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Females have more robust immune responses than males, and

viral infections are more severe for males. Hormones and

genetic sex, namely the X chromosome, influence sex

differences with immune responses. Here, we review recent

findings underlying sexual dimorphism of disease susceptibility

for two prevalent viral infections, influenza and SARS-CoV-2,

which exhibit male-biased disease severity. Viral infections are

proposed to be an initiating event for autoimmunity, which

exhibits a female bias. We also review recent work elucidating

the epigenetic and genetic contribution of X-Chromosome

Inactivation maintenance, and X-linked gene expression, for

the autoimmune disorder Systemic Lupus Erythematosus, and

highlight the complex considerations required for identifying

underlying hormonal and genetic contributions responsible for

sex differences in immune responses.
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Introduction
Women have more robust immune responses following

infection from a variety of pathogens, leading to

decreased mortality. Yet this propensity for stronger

immune responses may contribute towards increased

incidence of autoimmune disease in women. Sexual

dimorphism with immune responses originates from

genetic and hormonal differences with the immune sys-

tem, which influence how immune responses to patho-

gens. Innate immune cells, including neutrophils, natural

killer (NK) cells, and macrophages, respond to pathogens

by lysing infected cells, phagocytosing infectious parti-

cles, and releasing soluble signals such as inflammatory

cytokines [1–4]. B and T cells, the major players of the

adaptive immune system, become activated in a targeted
www.sciencedirect.com 
manner against invading pathogens. B cells produce and

secrete specific antibodies that neutralize viral particles

and facilitate clearance of the pathogen [1,5]. Upon anti-

gen encounter, some virus-specific B cells enter germinal

centers of secondary lymphoid organs to somatically

mutate the antigen binding domain and class-switch

the constant domains of their immunoglobulin genes

[1,5]. This increases the affinity of viral-specific antibo-

dies for the viral antigen and alters effector capabilities of

the antibody [1,5]. T cells, either CD8+ or CD4+, can

directly lyse infected cells and secrete pro-inflammatory

cytokines [1,6]. Two specialized subsets of CD4+ T cells

are T follicular helper cells (Tfh), which facilitate B cell

affinity maturation, and T regulatory cells (Tregs) sup-

press aberrant immune responses in the periphery [1,7,8].

The adaptive immune system generates long-lived mem-

ory cells that can respond quickly and robustly in the

event of a secondary challenge by the same pathogen

[1,6,9].

There is sexual dimorphism with immune responses in

healthy individuals, with observed differences in num-

bers of immune cell populations and serum cytokine

concentrations (Figure 1). Women have higher numbers

of B cells and elevated serum levels of non-class switched

antibodies [10–12]. Woman and female rats also have

elevated neutrophil counts [13,14] as well as a higher

proportion of CD4+ T cells [12,15–17]. In contrast, men

have more CD8+ T cells and NK cells [12,15–17]. There

are also sex differences with serum cytokine production,

in particular Type I Interferons (IFNa) as well as IL-10

[18–22]. These baseline differences contribute to sex

biases when the immune system is activated in the

presence of a pathogen.

Genetics and hormones contribute to sex differences with

immune responses. Sex hormones such as estrogen and

testosterone are produced at different ratios, and receptor

signaling events regulate a number of important immu-

nity-related genes. Sex hormone signaling can also alter

the susceptibility of non-immune cells to viral infection,

as well as drive both innate and adaptive immune cell

activation and function [23–35] (Figure 1). Estrogen

receptor signaling is associated with elevated production

of innate pro-inflammatory cytokines, particularly antivi-

ral IFNs [19,21,23]. Elevated estrogen levels during

pregnancy and estrus cycles dampen pro-inflammatory

responses, demonstrating the complex interactions sex

hormones have with immune responses [23]. The genetic

basis for sex differences resides with the sex
Current Opinion in Physiology 2021, 19:1–11
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Genetic and hormonal contributions to sexually biased immune responses. (a) Possible factors leading to sexual dimorphic gene expression. (b)

Differential immune cell populations and soluble mediators in males compared to females. Legend: B cells (dark blue), neutrophils (pink), T cells

(purple), IFNa (pink dots). (c) Examples of alterations in gene expression driven by genetic or hormonal factors leading to sex-biased immune

responses. Legend: Virus (blue), viral receptor (salmon), endosomal TLR7 and TLR8 (green), viral RNA (blue strands), B cells (dark blue), T cells

(purple), CD40L (pink, on T cell), CXCR3 (purple dots), IFNg (orange dots).
chromosomes, and the X chromosome is enriched for

important regulatory immune-related genes [36,37].

Female mammals have two X chromosomes and use X-

chromosome inactivation (XCI), a hallmark example of

epigenetic gene regulation, to equalize X-linked gene

expression between the sexes. XCI is established early in

female embryonic development and maintained through

each cell division through adulthood by various epige-

netic modifications, including Xist RNA, repressive his-

tone modifications (H3K27me3, H2AK119-ubiquitin,

H4K20me1), the histone variant macroH2a, and DNA

methylation, which are enriched across the inactive X (Xi)

[38–43]. The Xi is often found near the nucleolus and at

the nuclear periphery, which is enriched for heterochro-

matin [44]. Some genes escape XCI and are expressed

from both X chromosomes, leading to altered expression
Current Opinion in Physiology 2021, 19:1–11 
levels between the sexes [45–52]. Here, we will review

recent advances investigating sex differences with viral

responses to influenza and coronaviruses, and genetic as

well as epigenetic contributions to female-biased

autoimmunity.

Sex differences with viral infections and vaccinations:

influenza and coronaviruses

Sex differences with viral infections and clinical out-

comes have been observed for a variety of viruses. Male

children under age four had significantly more occur-

rences of measles, viral meningitis, and hepatitis infec-

tions [53]. Male sex in adults was also a significant

predictor of severe disease outcome with several viruses,

including from hepatitis A, hepatitis B, Epstein-Barr

virus, and West Nile virus [54–58]. Men also had higher
www.sciencedirect.com
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levels of HIV RNA in their blood, although when

accounting for viral load, women were more likely to

develop AIDS [59]. Some viruses display a bias towards

more severe disease in female mammals, which might be

indicative of heightened antiviral immune responses also

causing aberrant immunopathology [58]. Successful viral

vaccination strategies rely on the adaptive immune sys-

tem generating a memory response to inactivated viral

particles or viral subunits, and sex biases have also been

reported. Women mounted stronger class-switched anti-

body profiles for vaccinations against yellow fever, mea-

sles mumps and rubella, hepatitis A, hepatitis B, herpes,

smallpox, and influenza [60–65]. Women also displayed

increased local inflammation around the site of vaccina-

tion, which may reflect sexual dimorphism with innate

immune activation [60,62,65].

Immune responses to viruses exhibit sexual dimorphism,

including in viral cell entry, recognition of viral motifs,

and immune cell activation (Figure 1). In this section, we

highlight recent advances in understanding the underly-

ing sex differences in response to two viral infections that

impose great disease burdens worldwide: influenza and

SARS-CoV-2. The current mechanistic explanations for

sex-biased responses to these infections involve both

hormonal and genetic factors as well as interactions

between the immune system and other biological pro-

cesses, serving to highlight the complexities inherent in

identifying the underlying causes of sex-biased disease

parameters.

Sex differences with influenza infections and vaccines

Seasonal influenza infections result in 3–5 million severe

cases and 290 000–650 000 deaths per year worldwide [66]

and while many reports do not disaggregate by sex, there

is a clear sex bias in influenza susceptibility that changes

with age. Young men before puberty exhibit more severe

disease compared to age-matched women, which suggests

genetic origins for observed sex differences [67,68]. In

addition, older men are more likely to be hospitalized

versus older women [69]. In contrast, adult pre-meno-

pausal women have increased likelihood of severe illness

[67] and increased lung pathology. The picture of sex bias

during influenza infection becomes more complicated

when examining responses to pandemic influenza out-

breaks [70]. For example, in the 2009 H1N1 pandemic,

pre-menopausal women had higher rates of hospitaliza-

tion and also higher risk of death [71–74] ; in contrast,

during the 1917–1918 epidemic there was increased mor-

tality for men [75]. Both viral-mediated and immuno-

pathologic lung damage can occur during influenza infec-

tion, resulting in the development of Acute Respiratory

Distress Syndrome (ARDS) and hypoxemic respiratory

failure [76]. Therefore, the increased susceptibility to

influenza for women (post-puberty and pre-menopausal)

and male-predominance of disease severity particularly

with increased age could arise from genetic differences
www.sciencedirect.com 
between the sexes in addition to hormonal changes

during aging.

Influenza infections in mice also exhibit sex differences.

Female mice challenged with the H1N1 strain of influ-

enza produced higher levels of neutralizing and class-

switched antibodies compared to male mice [77��].
Higher antibody titers were also observed in female mice

following vaccination with inactivated virus, which corre-

lated with higher numbers of germinal center B cells,

CD8+ and CD4+ T cells in lymph nodes [77��]. Female

immunized mice also had higher transcription of Toll-like

receptor 7 (Tlr7) and reduced DNA methylation at the

Tlr7 promoter in B cells [77��]. Tlr7 is X-linked and plays

a role in inducing class-switch recombination in B cells

[78], thus female-specific elevations with Tlr7 could

explain the higher levels of class-switched antibodies

that provide protection from influenza infections

(Figure 1). We and others have reported Tlr7 escape from

XCI in human and mouse B cells [79–81], yet additional

work is required to establish whether biallelic expression

of Tlr7 provides increased protection from influenza.

Sex hormones also contribute to observed sex differences

with immune responses to influenza. Estrogen treatment

reduced influenza A replication in human nasal epithelial

cells derived from female, but not male, donors, suggest-

ing that estrogen receptor signaling directly affects influ-

enza virus replication [82]. Testosterone also impacts

immune responses. Using a machine learning approach,

a cluster of lipid metabolism genes regulated by testos-

terone were identified which correlated with male-spe-

cific poor vaccine-induced antibody production [65]. Men

with elevated testosterone levels also had the lowest level

of antibody production [65]. Yet studies in mice found

that testosterone reduced lung inflammation and

improved survival following influenza infection, and

androgen replacement treatment did not impact the

susceptibility of aged mice [83–86]. Additional work is

necessary to elucidate the molecular details and species-

specificity of sex hormones affecting viral-induced injury

and lung repair following influenza infection.

Sex differences with coronavirus and resulting respiratory

disease

The current COVID-19 global pandemic is caused by a

coronavirus (SARS-CoV-2) and men are more susceptible

to infection, severe disease, and mortality [87–89]. Previ-

ous outbreaks of the coronaviruses SARS-CoV and

MERS-CoV, which resulted in SARS and MERS, also

exhibited a male bias for severe disease [90–92]. While

epidemiological data from the COVID-19 pandemic is

complicated by uneven reporting of sex-disaggregated

data and country-by-country testing criterion, a recent

analysis from 38 countries identified a male bias for

COVID-19 fatalities in 37 countries [89]. For the 12 coun-

tries for which the data was available, further breakdown
Current Opinion in Physiology 2021, 19:1–11
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by both sex and age revealed a significant male bias in

case fatality for every age above 30 years [89]. Peripheral

blood mononuclear cells (PBMCs) from patients in the

United States presenting with mild to moderate COVID-

19 symptoms exhibited sexual dimorphism with immune

populations, where male patients had more non-classical

monocytes and female patients had more robust activated

T cell profiles [93�]. In addition, when analyzing immune

determinants that correlated with progression to severe

disease, men had reduced T cell signatures characteristic

of severe disease, and women had elevated viral antigen-

specific class-switched antibodies which is predictive of

disease protection [93�].

Mouse modeling suggests that estrogen may play a pro-

tective role in SARS-CoV-2 infection and COVID-19

disease. Utilizing a mouse-adapted strain of SARS-

CoV, the Perlman lab demonstrated that male mice were

more susceptible to infection, with significantly increased

lung damage and mortality [94��]. In addition, male mice

had elevated levels of pro-inflammatory cytokines as well

as inflammatory macrophage/monocyte infiltration as

compared to female mice [94��]. Importantly, while

gonadectomies or treatment with a nonsteroidal anti-

androgen had no effect on viral pathogenesis in male

mice, gonadectomies and estrogen-receptor antagonist

treatment significantly increased viral susceptibility in

female mice [94��]. Whether estrogen treatment impacts

SARS-CoV infection or disease in male mice remains an

open question. While this study demonstrated that estro-

gen signaling is an important factor in the sex differential

susceptibility to SARS-CoV infection, the applicability to

SARS-CoV-2 infection is unknown.

An intriguing aspect to the pathogenesis of SARS-CoV

and SARS-CoV-2 is that cell tropism relies on the cellular

receptor Angiotensin Converting Enzyme 2 (ACE2) and

the serine protease TMPRSS2 [95,96,97�,98,99], and

expression of both genes exhibits sex differences

[100,101]. Both ACE2 and TMPRSS2 contain hormone

response elements in their promoter regions, and ACE2
expression is increased by estrogen in human airway

epithelial cells [100]. Estrogen-mediated regulation of

ACE2 alone does not account for the male-bias with

COVID-19 disease and mortality, as the male bias is

observed among older adults, including post-menopausal

women who may/may not be on hormone replacement

therapy [89]. The ACE2 gene is X-linked, thus women

have the potential to express more ACE2 protein if this

gene escapes XCI in specific cell types, as ACE2 escapes

XCI in human fibroblasts [48]. Female-specific increased

expression of ACE2 could facilitate greater SARS-CoV-2

infection (Figure 2), which would likely result in higher

cases or greater severity of disease, which is not observed

clinically [89]. Recent observations suggest that women

express higher levels of ACE2 in a variety of tissues, and

that ACE2 expression may decrease with age specifically
Current Opinion in Physiology 2021, 19:1–11 
in human male tissues [102]. ACE2 negatively regulates

angiotensin II, which promotes lung injury by increasing

vascular dysfunction and inflammation [103]. Moreover,

angiotensin II can directly induce endothelial apoptosis

[104,105] and inhibit endothelial cell proliferation, wors-

ening lung injury [106] and providing an explanatory

context for the vascular dysfunction observed in

COVID-19 [107]. Thus, elevated ACE2 levels are actu-

ally protective, and reduce susceptibility for severe lung

injury as well as other vascular-related injuries resulting

from SARS-CoV-2 infection [96,103] (Figure 2). An

intriguing alternative explanation for elevated ACE2
expression that may facilitate protection is that ACE2
is an IFN-stimulated gene [108], thus ACE2 upregulation

may increase viral entry into cells already in a heightened

antiviral state [109]. Further examination of the genetic

and hormonal contributions that result in differences with

ACE2 and TMPRSS2 expression in the context of SARS-

CoV-2 infection and COVID-19 disease is necessary.

Interplay between viral infection and initiation of

autoimmune disease

The causes for autoimmune disease are unclear, yet

studies suggest that viral infection is strongly correlated

with the onset of autoimmunity [110]. Indeed, many

different types of viruses have been linked to the devel-

opment of autoimmunity in humans, including Epstein-

Barr Virus, Human Cytomegalovirus, and Human T-

Lymphotropic Virus 1 [110–113]. Lymphocytic Chorio-

meningitis Virus (LCMV) accelerates onset of disease in

the classic spontaneous mouse model of lupus, NZB/W

F1 mice, which exhibits a female-bias [114]. Viral infec-

tion is proposed to drive autoimmunity onset through a

variety of mechanisms, where viral-derived T cell-stim-

ulatory molecules (which are structurally similar to self-

peptides) result in inflammation and activation of self-

reactive T and B cells [110]. Viral infections can often

result in abnormal activation of self-reactive T cells,

which is a hallmark of autoimmune diseases [115]. There-

fore, hormonal and genetic factors that result in more

robust female T and B cell activation during viral infec-

tions may contribute towards the female-bias with auto-

immune disease, and additional research is necessary to

elucidate the mechanisms underlying this hypothesis.

Sex differences in autoimmune diseases

About 25 autoimmune disorders have a strong female bias.

Sjögren’s syndrome,Grave’sdisease,andHashimodo’s thyr-

oidosis exhibit >90% incidence among women, while Sys-

temic Lupus Erythematosus (SLE), antiphospholipid anti-

body syndrome, and systemic scleroderma patients are 70–

85% female [116,117]. Indeed, autoimmune disease is one of

the leading causes of death for women in the United States

[116].

One genetic factor that increases the risk for developing

SLE or SS is the number of X chromosomes, as 46,XX
www.sciencedirect.com
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Figure 2
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Female-biased increased expression of ACE2 could have different outcomes that alter susceptibility to SARS-CoV-2 and COVID-19 disease

severity. Female-specific increases in ACE2 expression due to genetic and hormonal factors might lead to more viral entry but also leads more

active ACE2 and subsequent protection from vascular dysfunction. Legend: ACE2 (orange), SARS-CoV-2 virions (blue).
females and 47,XXY individuals with Klinefelter syn-

drome display heightened incidence as compared to

46,XY men [116–118]. Individuals with one X chromo-

some (46,XY males and 45,X Turner syndrome patients)

have the lowest risk for developing SLE and SS, while

people with more than two X chromosomes (47,XXX

Trisomy X syndrome patients) have the highest risk

[119–121]. While XCI results in dosage compensation

for X-linked genes between males and females, some

genes regularly escape silencing [45–51]. It is conceivable

that additional immune-linked gene escape can contrib-

ute to autoimmune onset and severity, as overexpression

of some immunity-related X-linked genes have been

observed in SLE patients [122]. Mouse studies have

shown that overexpression of CD40LG or BTK results

in autoantibody production and immune complex-medi-

ated glomerulonephritis [123–127], and transgenic over-

expression of Tlr7 in mice can result in various symptoms

of autoimmunity, including anti-nucleic acid antibodies,

spontaneous lymphocyte activation, and glomerulone-

phritis [128,129]. Biallelic expression of Tlr7, ranging

from 10 to 40% of cells, has also been recently observed
www.sciencedirect.com 
in human B cells from healthy women, female SLE

patients, as well as men with Kleinfelter syndrome

[79,130]. Intriguingly, female lupus-prone NZB/W F1

mice also exhibit biallelic expression of Tlr7 that did

not change with disease progression [131��]. A polymor-

phism in the X-linked gene CXorf21, an adaptor for

endosomal TLRs including TLR7, is strongly associated

with SLE in European populations [132–134]. Whether

CXorf21 escapes XCI is an intriguing open question.

These observations suggest that abnormal expression

of multiple X-linked genes likely contributes to SLE

disease severity.

Lupus disease also affects the localization of epigenetic

modifications to the Xi, which may account for X-linked

gene expression changes. Circulating T and B cells from

both mice and humans display non-canonical features of

XCI, as the Xi lacks Xist RNA localization and enrich-

ment of heterochromatic modifications, although XIST/
Xist is expressed at normal levels [80,135��,136]. In vitro
stimulation results in accumulation of both XIST RNA

and heterochromatic marks on the Xi [80,136]. We
Current Opinion in Physiology 2021, 19:1–11
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recently found that in vitro activated T cells from human

SLE patients and both T and B cells from late-stage

disease NZB/W F1 mice have dispersed Xist RNA locali-

zation patterns [131��,135��]. In addition, T cells from

SLE patients had altered expression of X-linked genes,

including overexpression of genes involved in metabo-

lism, cell cycle, and proliferation [135��]. Furthermore, B

cells from NZB/W F1 mice progressively lost H3K27me3

enrichment on the Xi with increased disease develop-

ment [131��], suggesting that abnormal XCI is a conse-

quence of lupus disease, and not causal. These findings

suggest that perturbed XCI may be responsible for abnor-

mal X-linked gene expression in SLE, and additional

work is necessary to determine whether other autoim-

mune diseases also exhibit perturbed XCI maintenance.

Conclusion
Increasing appreciation of sex as a biological variable

will likely to expand our understanding of the underly-

ing genetic and hormonal contributions to observed sex

biases for prevalence and disease severity during viral

infection and autoimmunity. Here, we highlighted two

examples of viral pathogens, influenza and SARS-CoV-

2, where clinical observations and mouse models indi-

cate that both X-linked gene expression and hormones

contribute to the predominant male bias. The contribu-

tion of XCI escape in specific cell types important for

flu and SARS-CoV-2 infection are unknown at present,

yet will likely reveal important players that contribute

to observed sex differences. There are other examples

of pathogens, such as Leishmania and Treponema palli-
dum, which exhibit sexual dimorphism with infections,

cytokine production, and resulting pathologies [137–

139]. Yet the genetic contribution of XCI maintenance

and XCI escape for these sex differences with patho-

gen-induced diseases remains unclear. One recent

report demonstrated that during Leishmania infection,

the chemokine receptor Cxcr3 escapes XCI in T cells

[140]. T cells with biallelic Cxcr3 expression displayed

heightened functionality in mice, suggesting that XCI

escape could be a significant factor for female-bias with

immune responses. While individuals with multiple X

chromosomes have higher risk for autoimmune diseases,

not all XX individuals will develop an autoimmune

disease. Viral infections are correlated with the onset

of autoimmunity in women, and more research is nec-

essary to unravel the genetic and hormonal contribu-

tions that initiate the pathway for the loss of self-

tolerance. Understanding the sex-specific mechanisms

of immune responses to pathogens will reveal more

effective treatment strategies for pathogen-induced

diseases.
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