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NEURAL REGENERATION RESEARCH 

Protective effects of gonadal hormones on spinal 
motoneurons following spinal cord injury

Introduction
Spinal cord injury (SCI) is a devastating medical problem 
with high mortality and long-term morbidity. The number 
of SCI patients in the US who were alive in 2017 is between 
245,000–353,000, with an annual incidence of 17,500 new 
cases; the estimated lifetime cost of SCI is $1.6–4.8M per 
patient (National Spinal Cord Injury Statistical Center (NS-
CISC), 2018).

The pathophysiology of SCI is complex, and after the 
initial mechanical deformation, a protracted period of pro-
gressive damage occurs, causing spreading of the lesion and 
further segmental destruction (Liu et al., 1997). A variety of 
mechanisms contribute to this progressive secondary injury, 
including excitotoxicity (Liu et al., 1991), free radical gen-
eration (Diaz-Ruiz et al., 2002), protease activation (Wang 
et al., 1997), and inflammation (Ritz and Hausmann, 2008; 
Liu et al., 2009; Liu and Xu, 2010), resulting in the death of 
motoneurons, interneurons, and glial cells in the spinal cord 
(Liu et al., 1997; Liu and Xu, 2010). Similarly, damage to 
spinal nerves resulting in laceration and avulsion of spinal 
roots (e.g., cauda equina injury with high impact motor ve-
hicle accidents; Moschilla et al., 2001) can lead to the death 
of motoneurons and preganglionic autonomic neurons in 
the spinal cord, resulting in autonomic and motor dysfunc-
tion (Hoang et al., 2003).

Surviving Motoneurons as a Treatment Target 
The majority of treatment strategies after SCI have concen-
trated on the damaged spinal cord, for example working to 
reduce lesion size or spread, or encouraging regrowth of sev-
ered descending axonal projections through the lesion, hop-
ing to re-establish synaptic connectivity with caudal targets. 
We have focused on a novel target for treatment after SCI, 
surviving spinal motoneurons and their target musculature. 
In contrast to the extensive studies on neuroprotection and 
axonal regeneration at the lesion site, the morphological and 
functional consequences of SCI for surviving motoneurons 
have been significantly understudied. The spinal motoneu-
rons are the final common pathway for motor output to the 
effector muscles, and any impairment in these motoneurons 
can cause paralysis and muscle atrophy. Motoneurons in the 
lumbar spinal cord can be impaired by direct injury, but are 
far more commonly indirectly impaired after an “above-lev-
el injury”, where the injury occurs above the lumbar level; 
such above-level injuries account for 90% of all SCIs in hu-
man patients (National Spinal Cord Injury Statistical Center 
(NSCISC), 2018). Lesions caused by these injuries damage 
descending motor and propriospinal tracts, resulting in den-
dritic atrophy in the lumbar motoneurons, muscle atrophy, 
and concomitant locomotor deficits (Byers et al., 2012; Liu 
et al., 2014a, b; Sengelaub et al., 2018). Surviving motoneu-
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rons are thus a potential therapeutic target, and developing 
the ability to protect them from secondary atrophy is an im-
portant goal. As there are currently no effective treatments 
to preserve or restore lost function following SCI, identifi-
cation of approaches that result in spared tissues/cell popu-
lations that may subsequently be the targets of regenerative 
therapy and/or rehabilitative plasticity interventions would 
be significant.

We reasoned that protecting spinal motoneurons from 
SCI-induced atrophy would have beneficial effects, and for 
the past several years we have been exploring novel treat-
ment strategies to protect surviving motoneurons after SCI. 
In this review, we briefly summarize our work in a clinically 
relevant model in rats using steroid gonadal hormones as a 
powerful neurotherapeutic approach in the treatment of the 
secondary effects of spinal cord injury.

Neuroprotection with Androgens and 
Estrogens  
Androgens and estrogens have been demonstrated to pow-
erful neuroprotective effects after a wide variety of neural in-
juries (Foecking et al., 2015; Brotfain et al., 2016). For exam-
ple, both testosterone and estradiol protect against cell death 
(Pike, 2001; Yune et al., 2004), promote functional recovery 
(Jones et al., 2001; Sribnick et al., 2010), and stimulate moto-
neuron axonal growth after peripheral nerve injury (Kujawa 
et al., 1989; Islamov, et al., 2003). The mechanisms through 
which androgens and estrogens act are multiple, and include 
regulation of apoptosis (Fargo et al., 2009; Kachadroka et al., 
2010), injury-induced upregulation of glial fibrillary acidic 
protein (GFAP; Jones et al., 1997; Samantaray et al., 2016), 
and mediation of the glial response (Jones et al., 1999; Ritz 
and Hausmann, 2008). Proteins thought to be involved in 
neuroprotection are also regulated by androgens and estro-
gens, including proteins with antioxidant or pro-inflam-
matory functions (Ahlbom et al., 2001; Nilsen, 2008; Ritz 
and Hausmann, 2008) and the neurotrophin brain-derived 
neurotrophic factor (BDNF; Solum and Handa, 2002; Ver-
hovshek et al., 2010).

Gonadal steroid hormones provide protection from many 
of the pathophysiological changes specifically seen after SCI, 
for example reducing the inflammation and free radical 
generation that contribute to progressive secondary injury. 
After SCI, treatment of rats with estradiol resulted in im-
proved motor function, reduced inflammation, attenuated 
apoptotic cell death, reduced lesion size, increased white 
matter sparing, and earlier cytokine release and astroglial 
response (Yune et al., 2004; Sribnick et al., 2005, 2010; Ritz 
and Hausmann, 2008; Kachadroka et al., 2010; Brotfain et 
al., 2016; Samantaray et al., 2016). Similarly, treatment with 
testosterone improves motor function in spinal cord inju-
ry patients. Patients treated with testosterone had higher 
American Spinal Injury Association (ASIA) discharge motor 
scores, a result ascribed to either improved strength through 
the anabolic effects of testosterone on skeletal muscle or its 
neuroprotective effects (Clark et al., 2008).

Spinal Lesions 
Consistent with previous studies, in our work we demon-
strated that following contusion, the focal injuries delivered 
to the spinal cord developed into large lesions that spanned 
multiple thoracic spinal segments. Also consistent with pre-
vious studies (Yune et al., 2004; Sribnick et al., 2005; Chaov-
ipoch et al., 2006; Ritz and Hausmann, 2008; Kachadroka 
et al., 2010; Siriphorn et al., 2012; Mosquera et al., 2014; Sa-
mantaray et al., 2016), treatment with estradiol was effective 
in reducing lesion volume; lesion volumes in animals treated 
only with estradiol were significantly smaller than those of 
all other groups (Sengelaub et al., 2018). This reduction in 
lesion size is thought to be the result of reducing inflam-
mation, reactive astrogliosis, decreased immune response, 
apoptotic cell death, or reductions in oxidative stress (Yune 
et al., 2004; Ritz and Hausmann, 2008; Kachadroka et al., 
2010; Siriphorn et al., 2012; Mosquera et al., 2014; Saman-
taray et al., 2016). Importantly, the reduction in lesion size 
we observed was produced through a physiological dose of 
estradiol, a result similar that reported by Samantary et al. 
(2016) with low doses of estradiol. The efficacy of low dosag-
es indicates that estradiol could be a promising therapeutic 
agent for treating SCI (Samantaray et al., 2016). Further-
more, in our work, estradiol was administered after trauma, 
modeling a clinically relevant situation.

In contrast, treatment with androgens, either alone or 
when combined with estradiol, proved to be ineffective in 
reducing lesion size. Four weeks of treatment with testoster-
one, dihydrotestosterone, or dihydrotestosterone combined 
with estradiol had no effect on reducing lesion volume or 
increased tissue sparing (Byers et al., 2012; Sengelaub et al., 
2018). Curiously, the effect of estradiol on decreasing lesion 
volume was not present when estradiol was co-administered 
with dihydrotestosterone. This negation of the protective 
effect of estradiol is similar to that reported by Hauben et 
al. (2002), wherein treatment of female rats with dihydro-
testosterone prior to SCI impaired recovery. Given that 
androgens have been demonstrated to regulate many of the 
same neuroprotective effects seen with estradiol treatment, 
e.g., protecting against cell death (Pike, 2001), upregulating 
GFAP (Jones et al., 1997; Coers et al., 2002) or mediating 
the central glial response after injury (Jones et al., 1999), this 
negation with combined treatment after SCI warrants fur-
ther study. One plausible mechanism for this negation with 
combined treatment could be through an androgen-medi-
ated immunosuppression (Grossman, 1984). Regardless, 
given that testosterone is routinely metabolized into both 
estrogenic and androgenic metabolites, this negation could 
underlie the failure of testosterone treatment to affect SCI le-
sion volume we previously reported (Sengelaub et al., 2018).

Neuromuscular Protection after SCI  
Although extensive, the spinal lesions produced in our stud-
ies did not extend into the lumbar spinal cord, thus sparing 
the gray matter and resident motoneurons. We selected 
lumbar motoneurons innervating the quadriceps muscle as 
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our population of interest because of the major weight-bear-
ing role this muscle plays. Counts of either Nissl-stained or 
retrogradely-labeled quadriceps motoneurons in SCI ani-
mals did not differ from those of sham animals, confirming 
that the lumbar motoneurons were not directly damaged 
by SCI-induced lesions. Similarly, soma size of quadriceps 
motoneurons was not significantly affected by SCI. Al-
though quadriceps motoneuron number or soma size were 
unaffected after SCI, dendritic length in these motoneurons 
underwent marked dendritic atrophy (Figure 1). Dendritic 
length decreased by over 50% SCI animals compared to that 
of sham animals (Figure 2A). Reductions in dendritic length 
occurred throughout the radial distribution in SCI animals 
compared to sham animals, and were especially pronounced 
ventromedially where quadriceps motoneuron dendrites 
normally have a dense ramification into lamina VIII (Figure 
2B). It is likely that the dendritic atrophy we observed fol-
lowing SCI in untreated animals reflects deafferentation re-
sulting from the loss of descending motor and propriospinal 
tracts. Because both reticulospinal and propriospinal pro-
jections are concentrated in this area (Motorina, 1977; Jones 
and Yang, 1985; Menétey et al., 1985), the extensive lesions 
present after SCI could have produced a major denervation 
of dendrites in this area, resulting in the pronounced den-
dritic atrophy we observed. This loss is of particular signif-
icance after SCI, as descending reticulospinal fibers course 
through the ventral and lateral funiculi (Jones and Yang, 
1985; Martin et al., 1985), and disruption of these tracts re-
sults in hindlimb motor deficits (Magnuson et al., 1999; Loy 
et al., 2002).

We further demonstrated that SCI-induced atrophy of 
quadriceps motoneuron dendrites was attenuated in es-
tradiol-, dihydrotestosterone-, estradiol combined with 
dihydrotestosterone-, and testosterone-treated animals, 
and dendritic lengths in hormone-treated SCI groups did 
not differ from those of sham animals. Dendritic lengths in 
hormone-treated SCI groups were also significantly longer 
than those of untreated SCI animals by at least 57%. Inter-
estingly, similar effects on dendritic length were present af-
ter treatment with androgens alone or in combination with 
estradiol, despite there being no reductions in lesion size or 
increases in tissue sparing in these groups (see above).

Because these effects were seen independent of lesion 
size, our results suggest that these hormonal effects could 
potentially be the result of local action on spinal circuitry 
below the level of the lesion. It is likely that the attenuation 
in SCI-induced dendritic atrophy we observed could have 
been produced by a hormone-mediated sprouting of moto-
neuron dendrites locally onto remaining afferents. Sprout-
ing could potentially maintain motor activation, and such 
an effect of hormones on attenuating dendritic atrophy and 
supporting motoneuron activation has in fact been directly 
demonstrated (Fargo et al., 2009; Little et al., 2009; Foecking 
et al., 2015). The mechanisms responsible for this sprouting 
are not clear, but gonadal hormones have been shown to 
regulate the expression of cytoskeletal proteins (e.g., β-tubu-

lin, Jones and Oblinger, 1994; Matsumoto et al., 1994; Jones 
et al., 1999; Brown et al., 2001; actin and microtubule-as-
sociated protein 2, Hansberg-Pastor et al., 2015), as well as 
neuritin, a critical downstream mediator of the ability of 
gonadal hormones to increase neurite outgrowth (Marron 
et al., 2005; Fargo et al., 2008a, b). Sprouting could be driven 
by direct action on the motoneurons or via indirect action 
on afferents. Thus, it is possible that a hormone-mediated 
protection of local spinal circuitry below the level of the 
lesion could be responsible for the motoneurons dendrit-
ic protection we observed. One possible protected spinal 
population could be the short axon propriospinal neurons, 
which provide the largest source of input to lumbar spinal 
motoneurons (Szentagothai, 1951; Sterling and Kuypers, 
1968; Rustioni et al., 1971). Changes in these afferents 
could underlie the regressive changes we have observed in 
motoneurons after SCI. Afferent input to motoneurons is 
important for the maintenance of their dendritic morpholo-
gy, and deafferentation of motoneurons results in dendritic 
retraction (Bernstein and Standler, 1983; Bernstein et al., 
1984; Standler and Bernstein, 1984); the rescue of the major 
afferent source to motoneurons could underlie the beneficial 
effects of hormone treatment on motoneuron dendrities we 
have observed.

Following SCI, we found that quadriceps muscle fiber 
cross-sectional area in untreated SCI animals was decreased 
by 25%, typical of muscles innervated by motoneurons be-
low the level of the lesion, especially in weight-bearing mus-
cles such as the quadriceps (Peckham et al., 1976; Giangre-
gorio and McCartney, 2006; Figure 3). Muscle atrophy after 
SCI can result from either muscle denervation due to a loss 
of motoneurons or disuse consequent to decreases in mus-
cle activation potentially due to the loss of synaptic input to 
remaining motoneurons (Gordan and Mao, 1994). The atro-
phy we observed in our work cannot be ascribed to an effect 
of denervation, as we observed no changes in quadriceps 
motoneuron number, or the number of horseradish perox-
idase conjugated to the cholera toxin B subunit (BHRP)-la-
beled quadriceps motoneurons between sham animals and 
untreated SCI animals. Thus, the decreased fiber size we 
observed most likely reflects a disuse atrophy, potentially 
resulting after damage to descending and propriospinal pro-
jections and/or the reductions in quadriceps motoneuron 
dendritic length we observed. Such reductions in quadriceps 
motoneuron dendritic length result in attenuation of motor 
activation, reducing response amplitudes in the femoral 
nerve generated by dorsal root afferent stimulation (Little et 
al., 2009). Alternatively, disuse atrophy may also result from 
changes in muscle length or loading conditions that could 
decrease protein synthesis and increase protein degradation 
(Williams and Goldspink, 1973; Goldspink, 1978).

We found that estradiol treatment was ineffective in pre-
venting muscle fiber atrophy, with areas decreasing 26% 
after SCI. Although estrogens have a variety of effects in 
skeletal muscle (e.g., downregulation of proinflammatory 
cytokines, enhancing insulin-like growth factor-1 (IGF-1) 
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Figure 1 Motoneuron morphology is protected by gonadal hormones 
following spinal cord injury.
Darkfield digital micrographs and matching computer-generated com-
posites of transverse hemisections through the lumbar spinal cords of 
a sham animal (A, G), an injured animal given a blank implant (SCI; B, 
H), an estradiol-treated injured animal (SCI + E; C, I), a dihydrotestos-
terone-treated injured animal (SCI + D; D, J), an injured animal treated 
with both hormones (SCI + E + D; E, K), and a testosterone-treated in-
jured animal (SCI + T; F, L), after horseradish peroxidase conjugated to 
the cholera toxin B subunit (BHRP) injection into the left vastus lateralis 
muscle. Computer-generated composites of BHRP-labeled somata and 
processes were drawn at 480 μm intervals through the entire rostrocaudal 
extent of the quadriceps motor pool; these composites were selected be-
cause they are representative of their respective group average dendritic 
lengths. Scale bar: 500 µm. (Images from Byers et al. (2012) and Senge-
laub et al. (2018)).

Figure 2 Motoneuron dendritic length and distribution is protected 
by gonadal hormones following spinal cord injury.
(A) Dendritic lengths of quadriceps motoneurons of sham animals 
and injured animals that were either untreated (SCI), or treated with 
estradiol (SCI + E), dihydrotestosterone (SCI + DHT), estradiol and di-
hydrotestosterone combined (SCI + E + DHT), or testosterone (SCI + 
T). Following contusion injury, surviving quadriceps motoneurons lost 
over 50% of their dendritic length. Treatment with hormones atten-
uated this dendritic atrophy. (B) Inset: Drawing of spinal gray matter 
divided into radial sectors for measure of quadriceps motoneuron den-
dritic distribution. Quadriceps motoneuron dendritic arbors normally 
display a non-uniform distribution, with the majority of the arbor 
located between 300° and 120°. Following contusion injury, surviving 
quadriceps motoneurons in untreated animals (SCI) had reduced den-
dritic lengths throughout the radial distribution, especially ventrome-
dially (60%, 300° to 360°). Treatment with hormones attenuated these 
reductions. Bar heights represent the mean ± SEM. *indicates signifi-
cantly different from sham animals, † indicates significantly different 
from untreated SCI. (Data from Byers et al. (2012) and Sengelaub et al. 
(2018)).

Figure 3 Muscle fiber area is protected by androgens 
following spinal cord injury.
(A) Cross-section through quadriceps muscle fibers. 
Scale bar: 100 µm. (B) SCI reduces muscle fiber area; 
treatment with estradiol (SCI + E) is ineffective, but this 
reduction is prevented by treatment with dihydrotestos-
terone (SCI + D), alone or in combination with estradiol 
(SCI + E + D), or testosterone (SCI + T). Bar heights 
represent means ± SEM. *significantly different from 
sham, † significantly different from untreated SCI. (Data 
from Byers et al. (2012) and Sengelaub et al. (2018)).



975

Sengelaub DR, Xu XM (2018) Protective effects of gonadal hormones on spinal motoneurons following spinal cord injury. 
Neural Regen Res 13(6):971-976. doi:10.4103/1673-5374.233434

expression, or satellite cell activation and proliferation; Tii-
dus et al., 2013), their effects on muscle fiber cross-sectional 
area vary in different muscles and in different directions. Es-
tradiol replacement after ovariectomy has been reported to 
increase muscle fiber size in the gastrocnemius (Sciote et al., 
2001), decrease it in the extensor digitorum longus (Suzuki 
and Yamamuro, 1985) and plantaris (Piccone et al., 2005), 
or either increase (Weigt et al., 2015) or decrease (Suzuki 
and Yamamuro, 1985) fiber size in the soleus.

In contrast, we also found that treatment with testosterone 
or dihydrotestosterone (either alone or in combination with 
estradiol) attenuated SCI-induced muscle fiber atrophy. 
These effects are consistent with the known protein anabolic 
effects of androgens on skeletal muscle tissue (Kochakian, 
1975; Gao, 2010). Thus, treatment with androgens might 
have supported muscle protein synthesis and decreased 
protein degradation, and the resultant decrease in protein 
turnover could have prevented muscle atrophy. Alterna-
tively, androgen treatment could have potentially altered 
mobility or activity in the treated animals, resulting in the 
preservation of both muscle as well as the related spinal cord 
circuitry and motoneuron dendritic morphology. This is 
quite plausible, as limb exercise after spinal cord transection 
during postnatal development has in fact been shown to 
prevent dendritic atrophy in spinal motoneurons (Gazula 
et al., 2004). Furthermore, exercise is known to elevate the 
expression of neurotrophic factors (e.g., BDNF) that can 
promote dendritic and axonal regrowth (Byers et al., 2012; 
Wilhelm et al., 2012; Sengelaub et al., 2018).

Summary
Overall, our results provided the first evidence of pro-
nounced dendritic atrophy in spinal motoneurons caudal to 
a contusive injury. More importantly, such atrophy was pre-
vented with treatment with gonadal hormones, supporting 
their protective role after SCI. Together, our results indicate 
that the use of gonadal hormones could be an effective treat-
ment after SCI, directed by the particular therapeutic goals. 
We believe that our work will lead to developing sex-appro-
priate hormone treatments that will be effective in treating 
multiple sequelae of SCI.
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