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An integrative, multi-scale, genome-wide model
reveals the phenotypic landscape of Escherichia coli
Javier Carrera1,†, Raissa Estrela2, Jing Luo1, Navneet Rai1, Athanasios Tsoukalas1,3 & Ilias

Tagkopoulos1,3,*

Abstract

Given the vast behavioral repertoire and biological complexity of
even the simplest organisms, accurately predicting phenotypes in
novel environments and unveiling their biological organization is a
challenging endeavor. Here, we present an integrative modeling
methodology that unifies under a common framework the various
biological processes and their interactions across multiple layers.
We trained this methodology on an extensive normalized compen-
dium for the gram-negative bacterium Escherichia coli, which
incorporates gene expression data for genetic and environmental
perturbations, transcriptional regulation, signal transduction, and
metabolic pathways, as well as growth measurements. Comparison
with measured growth and high-throughput data demonstrates
the enhanced ability of the integrative model to predict pheno-
typic outcomes in various environmental and genetic conditions,
even in cases where their underlying functions are under-
represented in the training set. This work paves the way toward
integrative techniques that extract knowledge from a variety
of biological data to achieve more than the sum of their parts in
the context of prediction, analysis, and redesign of biological
systems.
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Introduction

The development of an integrative genome-scale model is consid-

ered to be the Holy Grail of computational predictive modeling in

systems biology (Tomita, 2001). The potential of such a feat is trans-

formative and spans most areas of life science research: discovery of

novel properties and emerging behaviors at the organism level,

generating and testing predictable hypotheses in well-defined

simulated environments, guiding experimentation, and accelerating

the in-depth understanding of cellular physiology. Despite its utility,

whole-cell modeling across multiple scales remains elusive due to a

number of factors. First, even for well-studied organisms, we still

have a limited knowledge of the cellular machinery, pathways,

proteins, and their respective functions (Frishman, 2007; Hanson

et al, 2010). Furthermore, the complex interconnectivity and

interdependencies of cellular processes render their detailed

mapping a challenging task that is further hindered by the lack of

comprehensive quantitative data across different environmental

conditions. The latter is rapidly changing, however, due to the

technological advances in high-throughput sequencing that enable

the acquisition of an unprecedented amount of data that span all

aspects of cellular organization. Concomitantly, research advances

in the computational front have reached the level of maturity

needed for the analysis and integration of these datasets.

Early work in integrative modeling under one umbrella was

E-cell (Tomita et al, 1999), a modular software environment for

whole-cell simulation that included organelle sub-models (Yugi &

Tomita, 2004). More recently, genome-scale simulations were

performed to study complex phenomena, such as the emergence

of anticipatory behavior during evolution in varying

environments (Tagkopoulos et al, 2008), the noise contributions

of an inducible switch (Roberts et al, 2011) and the effect of

stochastic expression to metabolic variability (Labhsetwar et al,

2013). A whole-cell model of Mycoplasma genitalium, a human

urogenital parasite whose genome contains 525 genes and is

described by 28 cellular processes, was presented recently with

encouraging results on the prediction of cellular behavior (Karr

et al, 2012). A crucial tool for integrative modeling is network

inference algorithms, both unsupervised and supervised, which

can be used to generate topological models and consensus

networks from data (Basso et al, 2005; Faith et al, 2007; Mordelet

& Vert, 2008; Taylor et al, 2008; Zare et al, 2009; Marbach et al,

2010, 2012). Several methods have targeted the integration of

models across the transcriptional, proteomic, signal transduction,

and metabolomics layers (Reed et al, 2003, 2006; Covert et al,

2004; Duarte et al, 2004; Beltran et al, 2006; Joyce & Palsson,
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2006; Kresnowati et al, 2006; Becker et al, 2007; Feist et al, 2007;

Andersen et al, 2008; Feist & Palsson, 2008; Herrgard et al, 2008;

Carrera et al, 2012a,b).

Our aim here was to construct a phenomenological model for

bacterial organisms that integrates multiple layers of biological orga-

nization. We focused on a genome-scale model for Escherichia coli,

a gram-negative, facultative anaerobic model bacterium. E. coli

serves as an ideal candidate for multi-scale cell modeling, due to the

wealth of data and knowledge accumulated over the years, the easi-

ness to culture and manipulate experimentally, and its importance

in medical and biotechnological applications. Figure 1 depicts the

training–simulation–refinement methodology that can be used for

the construction of data-driven genome-scale models. Starting from

a collection of “omics” data (Fig 1A), cellular processes are divided

into modules, constructed from composite networks, and data-

driven sub-models that are ultimately integrated under a unifying

framework (Fig 1B). Parameters are trained so that the model

optimally captures the observed relationships given an objective

function and a set of constraints, and the predictive ability of the

model is then assessed through a number of statistical tests

(Fig 1C). Such a model can be used to generate and test biological

hypotheses through simulations pertaining to genetic and environ-

mental perturbations that can subsequently be validated through

targeted experimentation (Fig 1D). A critical aspect of any data-

driven model is to identify the areas where further experimentation

is needed to accurately capture phenomena and biological

processes, so that targeted experiments can be performed to address

these shortcomings. The resulting experimental data are then inte-

grated to the training dataset, which in turn increase the predictive

power of the model.

Toward this goal, we constructed a normalized gene expression

(4,189 genes in 2,198 microarrays from 127 scientific articles),

signal transduction (151 regulatory pathways, 152 publications),

and phenomics (616 arrays) compendium (Fig 2). The constructed
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Figure 1. Overview of integrative modeling through targeted experimentation.

A Collection of training data across multiple layers of cellular organization and from various data sources.
B Development and training of a multi-scale model that integrates transcription, signal transduction and metabolism.
C Evaluation of model generalization via comparison between predicted and measured growth and expression data.
D Experimentally test hypotheses generated by the model and incorporate new measurements in the training set.
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knowledgebase was then integrated with a recently published

E. coli metabolic model (2,583 reactions and 1,805 metabolites)

(Orth et al, 2011). The construction of this compendium led to

significantly improved predictions by highly ranked inference meth-

ods. To allow for genetic and environmental perturbations, we

developed a quadratic programming method coined as “Expression

Balance Analysis” (EBA) that takes into account genetic, capacity,

phenomenological, and environmental constraints to predict gene

expression. We extended the current models for flux boundary

calculations by developing a new method called “TRAnscription-

based Metabolic flux Enrichment” (TRAME) that accounts for both

metabolic and transcriptional interactions. Statistical tests and

subsequent experimental validation demonstrate the capacity of

this integrative model to predict environmental and genetic pertur-

bations beyond current stand-alone metabolic and expression (ME)

models.

Results

Genetic and environmental gene expression diversity

Genetic diversity analysis in EcoMAC shows that genetic perturba-

tions led to more diverse gene expression profiles than environmen-

tal changes (Kolmogorov–Smirnov test P < 0.023; Mann–Whitney

test P < 10�15; Supplementary Fig S4A and B). In addition, different

types of genetic perturbations had a profoundly different expression

profile: the gene expression diversity observed in arrays of TF rewir-

ing experiments is more than 2.1-fold (P < 10�10) higher than in

arrays from single-TF perturbation experiments such as TF

knockouts or TF over-expressions. We did not observe significant

differences in the variability signatures when comparing arrays

of knockouts and over-expression experiments in TFs, enzymes,

or other genes. Nonetheless, genetic perturbations of TFs led to
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Figure 2. Integration of signal transduction, gene expression, metabolic and phenomics data within an integrative framework.
Links between databases, models, and knowledgebase to the computational methodologies depict the dependences between the various modules in the integrative
genome-scale model.

ª 2014 The Authors Molecular Systems Biology 10: 735 | 2014

Javier Carrera et al An integrative, genome-scale E. coli model Molecular Systems Biology

3



significantly higher expression diversity levels (Mann–Whitney test

P < 10�18; Kolmogorov–Smirnov test P < 10�17) than other genes

(Supplementary Fig S4C and D). These results argue that transcrip-

tional rewiring of the existing transcriptional regulatory network

(TRN) tends to create larger ripple effects that reverberate across

the global transcriptional network, when compared to other single-

gene perturbations.

Visualization of the gene targets present in EcoMAC reveals a

remarkably sparse landscape of genetic and environmental pertur-

bations that have been conducted so far (Fig 3A). Overlap of

EcoMAC and EcoST depicts clusters of TFs that are implicated in

sensing environmental states, such as variations in carbon, nitro-

gen, and phosphate sources, as well as oxygen, metals, and other

supplements (Fig 3B). The calculated effector strength in the whole
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Figure 3. Map of genetic perturbations, signal transduction pathways and inferred interactions.

A TRN of Escherichia coli including all transcriptional interactions experimentally verified. Color nodes represent genes identified as genetic perturbations in EcoMAC.
The TRN contains 1,591 genes (182 TFs representing a 55.5% of the total), and 3,704 transcriptional interactions. 97 of the 141 genetic perturbations fall within the
experimentally verified interactions and are shown here.

B STSs of Escherichia coli represented in the EcoST TRN. Nodes represent TFs that are related to carbon sources (red), metals (grey), acids (yellow), nitrogen sources
(orange), oxygen (blue), phosphate sources (green), or supplements such as amino acids or precursors of amino acids (light blue). All transcriptional interactions
between TFs are represented (416 regulations between 183 TFs).

C Number of transcriptional interactions with low, strong, and confirmed evidence and ROC/PR curves for predicted transcriptional activators/repressors (bottom
panels) and inferred interactions (top, right panel). The performance of three methods trained on EcoMAC (AUC = 0.73, AUPRC = 0.23) and 35 methods trained on the
809 arrays of DREAM 5 (AUC = 0.6, AUPRC = 0.23) is shown. The confirmed interactions in RegulonDB v8.1 constitute the golden standard.

D GO enrichment of the top 500 inferred interactions (0.45 precision threshold).

Source data are available online for this figure.
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spectrum of environment-sensing regulatory mechanisms reveals a

bias toward highly sensitive TF-effector pairs, where small changes

have major implications in cellular expression (Supplementary

Fig S9).

An integrative knowledgebase as a base to regulatory
network enrichment

We performed network analysis to tap on EcoMAC’s potential to

reveal novel interactions in E. coli’s TRN. We used inference

methods that were highly ranked in the latest DREAM challenge to

capture distinct EcoMAC features by applying mutual information,

constrained regression, tree-based methods, and other statistical

techniques. Remarkably, inference of regulatory interactions based

on the EcoMAC compendium increased the performance of the

community classifier by 8 to 22%, depending on the number of

methods and golden standard used (Supplementary Fig S5). From

the top 500 computationally inferred interactions (precision cutoff

at 0.45, Fig 3C), the most enriched biological processes are

response to stimulus (222 interactions), locomotion and taxis (81

interactions), and cell, ciliar, or flagellar motility (33 interactions,

Fig 3D). Comparison of the Pearson correlation coefficient (PCC)

between the expression profiles of TFs and their targets to random

pairs shows the first to be significantly highly correlated

(Kolmogorov–Smirnov test P < 10�10 and Mann–Whitney test

P < 10�10; Supplementary Fig S6) and with similar profiles for

both experimentally validated and computationally inferred

interactions, which reinforces the likelihood that these putative

interactions are indeed present in the respective experimental

conditions.

Expression Balance Analysis

Training a regression model on EcoMAC was found to be highly

predictive of positive (0.74 AUC) and negative (0.91 AUC) interac-

tions for arrays where TFs and genes were significantly correlated

(interactions with PCC > 0.75, Fig 3C). The EBA model was used to

predict genome-wide gene expression values under genetic and

environmental perturbations in EcoMAC (Supplementary Methods,

section 4.4). We analyzed the predictive power of EBA on the entire

gene expression profile or a subset of it, resulting in two evaluation

classes (global and local, respectively). For local evaluation, all

genes with a distance of two links or less from the perturbed gene

were considered. After parameter training (Supplementary Fig S12),

the EBA model was significantly more accurate in predicting global

expression profiles when compared to the null-model (Fig 4A and

B). Specifically, the 50 and 64% of well-predicted arrays for genetic

and environmental perturbations, respectively, outperformed the

PCC average of all predictions (437 and 55 arrays evaluated, respec-

tively; Fig 4A, solid area; Fig 4B, blue points), whereas the null-

model is shown in (Fig 4A, hatched area; Fig 4B, red points). We

also assessed the effect of genetic and environmental constraints in

the EBA model by comparing its performance to EBA predictions

when no or random constraints are imposed. Although the perfor-

mance in both these cases is closer to that of the (constraint-driven)

EBA model, the latter results in better predictions (measured by the

number of arrays above the average PCC threshold) as shown in

Fig 4A (bottom panel). Furthermore, the EBA method was found to

be robust to parameter perturbations (Supplementary Fig S13). Simi-

lar results were obtained when computationally inferred interactions

were included in the analysis (Supplementary Fig S14), and individ-

ual classes of genetic perturbations were taken into account

(Supplementary Fig S15).

We studied the performance of EBA by training random sub-sets

of transcriptional interactions (Supplementary Fig S16A and B). As

expected, the EBA local performance decreased significantly when

the TRN was constructed by using random interactions between TFs

and genes. Moreover, when interactions were excluded from the

TRN, an exponential decrease in performance on local profiles was

observed that is consistent with the scale-free nature of the TRN

network. A fivefold cross-validation argues that EBA is robust in the

size and nature of the training set (Supplementary Fig S16C and D).

Integrating transcription, fluxes, and metabolic models

Next, we used the E. coli metabolic model iJO1336 together with

Flux Variability Analysis (FVA) (Mahadevan & Schilling, 2003;

Gudmundsson & Thiele, 2010) and Flux Balance Analysis (FBA)

(Orth et al, 2011) to calculate the reaction fluxes and their bounds.

In order to test the metabolic model under various environmental

conditions, we simulated 100 random environments where cells

grew in minimal media and a growth-affecting parameter in abun-

dance or limitation (carbon sources, nitrogen, supplemental amino

acids, or metals). In all cases, the model provides a quantitative

measure of the variations in growth rate for the different environ-

mental perturbations (Supplementary Fig S17 and Supplementary

Dataset S6). TF and enzyme knockouts were found to be pheno-

typically more diverse than over-expressions, as shown in analysis

of the metabolic benefit under single (Supplementary Fig S18) and

multiple (Supplementary Fig S19) genetic perturbations. We then

used TRAME to integrate metabolic and transcriptional regulatory

networks by modifying the metabolic flux bounds (Supplementary

Methods, section 5).

Phenotypic predictions in an integrated model

To integrate all the models described above, we used a cost-benefit

scheme across the various layers to determine the genome-scale

gene expression profile, metabolic flux distribution, and growth

rate. The cost-benefit model outperformed growth predictions of

models that contained only benefit or cost-limited functions, with

PCC between predicted and measured phenotypes at 0.76

(P < 10�3) for benefit-only model predictions versus 0.84 (P < 10�4)

in our model (Supplementary Fig S21). Interestingly, when inferred

interactions were added in the analysis, more arrays were well

predicted, leading to a higher PCC between predicted and measured

growth rates than when EBA was restricted only to experimental

interactions (PCC > 0.53, P < 2∙10�4; Supplementary Fig S21C).

Fig 4C shows high correlations between predicted and measured

growth rates for different categories of arrays in EcoMAC. The model

accurately predicted growth in all cases with PCC ranging from 0.8

(genetic perturbations; P < 10�10) to 0.99 (gene knockouts;

P < 10�10).

Next, we assessed the predictive power of this work in compar-

ison with three recent M-models (Beg et al, 2007; Orth et al, 2011;

Adadi et al, 2012) and a ME-model (O’Brien et al, 2013) for E. coli,
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as well as to the first whole-cell model for M. genitalium (Karr et al,

2012). We used our integrative model to predict growth rates in 14

different batch cultures that can be captured by the model and gene

essentiality of all the 4,189 E. coli genes considered in our model

(Supplementary Dataset S11). Interestingly, the correlation between

measured and predicted growth rates by using our model

(PCC = 0.60, P-value = 0.02) was higher and statistically more

significant than for two M-models (PCC = 0.20, P-value = 0.49 for

the iJO1366 yield model presented in (Orth et al, 2011), PCC = 0.36,

P-value = 0.20 for the FBAwMC model presented (Beg et al, 2007)),

and ME (PCC = 0.50, P-value = 0.07 for the ME-model in (O’Brien

et al, 2013)). Similarly, in silico prediction of gene essentiality in

glucose M9 minimal medium results in an accuracy of 91.1%

(Supplementary Dataset S11, “Gene Essentiality”). This accuracy is

on par with previous approaches using the metabolic reaction

network alone (accuracy = 91.2% reported in Orth et al, 2011) and

the ME-model (accuracy = 88.8% reported in O’Brien et al, 2013),

as well as the reported accuracy of 79% on the whole-cell model of

M. genitalium (Karr et al, 2012).

Model enrichment through targeted experimentation

We explored the landscape of biological processes that could be

affected by implementing all genetic perturbations contained in

EcoMAC. From the 1,361 GO terms associated with biological

processes in E. coli, we included GO terms belonging to the first five

levels of the GO-hierarchy, resulting in a set of 686 GO terms, cover-

ing 3,319 E. coli genes (80% of total; Supplementary Fig S23A and

B). Only 23% of these GO terms are affected by the genetic pertur-

bations present in EcoMAC given two coverage constraints (Fig 5A;
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Figure 4. Quantitative assessment of Expression Balance Analysis.

A Percentage of arrays where EBA achieved a higher (solid bars), equal (non-solid bars with lines), or lower (non-solid bars with pattern) PCC between the predicted
and the measured expression profile, when compared to a randomized model. Three randomized models were considered: randomized EcoMAC expression profiles
(null-model, black bars), expression profiles that are derived by EBA that does not encode the environmental or genetic constraints of the expression profile under
investigation (dark green) and EBA-derived expression profiles with random genetic and/or environmental constraints (light green). Both genetic (left panel) and
environmental (right panel) perturbations were considered. The percentage of the arrays predicted by EBA with PCC higher than a threshold PCC (noted as TH,
calculated as the average over all predicted arrays) is denoted in the bottom panel. Bottom panel contains the number of well-predicted arrays with PCC higher than
the average. The comparison is performed for all well-predicted arrays (global), those within a distance of two links (local), and those local arrays with a PCC that is
statistically significant (P-value < 0.05; local*).

B Predictive power of EBA for all genetic perturbations by using the null-model (black bars in panel A). Blue and red points show arrays in which the PCC between the
measured and predicted (EBA) expression profile is significantly higher (P < 0.05) or lower (NS, non-significant), respectively, than the PCC between the measured
expression profile and the null-model (i.e., random profiles from EcoMAC).

C Phenotype predictions for arrays in EcoPhe compare different categories of perturbations (low vs high growth rate measured; genetic vs environmental
perturbations; gene knockouts vs rewired networks) by using the integrative genome-scale model of Escherichia coli in which EBA with experimental and
inferred interactions predicted gene expression profiles. PCC corresponds to the correlation between the predicted and experimentally measured growth for
each category.
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Figure 5. Model validation.

A Perturbed genes in arrays of EcoMAC grouped by GO terms altered. The 172 links are the transcriptional interactions identified in the experimental TRN. Note that the
36 low-level GO terms are plotted from the 160 GO terms found to be enriched.

B Accumulative GO term coverage under the list of the 35 top gene perturbations, according to gene expression variability under genetic (orange), environmental
(purple), or gene–environment combinatorial (red) perturbations. The 10 gene knockouts that were experimentally measured and their corresponding under-
represented GO terms are highlighted.

C Growth rates of the 10 gene knockouts in environments with and without supplementation (* P < 10�2, ** P < 10�3, *** P < 10�10). The dashed red line depicts the
growth rate for the WT strain in M9 salt, 0.3% glucose media without any other supplements.

D Comparison of the 28 predicted and observed phenotypes.
E Phenotypic predictions for the 28 newly measured phenotypes, grouped into categories based on the perturbation type (low growth rate; genetic and environmental

perturbations; and gene knockouts). Each panel shows the percentage of accurately predicted conditions. Both validated and inferred interactions were used for
training the integrative model (Supplementary Methods, section 7.3 and 7.4). Orange (pink) and green dots depict arrays predicted from Fig 4C and newly measured
phenotypes, respectively. Black dots are measurements for the WT strain in non-supplemented M9 media.

Source data are available online for this figure.
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Supplementary Methods, section 7.1), a remarkably low number

that signifies the limitations of the training set for capturing biologi-

cal processes by any model. In order to determine the minimal set

of gene knockouts that maximizes the GO term coverage and

expected gene expression variability, we devised a greedy algorithm

(Supplementary Methods, section 7.2; Supplementary Fig S23C and D)

that produced a ranked list of gene knockouts that maximize the

likelihood for model enrichment by performing expression profiling

and growth measurements. Including the top 35 candidate genes

improves the number of affected GO terms by a staggering 14.6%,

which is in strong contrast to the 3.3 � 1.1% that is expected by a

random assignment of 35 genes that are currently not present in the

dataset (Fig 5B).

To further test the ability of the genome-scale model to predict

growth rates under adverse conditions, we isolated 10 single-gene

knockouts from these 35 genes that are part of under-represented

GO biological processes in EcoMAC and for which we had no growth

or expression information (Fig 5C, Supplementary Dataset S7). We

then computationally predicted and experimentally measured the

growth rates of these knockout strains in minimal and supplemented

media (28 different combinatorial phenotypes explored; Fig 5C;

Supplementary Methods 7.4). In 9 out of the 10 cases, supplementa-

tion of the media with the necessary compounds led to significant

increase (P < 10�10, Z-test) in growth (Supplementary Fig S24).

Interestingly, the model captures growth-related defects with 79%

accuracy (P < 10�4 Fisher’s exact test; Fig 5D) across the 28 pheno-

types related to strains with gene knockouts in transport genes

(methionine and short-chain fatty acids transport, metN; rhamnose

transport, rhaT; cobalt, manganese, and ferrous ions transport,

mntH), biosynthesis-related genes (cobalamin and siroheme biosyn-

thesis, cysG; cysteine biosynthesis, cysH; fatty acid, methionine,

threonine, and homoserine biosynthesis, metL), and metabolic

processes (arginine catabolism, castE; D-ribose catabolic process,

rbsK; galactonate catabolism, dgoA; galactose metabolic process and

carbohydrate phosphorylation, galK). In addition, the model predic-

tions were within the confidence intervals for 75%, 53%, and 58%

of the phenotypes related to genetic perturbations, environmental

perturbations, and gene knockouts, respectively, despite the fact

that these knockouts were not part of the EcoMAC dataset and with

GO terms that are not represented in the compendium (Fig 5E).

Enrichment analysis of the differential expression predicted by the

model shows 149 genes were significantly altered (P < 10�3 Z-test)

and are implicated in signal transduction systems and TRN

(response to external stimulus), and metabolism (primary metabolic

process, carbohydrate and amino acid metabolic and catabolic

process) of E. coli (Supplementary Dataset S8). A detailed analysis

of the pathways implicated and justification for the observed growth

can be found in Supplementary Methods (sections 7.3 and 7.4).

Discussion

One of the most striking realizations that came to light after

constructing the various E. coli compendia was the paucity of our

knowledge even for the most-studied bacterial organism: when

accounting for all gene knockouts, rewirings, or over-expressions,

we have data for 141 genes that cover 23% of GO terms, a surpris-

ingly low percentage of coverage. Given that these experiments

have been performed in different strains and experimental condi-

tions, there is a clear and present need for the creation of compre-

hensive datasets that aim at the construction of more informative

models. The idea of targeted experimentation for model enrichment

departs from the classical view of experiments as an answer to

hypothesis testing and subsequent model training on seemingly

disparate datasets. Rather, to maximize the impact on the model’s

predictive ability, the experimental focus and type can be selected

based on current model deficiencies by using the proper heuristics,

such as the maximal increase in GO term coverage and gene expres-

sion variability that we used in this work.

The EcoMAC compendium increased considerably both the sensi-

tivity and specificity of the known inference methods. Indeed, train-

ing only three inference methods on EcoMAC yielded results that

were significantly better than those obtained recently by using 35

methods (Marbach et al, 2012), but on a smaller compendium. A

limitation here is the severe bias to negative samples in the ground

truth: while experimentally confirmed interactions are well docu-

mented and categorized, there is no such set for true negatives, that

is interactions that were experimentally tested and found non-exis-

tent. As such, all inference assessments consider all TF–gene combi-

nations that are not denoted as confirmed, to be negative, hence

introducing an artificially high False Positive Rate.

Integration of signal transduction, gene expression, and meta-

bolic levels under one overarching framework led to a significantly

more predictive model that can capture environmental and genetic

perturbations beyond what was possible before (Monk et al, 2013;

O’Brien et al, 2013). There are several extensions over previous

attempts that have made this possible. Having constructed a

phenomenological model that focuses more on the statistical associ-

ations among the various components and less on the biophysical

mechanisms of each individual sub-component, we reduced the

parameter space compared to other biophysical models (Segre et al,

2002; Beg et al, 2007; Lee et al, 2008; Adadi et al, 2012; Karr et al,

2012; Lerman et al, 2012; Thiele et al, 2012), a step that reduces the

amount of over-fitting given the limited availability of experimental

data. Instead of using summary statistics to provide kinetic and flow

bounds to macromolecular synthesis machinery reactions (Lerman

et al, 2012; Thiele et al, 2012), we here rely on a methodological

large-scale analysis of gene expression datasets to capture the

dependencies and predictive associations among gene products.

This allows the model to generate predictions beyond the subset of

gene products related to biosynthesis that have been explicitly

modeled and reported in the past. Computationally, the Expression

Balance Analysis (EBA) technique that we developed is similar to

previous work (Covert et al, 2004; Lerman et al, 2012) in the sense

that it employs constrained optimization, although the actual

constraints and objective functions are different, aiming at training

the model parameters so that they maximize the likelihood of the

data, in a realistic fashion. An important contribution of this work is

the creation of a signal transduction network (EcoST) and its inte-

gration to the transcriptional and metabolic network through

constraint modeling, which enables our model to capture environ-

mental perturbations related to carbon, nitrogen and phosphate

sources, oxygen, acids, metals, and other medium supplements.

Expanding the fitness function to calculate a relative cost for altered

gene expression with respect to wild type allowed our model

to predict a wide range of genetic perturbations that includes

Molecular Systems Biology 10: 735 | 2014 ª 2014 The Authors
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transcription factor rewirings to the set of knockout and over-

expression perturbations that past models have focused on.

Aside from its merit as a hypothesis-testing tool for systems

biology, integration of this work with synthetic circuit and genome

redesign platforms (Huynh et al, 2013) is a stepping stone toward

unifying, model-driven designs that transcend multiple layers of

biological function. Further refinement and extension of the

supporting compendia will inarguably provide an important knowl-

edgebase for integrative models that exploit associations between

heterogeneous genotypic and phenotypic characteristics. While

innovative, the current model can be extended to use a mixture of

statistical learning techniques that capture different aspects of the

data structure. This, together with iterative cycles of training,

targeted experimentation and refinement is poised to have a trans-

formative potential on our ability to accurately predict cellular states

and generalize in new environments.

Materials and Methods

A gene expression, signal transduction, and phenomics
compendium for Escherichia coli

By integration of microarray data from GEO, ASAP database, Array-

Express, and individual investigators, we have constructed a gene

expression compendium of 4,189 genes over 2,198 arrays that were

collected from 127 scientific articles (Supplementary Methods,

section 1.1 and 1.2; Supplementary Fig S1). A total of 328 transcrip-

tion factors (TFs) and 1,357 enzymes were identified by using

RegulonDB. From the 2,198 arrays, 90 were considered as “wild-

type” conditions (MG1655 strain, aerobic growth in M9/LB media

with 0.3% glucose) and 332 arrays that had experimental settings

that deviate considerably from these conditions were classified as

“environmental perturbations”. Another 718 arrays correspond to

“genetic perturbation” experiments, where a knockout, over-expres-

sion, or gene rewiring took place (Isalan et al, 2008). The resulting

E. coli Microarray Affymetrix Compendium (EcoMAC) includes data

from 31 strains and over 15 different media with high gene expres-

sion diversity (Supplementary Figs S2 and S3). EcoMAC is supple-

mented by EcoPhe (Supplementary Methods, section 1.4), a

phenomics compendium that has bacterial growth information for

616 of the arrays in EcoMAC.

To identify signal transduction pathways that are responsible for

cellular responses to environmental stimuli, we curated the EcoCyc/

RegulonDB knowledgebase and then curated relevant literature to

identify 151 instances of signal transduction systems (STSs) where

the expression level of one or more TFs is regulated by the presence

of effector molecules. In the resulting database, EcoST, 71 of these

TF-effector interactions fall under one of the following four types of

auto-regulation: (a) Type I (28 instances): the TF represses its own

expression in the absence of an inducer, while derepression occurs

at its presence (e.g., lldR and L-lactate; Supplementary Figs S7B and

S8A), (b) Type II (11 instances): the TF-effector complex regulates

its own expression in the presence of the effector (e.g., fur and iron;

Supplementary Figs S7C and S8B), (c) Type III (4 instances): two

component systems where a histidine kinase sensor is auto-

phosphorylated in the presence of an effector and transfers the

phosphate to a TF that can in turn positively (3 instances) or

negatively (1 instance) regulate its own expression (e.g., dpiA and

citrates Supplementary Fig S7D), and (d) Type IV (28 instances)

where TF gene expression is altered in the presence of the effector

but the corresponding mechanism is not known (e.g., fhlA and

formate; Supplementary Fig S7E). The rest of the 80 signal-mediated

regulatory interactions were described in literature, but they did not

show a significant change in gene expression levels in presence of

the effectors. Supplementary Dataset S5 contains all the signal trans-

duction systems that we considered.

Gene regulatory network reconstruction

We compiled a list of 3,704 regulatory interactions from RegulonDB

v8.1, 115 of which were auto-regulatory interactions (3.1%)

(Supplementary Dataset S3). Positive interactions are slightly more

represented than negative interactions (1,807 versus 1,664), with

233 interactions being dual in nature. We also created three sets of

data based on the confidence level of the interactions (Supplemen-

tary Methods, section 2.1): a first set with 566 “confirmed” evidence

interactions (existence of two or more types of strong experimental

evidence), a second set that includes all 566 confirmed and another

2,517 “strong” evidence interactions (existence of only one type of

strong evidence) for a total of 3,083 interactions, and the third set

includes all 3,704 interactions, with 711 of them based only on

“weak” evidence (Fig 3C). For evaluation, we used three golden

standards. First, we used the golden standard used in Marbach et al,

2012, which includes interactions with strong evidence from

RegulonDB v6.8. The other two testing sets consist of the interac-

tions that are labeled as strong (one type of strong evidence, 3,083

interactions) and confirmed (two types of strong evidence, 556

interactions) based on RegulonDB v8.1, respectively (Fig 3C).

We evaluated five top-ranked regulatory interaction inference

methods, and we selected three (GENIE3 (Huynh-Thu et al, 2010),

TIGRESS (Haury et al, 2012) and Inferelator (Greenfield et al,

2010)) based on their performance to integrate as a meta-classifier

and train with EcoMAC. By using the same evaluation criteria with

the DREAM5 network inference challenge, we compared the perfor-

mance of the meta-classifier trained on EcoMAC to that trained on

the 805-array dataset used in (Marbach et al, 2012). Supplementary

Fig S5 depicts the ROC curves and AUC values for the meta-

classifiers and individual methods for both datasets and for three

different golden standards. The resulting consensus network of the

first 500 inferred interactions achieves a precision of 0.45, with 381

(76.2%) of them overlapping with previous predictions.

Cellular sub-models

Signal transduction model

To model the effect of signal transduction systems (STSs) on gene

expression, we considered the cases where the effector’s presence

alters TF concentration or its structural conformation and function-

ality. In the case where the effector has a direct impact to the TF’s

concentration, we defined a linear constraint to describe the TF

expression yTF as a function of changes in effector concentrations

MnE:

yTF ¼ ywt
TF þ XðCmax

TF � Cmin
TF ÞvETF

DnE

Dnmax
E

;
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where ywt
TF, C

min
TF and Cmax

TF are the wild-type, minimum and maxi-

mum expression values of the TF gene obtained from EcoMAC.

DnE is the difference in the effector concentration between the

predicted and reference (WT) levels, and Dnmax
E is an empirical

parameter. The parameter vETF is positive (negative) depending on

whether the presence of the effector increases (decreases) the TF

concentration, and parameter O was used to fine-tune the STSs

(Supplementary Methods, section 3.2). In the second case, we

modeled the change in the TF activity by introducing a binary vari-

able sgTF that was zero or one depending whether the TF was still

functional after the binding event.

Transcriptional model and EBA

We model the mRNA dynamics of all genes in the compendium as

a function of the TF concentration by linear ordinary differential

equations (ODEs). Then, we developed a novel method called

“Expression Balance Analysis” (EBA) to predict the global gene

expression profile of E. coli under genetic modifications and envi-

ronmental changes (Supplementary Methods, section 4). EBA

formulates an optimization problem to find the gene expression

profile subject to four sets of constraints (phenomenological, capac-

ity, environmental, and genetic constraints). Specifically, we used a

fitness function, E, that minimizes the gene expression errors of the

328 TFs (eTF):
Minimize:

E ¼ 1

2
�yTF �eTF½ ���H �yTF

�eTF

� �
þ �f

�yTF
�eTF

� �

subject to:

��R
�yTF
�eTF

� �
¼ �a; phenomenological constraints;

�yTF � �Cmin
TF

�yTF � �Cmax
TF

; capacity constraints;

�yTF ¼ FG �Cmin; �Cmax; �a; �b; �yTF
� �

; genetic constraints;

�yTF ¼ F
ð1Þ
E

�Cmin ; �Cmax ; �ywt
TF;v

E
TF;Dn

max
E ;DnE

� �
�yg ¼ F

ð2Þ
E �a;�b;�yTF ��sTF

� � ; environmental constraints;

where R ¼ Id� ��b Id
� �

; the hessian matrix H ¼
��0 ��0
��0 ��I

� �
; �f ¼ �0; �a is

a vector of the basal transcription coefficients, and �b is a matrix with

elements bij that represent the effect of the jth TF to the ith gene. The

maximum (�Cmax) and minimum (�Cmin) values of gene expression for

each gene were obtained from EcoMAC.

Metabolic model and Transcription-based Flux Enrichment

We created a transcription-based metabolic flux enrichment

(TRAME) method to integrate metabolic and transcriptional regula-

tory networks modifying the Vmin and Vmax calculated from Flux

Variability Analysis (FVA) for each metabolic flux in the E. coli

metabolic model iJO1336 (Orth et al, 2011). This approach

determines the new values of the flux bounds Vmin and Vmax for a

given enzyme, e, as a function of the expression (P-function) relative

to the WT enzyme expression (Supplementary Methods, section 5),

PVmin � v� PVmax;where Pe ¼ ye
ywt
e

� 	n
, and n is a parameter that

allows us to factor in the variability observed on the wild-type

arrays regarding the expression of that specific enzyme, yWT
e .

Model integration

Integration of the various cellular and environmental components

to phenotypic changes was performed through a cost-benefit

model. As such, we compute the growth burden due to the produc-

tion and maintenance of all proteins (cost), as well as the growth

advantage due to the energy uptake of the metabolic pathways in

each environment (benefit). Figure 2 and Supplementary Fig S20

depict the information flow among the distinct sub-components in

our framework. In this cost-benefit model, the genetic cost is

defined as the relative reduction in growth rate (l) due to the

production of essential proteins. We used the EBA method to

predict gene expression profiles (�yg) under environmental and

genetic perturbations. To measure the cost c, we computed the

deviation between the WT (�yWT
g ) and predicted (�yg) gene expres-

sion profiles:

c ¼ 1

NG

X
g

�yg � yWT
g

yWT
g














where NG is the number of genes in E. coli genome. Similarly, to

compute the metabolic benefit B, we used the metabolic sub-model

(Supplementary Methods, section 6.1). As such, the fitness func-

tion that represents the growth rate �l is given by the difference

between the benefit and the cost:

�l ¼ B� c

Environmental perturbations can modify gene expression

through the signal transduction sub-model according to the change

of effector concentrations (D�nE). Similarly, genetic perturbations

alter the basal and regulatory coefficients (�a �b) of the respective

genes in the transcriptional model. Both environmental and

genetic perturbations can directly modify the metabolic fluxes

( �Vmin
�Vmax).

Experimental model validation

We identified 10 single-gene knockouts from under-represented GO

terms in EcoMAC, and we used the E. coli model to predict their

growth in various environments. Experimental measurements for

those single-knockout strains (Keio collection) determined their

growth in minimal M9 media under various conditions (with/with-

out supplement carbon sources related to the specific knockout defi-

ciency, and with/without 0.3% glucose; Supplementary Methods,

section 7.3). We compared computational predictions to observed

growth rates under those 28 phenotypes measured. In addition, we

compared predicted and observed growth rates for all the environ-

mental and genetic perturbations included in EcoPhe (Supplemen-

tary Methods, section 6.2).

Supplementary information for this article is available online:

http://msb.embopress.org
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