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Severe burns are acute wounds caused by local heat exposure, resulting in life-threatening systemic effects and poor survival.
However, the specific molecular mechanisms remain unclear. First, we downloaded gene expression data related to severe burns
from the GEO database (GSE19743, GSE37069, and GSE77791). Then, a gene expression analysis was performed to identify
differentially expressed genes (DEGs) and construct protein-protein interaction (PPI) network. The molecular mechanism was
identified by enrichment analysis and Gene Set Enrichment Analysis. In addition, STEM software was used to screen for genes
persistently expressed during response to severe burns, and receiver operating characteristic (ROC) curve was used to identify
key DEGs. A total of 2631 upregulated and 3451 downregulated DEGs were identified. PPI network analysis clustered these
DEGs into 13 modules. Importantly, module genes mostly related with immune responses and metabolism. In addition, we
identified genes persistently altered during the response to severe burns corresponding to survival and death status. Among the
genes with high area under the ROC curve in the PPI network gene, CCL5 and LCK were identified as key DEGs, which may
affect the prognosis of burn patients. Gene set variation analysis showed that the immune response was inhibited and several
types of immune cells were decreased, while the metabolic response was enhanced. The results showed that persistent gene
expression changes occur in response to severe burns, which may underlie chronic alterations in physiological pathways.
Identifying the key altered genes may reveal potential therapeutic targets for mitigating the effects of severe burns.

1. Introduction

Severe burns are serious injuries with global influence.
According to the latest report of the World Health Organiza-
tion (WHO), it is estimated that 265,000 people die of burns
every year. More than 500,000 people seek treatment each
year in the United States, 40,000 are hospitalized, and 4000
die because of severe burns [1]. The annual cost of treating
these burns is estimated to exceed one billion dollars world-
wide, excluding the indirect costs of disability and rehabilita-
tion [2]. Improvements in treatments have increased the
survival rate of many severely burned people.

Burn rehabilitation is a complex and dynamic process
[3]. In recent years, great progress has been made in the iden-
tification of clinical biomarkers for severely burned patients
[4-6]. The response to severe burns affects almost every
organ [7]. Inflammation, hypermetabolism, muscle wasting,
and insulin resistance are all markers of pathophysiological
response after severe burn [8]. Burn patients differ from
patients with other forms of trauma in their resuscitation
requirements, metabolic pressure, complications, and deter-
minants of prognosis [9]. Severely burned patients are
divided into several stages for management and treatment,
and each stage also has different molecular and cellular


https://orcid.org/0000-0002-4751-854X
https://orcid.org/0000-0003-4616-6711
https://orcid.org/0000-0001-9729-4129
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/8836243

mechanisms [10]. More studies and effective strategies are
needed to stratify severe burn patients for treatment and for
predicting prognosis.

Severe burn patients may enter the “burn shock” state,
which is characterized by poor tissue perfusion, serious cap-
illary leakage, occult coagulation disease, and a large release
of inflammatory mediators [11]. The high levels or the inhib-
itory activity of some of immune system are related to
adverse outcomes after burn [12]. After severe burn, T helper
cells gradually enter a state of immunosuppression [13]. High
Toll-like receptor reactivity after burn promotes the produc-
tion of proinflammatory cytokines [14]. Tumor necrosis fac-
tor-a (TNF-a) is also highly expressed in burn patients, with
low TNF-« levels being related to good prognosis [15].
Therefore, the immune inflammatory response plays an
important role in the regulation of severe burns and therefore
is closely related to the survival and rehabilitation of patients.

To increase our understanding of the complex responses
to severe burn, the present study used an array of bioinfor-
matic techniques to examine molecular mechanisms in
response to severe burn. In addition to revealing basic
insights into the burn process and the body’s response, our
results may help identify potential markers for patient strat-
ification and prognosis prediction as well as potential thera-
peutic targets.

2. Materials and Methods

2.1. GEO Datasets. The gene expression microarray datasets
GSE19743, GSE37069, and GSE77791 were downloaded
from the GEO database (http://www.ncbi.nlm.nih.gov/geo/)
[16]. The GSE19743 series (GPL570 platform) contained a
total of 120 white blood cells, including 114 arrays for 57
patients (two time points per patient) and 63 arrays for 63
healthy controls. The GSE37069 series (GPL570 platform)
contained a total of 279 white blood cell samples (244 severe
burns patients and 35 healthy subjects). The GSE77791 series
(GPL570 platform) contained a total of 117 whole blood
samples (15 burn patients, 15 healthy controls, 15 burn
patients receiving hydrocortisone (CB), and 15 patients
receiving placebo (PB)).

2.2. DEG Analysis. First, probe information was converted
into gene symbols. For burn patients and healthy subjects,
the mRNA levels of DEGs were identified using the limma
package [17]. P criterion of <0.05 is signature. A similar anal-
ysis was applied to find DEGs in different phases of the burn
response.

2.3. PPI Network Construction and Module Analysis. Protein
interaction data were obtained from the Search Tool for the
Retrieval of Interacting Genes/Proteins (STRING) database
[18]. Next, a PPI network was constructed including DEGs
with the selected gene signatures using Cytoscape [19]. Sub-
sequently, we identified the subnetwork with strongly inter-
acting genes as a module using the MCODE clustering
algorithm with Kcore =7 [20]. The AUC of module genes
was calculated using plotROC [21].
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2.4. Functional and Pathway Analyses. To explore the biolog-
ical characteristics of module genes, we performed GO and
KEGG pathway enrichment analyses with the clusterProfiler
package in R [22]. P < 0.05 was considered as significant.

2.5. Gene Set Enrichment Analysis (GSEA). GSEA [23] was
performed to identify KEGG pathways. We used the results
of KEGG enrichment as the background set. To evaluate the
enrichment of the same pathway in the different groups, we
used gene set variation analysis (GSVA), a gene set enrichment
method that estimates variation of pathway activity over a
sample population in an unsupervised manner [24]. Single
sample GSEA (ssGSEA) classifies gene sets with common bio-
logical functions, chromosomal localization, and physiological
regulation [23]. We used ssGSEA to quantify the types of
immune cells present in each burn stage based on analysis of
24 genes of immune cell marker genes [25].

2.6. Persistent DEGs. The STEM software was used to detect
coexpressed genes in different stages of burn patients in order
to identify the genes whose expression was persistently
altered from early to late stages. The obtained genes were
clustered by cm function to identify up- and downregulated
genes.

2.7. Nomogram. The hub genes were included in a logistic
regression analysis to determine whether their expression
was associated with the prognosis of burn patients. The logis-
tic regression analysis was used to build a nomograph [26].
Based on the logistic model, a risk prediction model was
established by using all the risk factors related to burn. The
score was used to assess association with prognosis.

2.8. Quantitative Real-Time Polymerase Chain Reaction
(qRT-PCR). The whole blood samples were collected from
10 burn patients and 10 healthy controls. Written, informed
consent was obtained from each patient. This study was
approved by the Ethics Committee of the General Hospital
of Xinjiang Military Command. The total RNA was isolated
with TRIzol (Thermo Fisher) and quantified by NanoDrop.
The c¢cDNA was created using the cDNA synthesis kit
(Invitrogen). The cDNA was transcribed into DNA through
SYBR Green PCR Master Mix (Thermo Fisher) using a
real-time PCR machine (Applied Biosystems). The resulting
Ct values were relative to a GAPDH reference gene, and the
244 was obtained. Primers were used as follows: CCL5 for-
ward, 5'-AGATCTCTGCAGCTGCCCTCA-3" and reverse,
5'-GGAGCACTTGCTGCTGGTGTAG-3'; LCK forward,
5'-CACGGATGACAGCTCTGAAA-3" and reverse, 5’
-ATGGAGAACGGGAGCCTA GT-3'; GAPDH forward,
5'-GACTAACCCTFCFCTCCTG-3' and reverse, 5'-GCCC
AATACGACCAAATCAG-3'.

3. Results

3.1. Differentially Expressed Genes (DEGs) Associated with
Severe Burn. In this study, we conducted a comprehensive
bioinformatic analysis of gene expression data of severe burn
patients to determine the key DEGs as potential biomarkers
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FiGure 1: Flow chart of the study.

of severe burn (Figure 1). First of all, we conducted a princi-
pal component analysis (PCA) on the GSE19743, GSE37069,
and GSE77791 datasets. PCA revealed that burn patients and
healthy control samples in the three datasets showed a signif-
icantly different gene expression profile (Figures 2(a)-2(c)).
We identified 3101 DEGs in GSE19743 (Table S1), 12171
DEGs in GSE37069 (Table S2), and 9991 DEGs in
GSE77791 (Table S3). In order to further evaluate gene
expression changes caused by severe burns, we obtained the
intersection of the three groups of DEGs (Figures 2(d) and
2(e)) and found 2631 common upregulated genes (Table S4)
and 3451 common downregulated genes (Table S5). The
expression levels of common genes differed across the
datasets, but across all datasets, upregulated common DEGs
showed a significantly greater change in expression than
common downregulated DEGs (Figure 2(f)).

3.2. PPI Network Construction and Functional Enrichment
Analysis of Common DEGs. In order to explore the interac-
tion of DEGs caused by burn, we constructed a PPI network
for common DEGs. The network contained 695 genes and
was divided into 13 modules using MCODE (Table S6,
Figure 3(a)). The expression heatmaps of module genes in
each dataset are shown in Figure S1. We found that module
5 genes all were downregulated, while there was a large
proportion of upregulated genes in module 3. With the
transcription factors, we found the transcription factors
REST and COPS5, which may have the ability to jointly
regulate target genes (Figure 3(b)).

In order to identify the hub genes in each module, we
screened the top 10 genes with highest area under the
receiver operating characteristic curve (AUC) (Figures 3(c)
and 3(d)). The over- or underexpression trend of these 10
genes was consistent across the three datasets (Figure S2).

In order to explore the biological function of the PPI net-
work, Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) enrichment analysis were per-
formed for DEGs in the modules (Table S7). We obtained

4490 biological processes (BP), 600 cell components (CC),
and 713 mobile functions (MF) involving, for example,
acute phase response, regulation of p38/MAPK cascade,
and positive regulation of cell cycle (Figure 3(e)). We also
found 203 KEGG pathways, including p53, T cell receptor,
and Toll-like receptor signaling pathways (Figure 3(f)). Gene
Set Enrichment Analysis (GSEA) showed that complement
and coagulation cascades, PPAR signaling pathway, starch,
and sucrose metabolism had significantly higher expression
in burn patients than in the control group (Figures 3(g)-
3(i)). Therefore, we believe that severe burn causes not only
a strong immune inflammatory response, but also enhances
metabolism.

3.3. Persistent DEGs during Severe Burn. In order to further
explore the effect of DEGs on severe burn, we compared
the gene expression of GSE77791 samples in different times
after the severe burn. We compared the expression profiles
in a hydrocortisone (CB) treatment and a placebo (PB) group
between 120 h and 24 h and between 168 h and 120 h, respec-
tively. Then, we screened the DEGs that were persistently
altered based on analysis with the STEM software. In the
CB group, 644 persistent DEGs identified in patients who
died were clustered into two modules by cm function,
namely, a “persistent upregulation” module and a “persistent
downregulation” module (Figure 4(a)). A total of 456
persistent DEGs were identified in patients who survived in
the CB group (Figure 4(b)), while 597 persistent DEGs
were observed in patients who died in the PB group
(Figure 4(c)). On the other hand, 330 persistent DEGs were
identified in the survivors in the PB group (Figure 4(d)). In
the CB and PB groups, there were 166 common genes persis-
tently upregulated and 83 genes persistently downregulated in
death state; the corresponding numbers in survival state were
117 and 70.

Next, we performed gene set variation analysis (GSVA)
to explore the potential biological effects of persistent DEGs.
In the CB group, we found the most active signaling



PC2 (12.9% explained variation)

PC2 (16.4% explained variation)

PCI (32.7% explained var.)

Groups
—+— Burn
—— Control

BioMed Research International

PC2 (13.1% explained variation)

PCI (25.9% explained var.)
Groups
—+— Burn
—— Control

(a) (b)
GSE37069 Count
4000
814
(6.55%)
3000
U 2384 322
° 19.17%) (2.59%)
2000
=50 oot IS T AT i 785
0 50 1289 (6.31%)
PC1 (24.1% explained var.) (UoSze) 1000
Groups
—+— Burn
_. Control GSE19743 GSE77791
(0 (d)
GSE37069 Count
o 3000
(11.42%)
1467 175
(18.07%) (216%) 2000
759 609
(9.35%) 729 (7.5%) 1000
(8.98%)
GSE19743 GSE77791
(e)

FiGure 2: Continued.



BioMed Research International

MCEMP1
73 PFKFB3

CCDC34 KIAA1377
MMP9 B3GALT2

o | T . (SLczasz ] - oo

“log,, (P)

MCEMP1

S100A9

' ~n
. e TRANKI
L e GRAMDIC

- GSE19743
- GSE37069
= GSE77791
. Up

« Down

FiGure 2: Differentially expressed genes (DEGs) between severe burn and controls in three datasets. Principal component analysis (PCA)
results for (a) GSE19743, (b) GSE37069, and (c) GSE77791. (d) Upregulated genes common to the three datasets. Darker color indicates a
higher number of upregulated genes. (e) Downregulated genes common to the three datasets. Darker color indicates a higher number of
downregulated genes. (f) Manhattan map of common up- and downregulated DEGs.

pathways (Figure 4(e)) and least active signaling pathways
(Figure 4(f)) during each burn period. We did the same for
the PB group (Figures 4(g) and 4(h)). Interestingly, we found
that similar signaling pathways were activated or inhibited
during a given burn period in both treatment groups.

By quantifying the types of immune infiltrating cells, we
found that CD8 T cells, Tem, and cytotoxic cells gradually
decreased, while mass cells, neutrophils, and T helper 2
(Th2) cells gradually increased (Figure 4(i)). In other words,
over the course of the burn response, immune response grad-
ually weakened, while metabolism and repair functions
became gradually stronger.

3.4. Identification of Key Prognostic Genes. In order to iden-
tify the key genes that affect the prognosis of severe burns,
we analyzed the interaction between persistent DEGs in
whole blood of burn patients and the top 10 genes with the
highest AUC value in the PPI network. Two hub genes were
identified: chemokine ligand 5 (CCL5, AUC 0.76) and
lymphocyte-specific protein tyrosine kinase (LCK, AUC
0.82). Patients who died showed stronger downregulation
of CCL5 (Figure 5(a)) and LCK (Figure 5(b)) than survivors.
Importantly, we validated that CCL5 and LCK were signifi-
cantly downexpressed in burn patients using qRT-PCR,
compared with healthy controls (Figure 5(c)).

We used the logistic regression coeflicient to generate a
nomogram, which indicated that the higher the expression
of CCL5 and LCK, the lower the risk of burn-related death

(Figure 5(d)). Calibration showed that the nomogram per-
formed well compared with the ideal model (Figure 5(e)).
Therefore, our results suggest that CCL5 and LCK can
be used to estimate the risk of death in patients with
severe burns.

4. Discussion

Burns, especially when severe, are associated with high mor-
tality [27]. Based on published sequencing data from severe
burn patients, this study explored the key genes that can
affect the prognosis. The commonly expressed genes in white
blood after severe burn from three patients’ datasets can be
regarded as potential DEGs whose over or underexpression
may affect the survival or death of burn patients.

Through a PPI network, we identified these DEGs as a
subnetwork of 13 interacting genes. Each subnetwork may
subserve pathways and processes with clinical significance
[28]. Enrichment analysis showed that most PPI network
genes were involved in the immune inflammatory response.

In the enrichment results, a large number of immune
inflammatory reactions were involved. Previous studies
described a role for some of these genes in burn patients.
For example, the expression and phosphorylation level of
p38 were significantly increased in burn models, and this
kinase was also an effective target to alleviate burn reaction
[29, 30]. Mitogen-activated protein kinase (MAPK) can
aggravate the oxidative stress and inflammatory response of
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datasets. (a) Common DEGs formed a PPI network and clustered into 13 modules. (b) The coupling between transcription regulators and
module genes. (c) Receiver operating characteristic curves for the top 10 module genes showing higher area under the curve (AUC). (d)
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burn patients, promote proliferation, reduce the differentia-
tion of keratinocytes, and thus inhibit the healing of skin
wounds [31, 32]. As a well-known apoptotic signaling path-
way, p53 signaling pathway plays an important role contrib-
uting to the prognosis of burn [33-35]. Burn can activate the
Toll-like receptor and stimulate the secretion of cytokines,
which usually lead to extreme system dynamic balance and
may lead to life-threatening multiple organ dysfunction syn-
drome [36]. The PPAR signaling pathway exerts anti-inflam-
matory, antifibrosis, and antiangiogenesis effects in response
to burns [37].

Our study found that the metabolic rate of burn patients
was significantly increased compared with controls. This
increase was accompanied by an acute inflammatory
response to injury, leading to a higher risk of death [38].
After severe burn, the adipose tissue changes from white to
beige, the number of mitochondria increases, and the meta-
bolic function of adipose tissue changes [39, 40]. Therefore,
the DEG network identified in this study may play an impor-
tant regulatory role in response to burns.

Importantly, through the STEM software, we identified
genes that are persistently altered during the response to
severe burns. We predict that these genes can have an impor-
tant influence on prognosis. Burn patients receiving either
placebo or medication showed persistent DEGs, and among
PPI network genes, the hub genes CCL5 and LCK showed
the highest AUCs for predicting survival. These changes of
CCL5 and LCK may have prognostic value.

CCLS5 is a chemokine that plays a role in the peripheral
immune system, it helps regulate synaptic activity, and it pro-
tects against a variety of neurotoxins [41]. There is evidence
that CCLS5 is expressed in the skin after burns and may con-
stitute a drug target [42, 43]. On the other hand, LCK is
involved in the development, function, and differentiation
of T cells [44]. Consistent with our analysis, LCK was signif-
icantly downregulated after burn, which constituted a risk
factor for poor prognosis [45].

Interestingly, we found that several kinds of immunoreg-
ulatory effects gradually weakened after burn, based on the
types of immune cells present and the signaling pathways
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FIGURE 4: Genes and signaling pathways that are persistently altered during severe burn. (a, b) Persistently differentially expressed genes
(DEGs) in patients who (a) died or (b) survived in the CB group were clustered into persistently up- or downregulated genes. (c, d) The
same analysis was performed for persistent DEGs in placebo (PB) patients who (c) died or (d) survived. Red represents upregulated genes,
and blue represents downregulated genes. In the CB group, the signaling pathways with the (e) highest or (f) lowest activity during four
burn stages are shown. Analogously, in the PB group, the signaling pathways with the (g) highest or (h) lowest activity during four burn
stages are shown. Signaling pathway activity is represented on a color gradient from blue (lower) to red (higher). Subtype refers to S1-S4.
(i) Levels of different immune cell types during burn response in patients treated with hydrocortisone (CB) or placebo (PB). A change
from blue to red indicates a gradual increase in the number of cells. S1-S4 refer to before treatment administration, one day after
treatment administration, 120 h after treatment administration, and 168 h after treatment administration.
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FIGURE 5: Potential prognostic genes for severe burns. (a) CCL5 expression over time in severe burn patients who died or survived. (b) LCK
expression over time in patients with severe burn who died. S1-S4 refer to before treatment administration, one day after treatment
administration, 120 h after treatment administration, and 168 h after treatment administration. (c) The expression of CCL5 and LCK in
burn patients and healthy controls was determined using qRT-PCR. *P < 0.05. (d) Nomogram to evaluate the risk of death in severely
burned patients. (e) Plots depicting the agreement between predicted and real outcomes for each model.

activated. This has been confirmed in other studies observing
that deep burn can lead to severe immunosuppression and
may induce sepsis and multiple organ failure [46]. Moreover,

the destruction of the skin barrier and the blood vessel sup-
ply, as well as systemic immunosuppression, are risk factors
for infection in burn patients [47].
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Our study presents several limitations. First, the results
were based on bioinformatic analysis, and require more
experimental confirmation. Second, the samples used in the
analysis were all blood samples and not tissue, and the results
may need more clinical samples to verify.

5. Conclusions

The survival or death of burn patients involves a series of com-
plex processes, which need to be further investigated to improve
the risk stratification of burn patients. In summary, we found
that the persistent DEGs, especially CCL5 and LCK, may be
key factors affecting the prognosis of severely burned patients
and may have a clinical utility as prognostic biomarkers.
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