further decrease in ASPA,
may be indicative of repair impairments.

What becomes apparent from this study is that exposure
to sublethal concentrations of esfenvalerate results in neu-
rological damage and a series of compensatory molecular
responses that attempt to repair nerve damage. We would
hypothesize that induction of transcription of the genes
encoding ASPA, hemopexin, parvalbumin and creatine
kinase are part of a pathway of damage triggered repair
mechanisms, responding to esfenvalerate insult. Reduc-
tion in expression of ASPA indicates that myelin sheaths
may be degraded, resulting in a number of detrimental
effects on the lesion sites, and similarly, muscular struc-
ture and function is being compromised as measured by
alterations in titin and myozenin expression. The expres-
sion of β-microglobulins could be a compensatory reac-
tion to toxic damage, protecting cells from infections in a
susceptible immune system caused by exposure to esfen-
valerate. Previous studies, carried out in esfenvalerate
exposed chinook salmon have reported a compromised
immunity and significantly higher susceptibility to infec-
tion [9,63]. This is particularly important in younger
organisms that are generally more susceptible than adults.
Furthermore, polluted waters not only contain mixtures
of contaminants, but also harbor multiple pathogens that
will further affect health parameters.

Behavioral endpoints, such as swimming behavior, are
amongst the most sensitive and ecologically relevant
parameters to assess sublethal toxicity of neurotoxic
chemicals [29]. The high susceptibility of delta smelt to
esfenvalerate, mediated neurological damage resulting in
impaired swimming ability, also raises questions on the
likely effects upon their chemosensory system; olfactory
system, important in sensing reproductive pheromones,
mediating reproduction. Females synthesize sex hor-
mones stimulating male reproductive behavior [87]. Neu-

rological damage affecting the olfactory nerves, the brain
and or entire nervous system, could lead to further impair-
ments in reproductive success following exposure to pyre-
throids. Damage to the olfactory system has been used as
a sublethal toxicological endpoint in fish, in studies inves-
tigating behavior following pesticide exposures [88]. Pyre-
throids are known to affect the olfactory system [89]. A
chemosensory gene, ictacalcin, responding to esfenvaler-
ate exposure was also differentially expressed on the
microarray. Ictacalcin is a gene originally identified in cat-
fish (Ictalurus punctatus), involved in chemosensory tis-
sues, and highly expressed in barbell, olfactory mucosa
and gill [90]. Differential expression of this gene may
indicate that further behavioral parameters, not investi-
gated in this study, such as recognition, alarm response,
feeding, imprinting and homing, gamete release and syn-
chronization, contaminant avoidance [88], and other
behavioral parameters that are governed by chemosensory
system, could be compromised. We could speculate that
outside laboratory conditions, neuromuscular and chem-
osensory impairments would probably result in higher
ecological parameters being affected through inability to
swim against water currents, making them more suscepti-
ble to predation and reducing their ability to obtain food.
Furthermore, effects on chemosensory parameters would
lead to migratory, reproductive, predator and contami-
nant avoidance impairments.

Inhibition of repair mechanisms, leading to neuromuscu-
lar damage and eventual death, was behaviorally observed
throughout exposure, as impairment in swimming ability.
The ability to use molecular biomarkers of neuromuscular
effect further strengthens links between mechanistic
effects with parameters of ecological relevance. Our study
supports the use of gene expression as a productive way of
understanding modes of actions of individual chemicals
in endangered species. Furthermore, this screening and
interrogative approach permits the identification and
development of biomarkers for species of concern in
which prior information is limited and allows for investi-
gations into problems specific to the organism in ques-
tion; assessing possible causes of detrimental effects and
resulting influences on individual performance and
hypothesizing effects upon population dynamics. A suite
of biomarkers developed in this manner, though addi-
tions and subtractions are required from the presented
list, could be used to aid monitor impacts of stressors
upon organisms within a specific environment and could
be an essential tool in determining causative factors of
population decline in the delta smelt and other threat-
ened species. The selected biomarkers clearly need to be
further investigated and validated against other known
contaminants, and suitability in field applications.
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Methods
Microarray construction
We constructed a delta smelt microarray using 8448 PCR
amplified fragments from a normalized cDNA library. A
cDNA library was created using expressed sequence tags
(ESTs) ligated into p-BS plasmid vectors and cloned into
chemically competent Escherichia coli cells (BioS&T Inc,
Montreal, Quebec, Canada). RNA for library construction
was obtained from a number of larval, juvenile and adult
delta smelt, ranging from unexposed, control conditions,
to fish from exposures to high temperature (25°C), and
sublethal concentrations of copper, esfenvalerate, and a
six field water samples from throughout the Sacramento-
San Joaquin estuary. Products were PCR amplified from 1
μl bacterial suspension, and visualized on agarose gels.
Purified PCR fragments ranging in size from 1-4 kb, along
with control spots, were pin-printed in duplicate onto
epoxysilane coated glass slides (Schott-Nexterion, USA) in
a 20 × 19 block format, with 48 blocks per microarray.
Microarrays were printed using a Lucidea Array Spotter
(Amersham) at the Array Core facility at UC Davis (since
closed down). Microarray control spots included a
number of hybridization tags comprised of a pooled PCR
product from all spots on the array, H. transpacificus DNA,
and four Spot Report System of alien PCR products from
Arabidopsis thaliana; CAB, RCA, RBCL and LPT4 (Strata-
gene, USA). Blank control spots consisted of 1× Nexterion
buffer solution.

Esfenvalerate exposures
Delta smelt larvae aged 10 d and 52 d were exposed for 24
h, in two separate experiments, to a range of esfenvalerate
concentrations; 0.0313, 0.0625, 0.125, 0.250 and 0.500
μg.L-1 (nominal) in laboratory control water, with corre-
sponding laboratory and solvent controls. Concentrations
were measured at the start of the experiment by the Water
Pollution Control Laboratory at the Department of Fish
and Game (Rancho Cordova, California, USA), only sin-
gle measurements were taken per treatment (results not
shown), therefore we present the data in terms of nominal
concentrations. Laboratory control water consisted of
deionized water amended to US EPA moderately hard
standards (80-100 mg.L-1 CaCO3) and 200 μl/L methanol
was used as solvent carrier. Salinity was adjusted with
Instant Ocean salt to match hatchery rearing conditions
(range 650 μS.cm-1 to 900 μS.cm-1).

Average wet weights of 10-d to 52-d old larval delta smelt
ranged from 0.5 to 2.5 mg respectively. Larvae were
obtained from the Fish Conservation and Culture Labora-
tory (FCCL) UC Davis, Byron, CA, transported in cool,
oxygenated 2-gallon black buckets, and held overnight in
the laboratory at 17°C and a 8 h:16 h D:L light cycle. The
following day, ten larvae were transferred to each 2-L
beaker containing 1 L of aerated control water or esfenva-

lerate treatment. Each treatment consisted of 4 replicates
and tests were performed at 8 h:16 h D:L cycle, at a water
temperature of 17°C ± 1.2°C. The pH during the tests was
7.1 - 7.5. Dissolved oxygen levels were within the accept-
able range for delta smelt (above 6.5 mg.L-1)[91]. Larvae
were fed rotifers the day before the test start, but not dur-
ing the 24 h exposure. Rotifer cultures were obtained from
FCCL. During exposure, larvae were observed for aberrant
swimming behavior, and surviving fish were scored after
4 h and 24 h. Swimming behavior was assessed by observ-
ing each tank for 5 min as described in Geist et. al. [17].
Any pronounced deviation (> 1 min) from normal (con-
trol) swimming patterns were recorded as abnormal.
Effects on swimming performance (EC50) and mortality
(LC50) were assessed using linear regression analysis with
Environmental Toxicity Information System (CETIS) by
Tidepool Scientific Software (McKinleyville, CA, USA).

Four surviving 52 d old larvae from solvent controls, and
exposures to 0.0625 and 0.125 μg.L-1 esfenvalerate, were
used for microarray analyses, hybridized in a reference
design against a pool of RNA from all treatments. Four
replicate 10 d old larvae from each treatment (controls
and 0.0312, 0.0625, 0.125 μg.L-1 esfenvalerate) were used
for biomarker analyses and gene expression verification
using quantitative PCR (q-PCR).

All experiments and use of test organisms were approved
by the UC Davis Institutional Animal Care and Use Com-
mittee (Animal Use Protocol for Animal Care and Use
#13361). This institution is accredited by the Association
for Assessment and Accreditation of Laboratory Animal
Care, International (AAALAC) and has an Animal Welfare
Assurance on file with the Office of Laboratory Animal
Welfare (OLAW). The Assurance Number is A3433-01.
The IACUC is constituted in accordance with U.S. Public
Health Service (PHS) Animal Welfare Policy and includes
a member of the public and a non-scientist.

RNA isolation, cDNA synthesis and fluorescence labeling
RNA was extracted from whole, individual organisms
using a standard phenol:chloroform protocol with Trizol
Reagent (Invitrogen). Fifteen micrograms of total RNA
were used for cDNA synthesis, spiked with control RNA
(CAB, RCA, RBCL and LTP4 (SpotReport, Stratagene) and
labeled with Alexa fluor dyes, using SuperScript™ Plus
Indirect cDNA labeling System (Invitrogen). Each experi-
mental sample and control was combined with a refer-
ence pool cDNA prior to hybridization using an
automated Tecan HS4800 hybridization station. Slides
were scanned using a GenePix 4000B scanner (Axon
Instruments).

Microarray images and data from esfenvalerate exposed
delta smelt can be accessed at http://www.vet
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med.ucdavis.edu/apc/WernerLab/
subpagpelagic_organism_decline.html; POD archive
data.

Microarray Analyses
Normalization and analytical methods are described in
Loguinov et. al. [32] and Smyth [92]. In brief, print tip
normalization was carried out within slides and sequen-
tial single slide data analysis was carried out as an alterna-
tive to between-slide normalization. An α-outlier-
generating model was used to identify differentially
expressed genes by applying the following decision rule
for multiple-slide data analysis: a given gene was selected
as a candidate if it was detected as significantly up- or
downregulated in 4 of 4 replicates (raw p-value = 0.0625
using exact binomial test and considering outcomes as
Bernoulli trials). The approach did not use scale estimator
for statistical inference and, therefore, it did not require
between-slide normalization. This method however,
detected only one significant differentially expressed can-
didate gene at the highest exposure concentration (0.125
μg/L-1), (with no significant annotation identity - see
results and discussion). As a result, a second analytical
method was applied to increase the number of probable
genes for consideration in biomarker development. Thus
we further analyzed the data using LIMMA GUI (Linear
model for microarray analysis graphical user interface)
[92], written in the R-programming language available
through Bioconductor http://www.Bioconductor.org.
Data was normalized within arrays using print-tip Lowess
and between arrays applying aquantile normalization
methods [92]. A linear model fit was computed using the

duplicates on the arrays and the least-squares method, no
multiple assessment methods were applied to eliminate
false positives as our aim was to increase the number of
genes available for biomarker assessment, and qualify
these through quantitative PCR.

Sequencing and Annotation
Sequencing was carried out at the CA&ES Genomic Facil-
ity, UC Davis. Basic Local Alignment Search Tool; trans-
lated nucleotide (BLASTx) searches were performed on
specific fragments that responded significantly to the
exposure treatments. Only genes that were differentially
expressed following esfenvalerate exposure were
sequenced. Sequences were annotated according to
homologies to protein database searches using translated
nucleotide sequences and direct nucleotide queries http:/
/blast.ncbi.nlm.nih.gov/Blast.cgi. Sequences were only
annotated if they were found to have a BLASTx match with
the expect value smaller than 1 × 10-5 and a score above
50.

Functional Classifications
Differentially expressed genes were classified according to
gene ontology http://www.uniprot.org/uniprot, and
information gathered from literature, into functional
groups. Classification was carried out based on gene
expression changes in respect of control subjects, regard-
less of whether these were up or downregulated, or expo-
sure concentrations. Specific genes of interest were
selected for further investigation using quantitative PCR.

Table 4: Primers and probes used for molecular biomarkers: Primer pairs and TaqMan probes used in q-PCR assessments.

Accession no. Gene Primer Sequences Probe No.

FJ711577 Aspartoacylase Left: ggaggcacacatgggaatg 109
Right: cttcctctgaatctctgttccattatc

FJ711576 Parvalbumin Left: gaccaagacaagagtggcttca 101
Right: tctggcaccagcagagaagtt

FJ711580 β-2 microglobulin Left: tctttcgcggtcatctttctc 22
Right: ggttgtggccatacacctgaa

FJ711579 Hemopexin Left: catgcactacgaggacgacaag 143
Right: tggtagtagctgaacaccttgctg

FJ711578 Caspase-3 Left: gagaaccggtatgaaccaacg 159
Right: tccaagcttcccaaacactttc

FJ711575 Titin a Left: tgatcactggcgtgaaagagg 159
Right: caagctcattggacagtttgagg

FJ711581 ZPA Left: catgcggctgagtttggataa 106
Right: tgccattgatagcatcaacttca

FJ711583 Myozenin* Left: ccaatgtcgtgctggtacacc 106
Right: ctgccagacattgatgtagcca

FJ711584 Creatine kinase* Left: cgatcggcgttggagatg 163
Right: gccaagttcaacgagattctgg

FJ711582 PXR Left: tgaggcggtggagaagag 144
Right: gaggcggtggagaagag

* indicates biomarkers obtained from preliminary studies carried out during microarray development.
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Biomarker development
Genes were selected according to level of expression sig-
nificance, knowledge base from literature, and functional
classification. Primer and probes for qPCR analyses were
designed using Roche Universal Probe Library Assay
Design Center https://www.roche-applied-science.com.
Designed primers were obtained from Eurofins MWG
Operon http://www.eurofinsdna.com, and TaqMan
probes were supplied by Roche. Sequences for all genes
assessed by qPCR analyses have been submitted to gen-
bank http://www.ncbi.nlm.nih.gov. Primers and probes,
and genbank accession numbers, for investigated biomar-
kers are detailed in table 4. Myozenin and creatine kinase,
though not resulting from the current study, were genes
identified in investigations carried out during microarray
development, and added to the selected biomarkers due
to our interest in neuromuscular activity.

Quantitative PCR
A total of 1.5 μg RNA was cDNA synthesized using ran-
dom primers, and diluted to a total of 50 μl with nuclease
free water to generate sufficient template for qPCR analy-
sis. TaqMan Universal PCR Mastermix (Applied Biosys-
tems) was used in q-PCR amplifications in a reaction
containing 10mMTris-HCl (pH 8.3), 50 mM KCl, 5 mM
MgCl2, 2.5 mM deoxynucleotide triphosphates, 0.625 U
AmpliTaq Gold DNA polymerase per reaction, 0.25 U
AmpErase UNG per reaction and 5 μL of cDNA sample in
a final volume of 12 μL. The samples were placed in 384
well plates and cDNA was amplified in an automated
fluorometer (ABI PRISM 7900 Sequence Detection Sys-
tem, Applied Biosystems). Amplification conditions were
2 min at 50°C, 10 min at 95°C, 40 cycles of 15 s at 95°C
and 60 s at 60°C. Fluorescence of samples was measured
every 7 s and signals were considered positive if fluores-
cence intensity exceeded 10 times the standard deviation
of the baseline fluorescence (threshold cycle, CT). SDS
2.2.1 software (Applied Biosystems) was used to quantify
transcription.

Quantitative PCR data was analyzed using the relative
quantification 2(-Delta Delta CT) method ()([93]. In the
absence of house keeping genes, expression was calcu-
lated relative to the mean of controls in respective expo-
sures. Surviving larvae from each replicate of the 10-d old
exposed delta smelt were used for q-PCR analyses. One-
way ANOVA was used to assess differences in gene expres-
sion through out the exposure concentrations, and data
were further assessed using Student's T-test at individual
concentrations in respect to solvent controls.

Abbreviations
EST: expressed sequence tag; q-PCR: real-time quantitative
polymerase chain reaction; ASPA: aspartoacylase; ESA:
endangered species act; CESA: California endangered spe-

cies act; LIMMA GUI: linear model for microarray analy-
sis, graphical user interface; BLAST: basic local alignment
search tool; GABA: gamma-aminobutyric acid; NAA: N-
acetyl-L-aspartate; ADP: adenosine diphosphate; WAP65:
warm-temperature-acclimation-related-65 protein; EDC:
endocrine disrupting chemical; ZPA: zona pellucida; PXR:
pregnane × receptor; p-BS: p-Bluescript; IPTG: isopropyl
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tion and Culture Laboratory; UNG: Uracil N-glycosylase;
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