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1  | INTRODUC TION

Human infertility has developed into a serious social problem 
all over the world, especially in developed countries. Numerous 
types of assisted reproductive technology (ART); for example, ar-
tificial insemination,1 in vitro fertilization,2 and intracytoplasmic 

sperm injection,3 have been developed and are now used widely 
to treat human infertility. The cryopreservation of germ cells, such 
as sperm,4 oocytes,5 and embryos,6,7 is an important alternative 
technology that is used routinely in human infertility clinics. The 
results from basic research in mice suggest that germ cells that are 
derived from induced pluripotent stem cells and embryonic stem 
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Abstract
Background: Human infertility has become a serious and social issue all over the 
world, especially in developed countries. Numerous types of assisted reproductive 
technology have been developed and are widely used to treat infertility. However, 
pregnancy outcomes require further improvement. It is essential to understand the 
cross-talk between the uterus (mother) and the embryo (fetus) in pregnancy, which is 
a very complicated event.
Methods: The mammalian uterus requires many physiological and morphological 
changes for pregnancy-associated events, including implantation, decidualization, 
placentation, and parturition, to occur. Here is discussed recent advances in the 
knowledge of the molecular mechanisms underlying these reproductive events — in 
particular, embryonic implantation and decidualization — based on original and re-
view articles.
Main findings (Results): In mice, embryonic implantation and decidualization are reg-
ulated by two steroid hormones: estrogen and progesterone. Along with these hor-
mones, cytokines, cell-cycle regulators, growth factors, and transcription factors 
have essential roles in implantation and decidualization in mice.
Conclusion: Recent studies using the gene manipulation of mice have given consider-
able insight into the molecular mechanisms underlying embryonic implantation and 
decidualization. However, as most of the findings are based on mice, comparative 
research using different mammalian species will be useful for a better understanding 
of the species-dependent differences that are associated with reproductive events, 
including embryonic implantation.
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cells can be produced and such technologies might be useful for 
the treatment of human infertility.8,9 Despite the application of 
these types of ART and great efforts by physicians, researchers, 
and embryologists, the infertility of ~50% of couples who desire 
a baby cannot be improved by the current treatments. Additional 
research and improved knowledge of embryonic implanta-
tion is required to establish new technologies to address these 
shortcomings.

In most mammalian species, including humans, female germ cells 
(oocytes) are arrested at metaphase II (MII) in the antral follicles and 
then ovulated, followed by a luteinizing hormone surge.7,10 After 
ovulation, the oocytes reach the oviductal ampulla and then are 
fertilized with sperm. Sperm penetration triggers the release of the 
arrest at the MII stage via repetitive rises of intracellular Ca2+, which 
are called “Ca2+ oscillations.”11-13 Thereafter, the oocytes progress to 
the embryonic stages and then transit to the uterus through the ovi-
duct. When the embryos have moved to the uterus, the embryonic 
stage is called the “blastocyst.”

A hatched blastocyst can implant at the epithelium in a 
species-dependent manner. The uterus requires considerable 
physiological and morphological changes during pregnancy. A 
successful pregnancy is associated with implantation, decidual-
ization, placentation, and parturition.14,15 The success of these 
events is indispensable for the birth of offspring. In humans, it 
is believed that 75% of incomplete pregnancies are associated 
with implantation failure16 because implantation is the event 
of the first contact between the embryo (fetus) and the mater-
nal tissue and a failure at this point never results in subsequent 
pregnancy-associated events (ie, decidualization, placentation, 
and parturition).14,15

In the uterus, the endometrium is composed of the luminal epithe-
lium (LE), glandular epithelium (GE), and stromal cells (SCs) (Figure 1). 
The changes in uterine compartments are orchestrated primarily by 
estrogen and progesterone (P4),17 which has pivotal roles in the SC 
proliferation and suppression of epithelial cell proliferation through 
the expression of Indian hedgehog homolog (IHH) and heart- and 
neural crest derivatives-expressed protein 2 (Hand2).18-21 Estrogen 
is essential for the proliferation of epithelial cells, the suppression of 
apoptosis, and the regulation of the expression of Muc1 and lacto-
ferrin, which are both critical for normal uterine function.22-25 Under 
the functions of estrogen and P4, many molecules, including cyto-
kines, growth factors, homeobox transcription factors, lipid medi-
ators, and ion transporters, function through autocrine, paracrine, 
and juxtracrine interactions in order to accomplish the complex pro-
cess of implantation.

Regarding the molecular mechanisms underlying embryonic im-
plantation, a better understanding of estrogen- and P4-dependent 
pathways will contribute to further improvements of clinical treat-
ments. Recent studies using genetically modified mice have ob-
tained considerable evidence that helps to clarify these molecular 
mechanisms. This review summarizes the recent advances that are 
related to implantation, focusing on the roles of estrogen- and P4-
dependent signaling.

2  | DEFINITION OF EMBRYONIC 
IMPL ANTATION

Implantation is a complicated process and it is very difficult to de-
fine the starting point of embryonic implantation. In a broad sense, 
it is thought that implantation proceeds through at least five stages: 
(i) embryo spacing; (ii) apposition; (iii) orientation; (iv) attachment; 
and (v) invasion. Even among mammalian species, there are large 
differences at these stages. For example, blastocysts implant with 
their inner cell mass (ICM) oriented toward the lumen in rodents,15 
whereas in humans the blastocysts are oriented with their ICM to-
ward the LE.26 In the mouse, the deletion of lysophosphatidic acid 
receptor (LPA3) resulted in delayed implantation and embryo crowd-
ing, suggesting that LPA3 signaling regulates the embryo spacing.27 
As for apposition and orientation, the precise molecular mechanisms 
are not well understood. The attachment and invasion are collec-
tively called “implantation.” The duration that embryos can implant 
to the uterus is called the “implantation window.”

3  | IMPL ANTATION WINDOW CONCEPT

In mice, there are three phases of uterine sensitivity for receiving the 
embryo: (i) the “perceptive” phase (days 1-3, with the day of the vagi-
nal plug observed being defined as day 1); (ii) the “receptive” phase 
(days 4-5); and (iii) the “refractory” phase14-17 (beyond the afternoon 
of day 5) (Figure 1). Only during the receptive phase can embryos im-
plant into the uterine epithelium. This specific period of time during 
which implantation is possible is called the “implantation window.”28 
In humans, a specific morphologic marker was proposed to be as-
sociated with the implantation window: the appearance of pinopo-
des.29 In both humans and rodents, pinopodes can be observed by 
scanning electron microscopy around the period in which embryonic 
implantation would be expected to occur. The pinopodes appear as 
smooth bulging cells on the apical surface of the endometrium.30

However, the presence of well-formed pinopodes in humans 
from day 20 to day 28 of the menstrual cycle has been reported, 
with no apparent increase in their appearance during the predicted 
window of receptivity.31,32 It also has been demonstrated that pino-
podes in both fertile and infertile patients covered between 1% and 
50% of the viewed surface area. The entire surface of the endome-
trium was never covered by pinopodes, with most of the samples 
showing 5%-20% coverage.30 The authors of those studies con-
cluded that the presence of pinopodes alone cannot be an indicator 
of the implantation window.

In contrast to humans, the stricter time period of the im-
plantation window in mice has been well studied with the use 
of embryo transfer techniques. One study showed that when 
mouse embryos were transferred at 09:00 hours, 14:00 hours, 
or 18:00 hours on day 4, successful implantation was confirmed 
on day 5.33 A later study showed that a mouse embryo that was 
transferred at 09:00 hours on day 5 also can be implanted, but 
not a mouse embryo that was transferred at 21:00 hours on the 
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same day.34 These results suggest that the receptive phase starts 
around the morning of day 4 and is maintained until the morning of 
day 5. On the afternoon of day 5, the receptive phase eventually 
transits to the refractory phase. However, a P4 injection on the 
morning of day 5 can extend the receptive phase because when 
the mouse embryos were transferred to P4-primed recipients at 
09:00 hours on day 6, implantation was confirmed.34 Thus, it is 
thought that the implantation window is primarily orchestrated 
by estrogen and P4.

Estrogen and P4 bind to their nuclear receptors at different 
times and different cell types in the uterus can induce on-time 
functions in the uterine receptivity of mammals.35,36 In the mouse 
uterus, an estrogen receptor (Esr1: ERα) and two types of P4 re-
ceptors (Pgr: PR-A and PR-B) are expressed.37 In mice, the dele-
tion of ERα resulted in defective phenotypes during reproductive 
events, including implantation.38 Other studies demonstrated 
that PR-A and PR-B double knockout mice, but not single PR-B 
knockout mice, were infertile.39,40 These results clearly showed 

F IGURE  1 Estrogen and progesterone (P4) orchestrate the implantation window in mice, in which uterine sensitivity for accepting the 
embryo is composed of “perceptive” (days 1-3; with the day of the vaginal plug observed being defined as day 1), “receptive” (day 4), and 
“refractory” (day 5 afternoon). On day 4, an increase in the estrogen level is observed prior to the receptive stage (top). Morphological 
changes of the uterus from days 1-8 during pregnancy in mice (bottom). E2, Estradiol
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that ERα and PR-A are essential for at least embryonic implanta-
tion in mice.

During ovulation in mice, estrogen that is secreted from 
the ovaries induces a proliferation of uterine epithelial cells in 
the uterus via ERα.23 In the epithelial-specific deletion of ERα 
(Wnt7Cre/+; Esr1flox/flox) in the mouse uterus, this proliferation of ep-
ithelial cells and the PR distribution were not affected, suggesting 
that stromal ERα has a major role in these events.23 At the transi-
tion from the prereceptive day 3 to the receptive day 4 stage, P4 
is newly secreted from the corpus lutea. Results from epithelial-
specific PR (Wnt7Cre/+; Pgrflox/flox) knockout mice demonstrated that 
the role of PR in the epithelial cells is to inhibit epithelial estrogen 
action.21 An earlier study showed that a slight increase in the es-
trogen level occurred prior to the receptive stage before noon of 
day 4.41

In several species other than rodents, ovarian estrogen is im-
portant, but dispensable, for embryonic implantation, whereas a 
high level of P4 is required for embryonic implantation in all species 
studied to date.14 Ovariectomized mice on the morning of day 4 (just 
prior to the increase of the estrogen level) were used as a model of 
delayed implantation and embryonic dormancy.33 After an ovariec-
tomy, a continuous P4 injection can maintain the dormancy of the 
embryos for several days.42,43 By the priming of estrogen after such 
a P4 injection, implantation can be induced. These results suggest 
that a slight increase in the level of estrogen can regulate the induc-
tion of embryonic implantation.

Using this model of delayed implantation, the effect of different 
concentrations of estrogen on embryonic implantation was exam-
ined. Priming with estrogen at a high concentration (>10 ng/mouse) 
rapidly induced the transition to the refractory stage, bypassing 
the receptive stage.33 However, an injection of estrogen at a low 
concentration eventually can induce the transition to the receptive 
stage. These results strongly suggest that an optimal concentration 
of estrogen is required for on-time implantation.

4  | MOLECUL AR MECHANISMS OF 
EMBRYONIC IMPL ANTATION

4.1 | Estrogen-dependent signaling

Although estrogen and P4 signaling are both essential for embryonic 
implantation and although their signaling in mammals is complicated, 
it has been well documented that the major mediators of estrogen 
and P4 action are leukemia inhibitory factor (LIF) and IHH, respec-
tively.18,19,44,45 The LIF is a member of the interleukin (IL)-6 family of 
cytokines46 and its deletion in mice causes sterility due to complete 
implantation failure, suggesting that LIF is indispensable for embry-
onic implantation.45

The LIF binds its receptor (LIFR) and IL-6 signal transducer, 
Gp130.46 In situ hybridization of sections of mouse uterus from 
day 4 of pregnancy revealed that the LIFR messenger (m)RNA was 
highly and mainly expressed in the LE; Gp130 mRNA was highly 
expressed in the GE and at lower levels in the LE.47 Although mice 

with the deletion of the LIFR and Gp130 knockout showed embry-
onic lethality,48,49 mice with both the uterine epithelium-specific 
deletion of the LIFR (LtfCre/+; Lifrflox/flox) and the uterine-specific 
deletion of Gp130 (Wnt7Cre/+; Gp130flox/flox) showed severe defects 
in implantation.50,51 The uterine-specific knockout of a down-
stream target of Gp130 and the LIFR; that is, a signal transducer 
and activator of transcription 3 (Stat3) also caused the failure of 
implantation.51

The epithelium-specific deletion of Stat3 (Wnt7Cre/+; Stat3flox/

flox) also was reported recently to show implantation failure, fol-
lowed by the downregulation of fibroblast growth factors (FGFs) 
and a cell-cell adhesion protein, cadherin,52 whereas a stromal-
specific deletion (Amhr2Cre/+; Stat3flox/flox) simply showed the phe-
notype with a decreased number of pups,53 suggesting that the 
epithelial LIF signaling pathway is indispensable for implantation 
via FGF signaling. In humans, it was reported that a slight increase 
in LIF expression was observed at the endometrium before im-
plantation54 and some clinical studies demonstrated that the LIF 
expression around the time point of implantation was higher in 
fertile women, compared to infertile women.55,56 However, in 
mammalian species other than mice, the question of whether 
LIF is an indispensable and sole factor for implantation remains 
unanswered.

A comparison of wild-type and LIF knockout mice revealed 
evidence that a homeobox transcription factor, Msx1, has an es-
sential role during implantation.57-59 The Msx1 was shown to be 
expressed transiently in both the LE and GE around the time of re-
ceptivity and its expression reached a maximal level on the morn-
ing of day 4.58 The expression of Msx1 was not detected in the 
uterus of pregnant mice at day 5 (after implantation). The uterine-
specific deletion of Msx1 (PgrCre/+; Msx1flox/flox) showed partial 
implantation failure, but a double knockout of Msx1 and Msx2, 
another member in the homeobox transcription factor family in 
mice (PgrCre/+; Msx1/Msx2flox/flox), resulted in infertility due to com-
plete implantation failure via a suppression of cyclooxygenase-2 
and bone morphologic protein 2 (BMP2).58 As Msx2 expression 
was upregulated in the Msx1 null mice but not in the wild-type 
mice, it has been concluded that Msx2 has a compensatory role 
for Msx1. The Msx1 and Msx2 were involved in the polarity of 
the LE at the attachment of embryos.58 In the uterine-specific 
Msx1/Msx2 knockout mice (PgrCre/+; Msx1/Msx2flox/flox), Wnt5a  
(a traditionally non-canonical Wnt and a mediator of cell polarity) 
was upregulated in the LE and SCs.58 In addition, in the uterus 
of the Msx1/Msx2 knockout mice, E-cadherin, a Ca2+-dependent 
transmembrane adhesion molecule, was persistently upregulated, 
even during the implantation period, whereas in the normal mice, 
E-cadherin was highly expressed in the LE prior to implantation, 
but transiently downregulated before the blastocyst’s invasion 
into the stroma, suggesting that the remodeling of the adhesion 
junctions between epithelial cells is a critical event during embry-
onic implantation.60-63

Some studies showed that the loosening of cell-cell junctions 
in the mouse uterine epithelium through a downregulation of 
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E-cadherin was a prerequisite for blastocyst attachment.64,65 Other 
recent investigations revealed that downstream factors of Wnt5a; 
that is, receptor tyrosine kinase-like orphan receptor 1/2 (Ror1/2) 
and Vangl 1/2, were both essential and that the disruption of Wnt5a-
Ror-Vangl signaling results in disorderly epithelial projections, crypt 
formation, and embryo spacing, and impaired implantation.66,67 
Another recent study showed that Rbbj, the nuclear transducer of 
Notch signaling, conferred an on-time uterine lumen shape trans-
formation by physically interacting with uterine ERα in a Notch 
pathway-independent manner.68 It is understood that the estrogen-
dependent signaling is required for normal mammalian embryo-
uterus interaction via growth factors, cell-cell adhesion, and cell 
polarity pathways.

4.2 | Progesterone-dependent signaling

In all mammalian species studied to date, the indispensability of P4 
for implantation has been confirmed. As a high P4 level also is re-
quired for later reproductive events (eg, decidualization69 and the 
maintenance of pregnancy),70 P4 generally is called the “pregnancy 
hormone.” It has been well documented that PR knockout mice show 
defective phenotypes, such as disrupted ovulation, impaired lute-
inization, and incomplete decidualization.39 An epithelial-specific 
deletion of PR (Wnt7aCre/+; Pgrflox/flox) did not suppress epithelial pro-
liferation.21 In contrast, a stromal-specific PR deletion (Amhr2Cre/+; 
Pgrflox/flox) was shown to be able to induce the proliferation of the 
epithelium.71 These results suggest that stromal PR is essential for 
the suppression of estrogen action.21 These knockout female mice 
also showed infertility, which was attributed to incomplete uterine 
receptivity with a reduced expression of IHH.

It has been reported that PR can bind directly to the IHH pro-
moter, resulting in the induction of the proliferation of SCs.21 Another 
study demonstrated that stromal PR mediated the induction of IHH 
in the uterine epithelium and its downstream targets in the uterine 
stroma.72 Chicken ovalbumin upstream promoter-transcription fac-
tor 2 (COUP-TFII), also known as “NR2F2,” is a downstream target of 
IHH signaling. It was expressed in the subepithelial stroma, but not 
in the epithelial cells at day 5 of pregnancy.73 The uterine deletion 
of COUP-TFII (PgrCre/+; Nr2f2flox/flox) caused implantation failure with 
excessive estrogenic action in the epithelium.73 A P4-induced tran-
scription factor, Hand2, was expressed in the stroma and has been 
reported as a regulatory factor for uterine receptivity and implanta-
tion.20 The uterine deletion of Hand2 (PgrCre/+; Hand2flox/flox) resulted 
in excessive estrogenic activity and a proliferation of epithelial cells 
via a high expression of FGFs.20 These results suggest that a major 
role of Hand2 in the SCs is the suppression of epithelial proliferation 
via a FGF signaling pathway.

It is well known that another P4-inducible factor, FKBP52, is re-
quired for modulating PR activity.74-76 The FKBP52 knockout mice 
showed unsuccessful implantation due to impaired uterine P4 re-
sponsiveness and enhanced estrogen-like signaling. The deletion of 
FKBP52 increased the sensitivity to oxidative stress, followed by a 
reduced expression of a unique antioxidant enzyme, peroxiredoxin 

6.77 However, because this infertility was rescued by the injection of 
antioxidants, it is suggested that FKBP52 is dispensable for implan-
tation under normal conditions.

5  | MOLECUL AR MECHANISMS OF 
DECIDUALIZ ATION

Following embryonic implantation in mice, the SCs surrounding the 
implanted embryo progress to proliferation and subsequently dif-
ferentiate into decidual cells.78,79 Decidual cells are characterized as 
polyploidy cells.15 In contrast to mice, in humans, implantation itself 
cannot trigger decidualization.25 With embryonic implantation, the 
subepithelial SCs initially form an avascular primary decidual zone 
(PDZ) encasing the fetus around the afternoon of day 5.80,81 The dif-
ferentiated SCs other than those in the PDZ continue to proliferate 
and then further differentiate to form a well-vascularized secondary 
decidual zone (SDZ). In mice, the process of decidualization is regu-
lated by many factors, such as transcription factors, growth factors, 
and cell-cycle regulators.

Progesterone signaling via PR-A is essential for the proliferation 
and differentiation of SCs into decidual cells.82 It is thought that under 
progesterone signaling, homeobox genes are important for implan-
tation and decidualization. Homeobox genes are highly conserved in 
many species.83-85 Homeobox a (Hoxa) genes, Hoxa10 and Hoxa11, 
are highly expressed in uterine SCs. The deletion of these genes 
(Hoxa10−/− and Hoxa11−/−) resulted in severe implantation failure 
and insufficient decidualization.84,86,87 The Hoxa11−/− mice showed 
a more severe phenotype than the Hoxa10−/− mice.84 In humans, it 
also was reported that the expressions of Hoxa10 and Hoxa11 in the 
endometrium increased significantly in the mid-luteal phase, when 
the uterus is receptive to embryo attachment,88,89 and that these 
expressions were significantly lower in infertile women.89-92

The BMPs belong to the transforming growth factor-beta su-
perfamily of growth modulators93 and transcripts that correspond 
to several BMP family members are expressed in mouse uteri.94,95 
In all the expressed BMPs in the uteri, only BMP2 was induced in 
response to P4, with intense expression in the SCs surrounding the 
implanted embryo.94 Some studies showed that the in vitro supple-
mentation of BMP2 to the undifferentiated SCs induced the decidu-
alization of the SCs via a Smad signaling pathway.96,97

Female mice with a uterine-specific deletion of BMP2 (PgrCre/+; 
Bmp2flox/flox) were completely infertile.96 In these mice, embryonic 
attachment was normal as in the control mice, but the uterine stroma 
was incapable of undergoing the decidual reaction to support fur-
ther embryonic development.96 Wnt4 has been identified as a down-
stream target of BMP2-induced decidualization97 and was expressed 
primarily in the LE during the prereceptive phase and then it relocal-
ized to the SCs surrounding the implanting embryo and expanded 
its expression to the deciduas.57,98 Mice with the uterine-specific 
deletion of Wnt4 (PgrCre/+; Wnt4flox/flox) showed the phenotype of 
subfertility due to defective embryonic implantation and subse-
quent decidualization.99 Transcriptome analyses showed that both 
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BMP2-  and Wnt4-induced decidualization were regulated via epi-
dermal growth factor receptor (EGFR), although the mice with a 
conditional deletion of EGFR (PgrCre/+; Egfrflox/flox) were subfertile.100 
These results indicate that BMP2-  and Wnt4-induced decidualiza-
tion have a complicated mechanism.

As polyploidization is a hallmark of decidualization that occurs 
via a specialized cell-cycle progression, many molecules that are as-
sociated with the cell cycle have been reported as regulators of de-
cidualization.17,101 The cell-cycle regulator, cyclin D3, is well known 
to be important for SC proliferation, differentiation, and polyploid-
ization.101,102 Indeed, a cyclin D3 deficiency in mice (cyclin D3−/−) sig-
nificantly compromised the pregnancy outcomes due to defective 
decidualization.101 Hoxa10 was highly expressed at the decidual cells 
and the mice with its deletion (Hoxa10−/−) exhibited impaired decidu-
alization with an aberrant regulation of cyclin D3 and the loss of the 
region-specific expression of cyclin-dependent kinase (CDK)4 and 
CDK6 in the decidua bed.103

Another study showed that the deletion of IL-11 receptor a re-
sulted in decidual degeneration with derailed endoreplication due 
to reduced cyclin D3 expression.104-107 The death of ectodomain-
containing protein, which can stabilize cyclin D3, was reported to 
be indispensable for uterine decidualization, as its deletion leads to 
impaired decidual development accompanied by attenuated poly-
ploidy.108,109 In light of these results, it is believed that cyclin D3 has 
a central role in decidual cells’ proliferation and polyploidization.

6  | OUTSTANDING ISSUES

6.1 | Is leukemia inhibitory factor the only factor 
downstream of the estrogen signal that is necessary 
for successful implantation in mammals?

In the authors’ unpublished study, the results that were obtained by 
another study were confirmed: in a mouse model of delayed implan-
tation, an injection of estrogen at 3 ng/mouse could induce embry-
onic implantation.110 In both studies, Institute of Cancer Research 
(ICR) cluster of differentiation 1 (CD-1) (outbred) mice were used. 
Interestingly, the injection of the same concentration of estrogen 
never resulted in the induction of embryonic implantation in the 
C57BL/6 mice (which is the most commonly used inbred strain in vari-
ous research fields) when this strain was used as a model of delayed 
implantation (M. Kamioka, J. Ito, N. Kashiwazaki, unpublished). High-
dose estrogen (10 ng/mouse) enabled the induction of embryonic 
implantation in the C57BL/6 strain. These results suggest that the 
estrogen level that is required for embryonic implantation is different 
between these two mouse strains.

This review’s observations might be supported by a study 
that was performed in 2011.111 Anti-LIF antibody was injected 
into C57BL/6 and ICR mice in order to block embryonic implanta-
tion.111 In the C57BL/6 mice, embryonic implantation was inhib-
ited completely, whereas embryonic implantation was inhibited 
only partially in the ICR mice. Another study used other strains 
(ddY, BALB/c, DBA/2Cr, and MF1 strains) in addition to the above 

two strains to test the inhibitory effect of an injection of anti-LIF 
antibody on embryonic implantation in those strains.112 Their re-
sults demonstrated that the inhibition of LIF during the implanta-
tion period caused a severe disruption of embryonic implantation 
in the C57BL/6 and MF1 mice,112 whereas implantation was only 
partly disrupted in the other strains (some embryos could still be 
implanted).

An injection of cardiotrophin-1 (an IL-6 family member, as is LIF) 
can induce successful implantation without LIF in mice with delayed 
implantation (ICR and B6) via the phosphorylation of STAT3 in the 
LE.112 In the authors’ preliminary study, the uterine-specific LIFR 
conditional knockout mice that were derived from the C57BL/6 
strain (PgrCre/+; Lifrflox/flox) were completely infertile due to implan-
tation failure, suggesting that the LIFR is indispensable for embry-
onic implantation—at least in C57BL/6 mice (K. Matsuo, J. Ito, N. 
Kashiwazaki, unpublished). As the LIF-null mice in both the C57BL/6 
and ICR (CD-1) strains were infertile, there is no doubt that the LIF-
LIFR pathway has an essential role in embryonic implantation in the 
mouse.45,113 However, other factor(s) might compensate for the 
functions that are induced by LIF in some mouse strains.

6.2 | Limitations of knockout mice

In studies of genetically modified mice, estrogen- or P4-dependent 
factors have been identified as essential factors that are involved 
in implantation in mammals. However, one must consider that 
most of the previously reported data are from knockout mice and 
are not specific to the uterus (Table 1). For example, in most of 
those studies, PgrCre transgenic mice (in which Cre recombinase 
is expressed under the PR promoter) were used to generate mice 
with uterine-specific gene knockout.114 The PR is expressed not 
only in the uterine cells but also the ovarian cells, including the 
corpus luteum, which is a source of P4 production.115 It has been 
shown that the conditional deletion of some genes; for example, 
Lgr5, caused infertility due to the deletion, not in the uterus but in 
other tissues.70

In addition, Wnt7aCre and Amhr2Cre transgenic mice were used for 
epithelial-specific and SC-specific deletion, respectively.23,53 The de-
letion of Wnt7a or Amhr2 itself caused a failure of the reproductive 
organs, suggesting that the phenotype of knockout mice with infer-
tility might be a secondary effect. Lactoferrin-iCre (LtfCre) transgenic 
mice were developed for the specific deletion of the gene at the ep-
ithelium of adult female mice.116 In these mice, Cre recombinase is 
first expressed in the uterine epithelium after day 30 postbirth.116 
By using this new transgenic mouse line, it might be possible to more 
precisely clarify the molecular mechanisms underlying implantation.

Genome editing systems, such as CRISPR/Cas9, recently 
became available for the production of knockout animals other 
than mice.117 It was shown very recently that genome editing 
systems are also available for generating conditional knockout 
animals.118 The previous observations from knockout animals are 
mainly from mice, but many differences exist, even among mam-
malian species; for example, the source of estrogen secretion, 
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TABLE  1 Knockout mice show an impaired reproductive phenotype in the uterus

Gene Gene product Knockout Knockout phenotype in female mice Reference

Alk3 Activin-like kinase 3 Pgr-Cre Implantation failure 129

Bmp2 Bone morphogenetic protein 2 Pgr-Cre Incapable of undergoing the decidual reaction 96

Cdh1 E-cadherin Pgr-Cre Implantation failure; failed to artificially induced 
decidualization

130

Ctnnb1 β-catenin Pgr-Cre Implantation failure 131

Dicer Dicer Pgr-Cre Enhanced stromal apoptosis; impaired uterine 
stromal cell proliferation in response to 
progesterone

132

Errfi1 ERBB receptor feedback inhibitor 1 Pgr-Cre Implantation failure due to enhanced ER activity 
in epithelium

133

Esr1 Estrogen receptor 1 Wnt7a-Cre Infertile 23

Fkbp52 FK506-binding protein-4 Systemic Compromised P4 activity; impaired implantation 
and decidualization

75, 134

Foxa2 Forkhead box A2 Pgr-Cre Implantation failure, severe impairment to 
respond to the artificially induced 
decidualization

135

Ltf-Cre Defective implantation and stromal cell 
decidualization

146

Cja1 Connexin 43 Pgr-Cre Comprised decidualization; neovascularization 
defects

136

Ccnd3 Cyclin D3 Systemic Defective decidualization 101

Dedd Death effector domain-containing protein Systemic Infertile due to defective decidualization 109

Egfr Epidermal growth factor receptor Pgr-Cre Implantation site demise due to a failure in the 
maintenance and progression of decidualization

100

Gp130 Glycoprotein 130 Pgr-Cre Implantation failure 51

Hbegf Hepahn-binding EGF-like growth factor Pgr-Cre Subfertile with deferred implantation 137

Hand2 Heart and neural crest derivatives 
expressed tanscript 2

Pgr-Cre Impaired PR function 20

Hoxa10 Homeobox gene Hoxa-10 Systemic Severe implantation failure and defective 
decidualization

83

Hoxa11 Homeobox gene Hoxa-11 Systemic Severe implantation failure and defective 
decidualization

85

IHH Indian hedgehog homolog Pgr-Cre Implantation failure 18

Il11ra lnterleukin-11 receptor-1 Systemic Defective decidualization 104, 107

LIF Leukemia inhibitory factor Systemic Implantation failure 45

LIFr Leukemia inhibitory factor receptor Ltf-Cre Severe implantation failure 50

Src2 Steroid receptor coactivator 2 Pgr-Cre Infertile due to impaired PR function mediated by 
SRC2

138, 139

Klf5 Kruppel-like factor 5 Pgr-Cre Defective implantation; comprised decidualization 51

Msx1/2 Muscle segment homeobox gene (Msx) 
family members 1/2

Pgr-Cre Implantation failure as altered uterine luminal 
epithelial cell polarity

58, 59

Nodal NODAL Pgr-Cre Abnormal decidua basalis at mid-gestation and 
aberrant placental development

140

Notch1 Notch 1 Pgr-Cre Comprised decidualization 141

Nr2f2 Chicken ovalbumin upstream promoter 
transcription factor II

Pgr-Cre Implantation failure 73

p53 Transformation-related protein 53 Pgr-Cre Uterine decidual senescence; preterm birth 142

Pgr Progesterone receptor Wnt7a-Cre Implantation failure 21

Amhr2-Cre Reduction of litter size 71

(Continues)
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the orientation of the blastocyst for implantation, and the struc-
ture of the placenta. Deletions of a specific gene by genome 
editing will help to resolve the many pregnancy-associated mys-
teries with findings that can be expected to differ among mam-
malian species.

6.3 | Uterine aging

The oocyte quality is known to decrease in an age-dependent man-
ner. For example, the frequency of chromosome segregation er-
rors during meiosis I in mouse oocytes increased with age.119 Aged 
oocytes were associated with low fertility,120 low developmental 
ability,121 and aberrant kinetics of the epigenome.122 In addition, 
ovarian aging, including the follicles themselves and granulosa cells, 
affected the reproductive outcomes in many species, including hu-
mans.123-125 A recent study clearly showed that abnormal embry-
onic development in aged female mice was associated with severe 
placentation defects, which resulted from major deficits in the 
decidualization response of the uterine stroma.126 The same study 
also revealed that the defect was rooted in a blunted estrogen and 
P4 responsiveness of the aging uterus. Importantly, that study also 
demonstrated, using an embryo transfer technique, that a young 
uterine environment can restore normal placental and embryonic 
development. The study provided the first evidence at the molecu-
lar level of the pivotal, albeit under-appreciated, impact of maternal 
age on the uterine adaptability to pregnancy as a major contributor 
to the decline in the reproductive success of older mice.

In humans, the use of a surrogate mother as an option for 
women who are infertile due to implantation failure and recurrent 
abortion is very limited from the viewpoint of law and ethics. For 
these patients, uterine transfer127 and uterine matrix transplanta-
tion128 can be alternative treatments to regenerate and restore an 
aged or genetically based impaired uterine environment.

7  | CONCLUSION

Embryonic implantation involves very complicated reproductive 
events and many molecules are involved with implantation. The 
results from animal models (in particular, gene-modified mice) 
have provided clear evidence at the molecular level. Most of these 
data are from mice and comparative research using other mam-
malian species will be useful to increase the understanding of the 
species-dependent differences that are associated with reproduc-
tive events, including embryonic implantation.
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Gene Gene product Knockout Knockout phenotype in female mice Reference

Rbpj Recombining binding protein suppressor of 
hairless

Pgr-Cre Subfertile due to abnormal instructing of the 
initial embryonic-uterine orientation

68

Rea Repressor of estrogen receptor activity Pgr-Cre Implantation and decidualization failure due to 
uterine development defects

143

Ror1/2 Retinotc acid receptor-related orphan 
receptor1/2

Pgr-Cre Implantation failure due to abnormal cell polarity 66

Smo Smoothened Pgr-Cre Uterine hypertrophy; luminal epithelial stratifica-
tion; impaired decidualization

144

Stat3 Signal transducer and activator of 
transcription 3

Pgr-Cre Implantation failure 51

Wnt7a-Cre Implantation failure 52

Amhr2-Cre Implantation failure 53

Vangl1/2 Vertebrate regulator of planar cell polarity 
Van Gogh-like 1/2

Pgr-Cre Implantation failure due to abnormal cell polarity 66, 67

Wnt4 Wingless-related MMTV integration site 4 Pgr-Cre Implantation defect failed to undergo the 
artificially induced decidual response

99

Wnt7a Wingless-related MMTV integration site 7a Pgr-Cre Implantation failure 145

EGF, epidermal growth factor; ER, estrogen receptor; MMTV, mouse mammary tumor virus; PR, progesterone receptor.
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