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Network embedding (NE), which maps nodes into a low-dimensional latent Euclidean space to represent effective features of each
node in the network, has obtained considerable attention in recent years. Many popular NE methods, such as DeepWalk,
Node2vec, and LINE, are capable of handling homogeneous networks. However, nodes are always fully accompanied by
heterogeneous information (e.g., text descriptions, node properties, and hashtags) in the real-world network, which remains a
great challenge to jointly project the topological structure and different types of information into the fixed-dimensional em-
bedding space due to heterogeneity. Besides, in the unweighted network, how to quantify the strength of edges (tightness of
connections between nodes) accurately is also a difficulty faced by existing methods. To bridge the gap, in this paper, we propose
CAHNE (context attention heterogeneous network embedding), a novel network embedding method, to accurately determine the
learning result. Specifically, we propose the concept of node importance to measure the strength of edges, which can better
preserve the context relations of a node in unweighted networks. Moreover, text information is a widely ubiquitous feature in real-
world networks, e.g., online social networks and citation networks. On account of the sophisticated interactions between the
network structure and text features of nodes, CAHNE learns context embeddings for nodes by introducing the context node
sequence, and the attention mechanism is also integrated into our model to better reflect the impact of context nodes on the
current node. To corroborate the efficacy of CAHNE, we apply our method and various baseline methods on several real-world
datasets. ,e experimental results show that CAHNE achieves higher quality compared to a number of state-of-the-art network
embedding methods on the tasks of network reconstruction, link prediction, node classification, and visualization.

1. Introduction

Nowadays, information networks are ubiquitous in our daily
life, for example, social and communication networks, ci-
tation networks, and co-occurrence networks. At most of the
time, the scales of real-world networks are very large. ,us,
analyzing large-scale networks has attracted considerable
research attention in recent years. Network embedding
(NE), also known as network representation learning, aims
to generate informative numerical representations for nodes
in the network to preserve network structures and further
alleviates the inconveniences caused by sparsity. Network
embedding methods are demonstrated to be effective in
many network analysis tasks including link prediction [1],
node classification [2], and clustering [3].

Many approaches have been proposed toward this goal,
such as DeepWalk [4], LINE [5], Node2vec [6], and PPNE
[7]. Particularly, network embedding aims to project the
network into a low-dimensional space, where each node is
represented using a corresponding embedding vector, and
the relativity among nodes is preserved. ,e nodes with
“high similarity” are mapped onto adjacent points (“high
similarity” means nodes have similar properties and are
more likely to have edges between them). ,e embedding
vectors contain the semantic information transcribed from
the network structure and can be applied in various network
mining applications easily. However, most of the existing NE
methods take the network structure as input to learn rep-
resentations for nodes without considering any other
information.
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In reality, a network usually has rich heterogeneous in-
formation, such as text descriptions and other metadata. For
instance, Wikipedia (https://www.wikipedia.org/) entries
connect with each other and build an encyclopedia network.
Simultaneously, each entry as a node has substantial text in-
formation such as keywords and introduction, which describe a
node in detail and more comprehensively. Furthermore, in the
real-world social network like Twitter (https://twitter.com)
shown in Figure 1, users as nodes also have their own text
descriptions, which may reflect the properties of each node.
Hence, text information is typical and critical heterogeneous
semantic information widely existing in real-world networks.
However, most NE models treat all networks as homogeneous
networks. In other words, most works learn representations
only from network structures ignoring text information. Be-
cause of heterogeneity in networks, we put forward an idea to
embed a network from both network structures and text
information.

To this end, a direct way is to learn representations from
text information of nodes and network structures in-
dependently, which can be called text-aware embedding.
However, this way ignores the complicated interactions
between network structures and text information, which
leads to invalidity. CANE [8] is an efficient method to
capture the correlation between the text feature of a node
and its neighbors’ in a network, which achieves the purpose
we stated before. However, CANE only preserves the local
relations in a network, while we need to take the global
network structures into consideration rather than node
pairs independently. For example, in Figure 1, Bob may
have connections to other NLP researchers who are also his
colleagues and Alice has not followed these researchers, so
there may be potential relationships between these re-
searchers and Alice in the text aspect because they have
similar properties, but CANE cannot capture these re-
lationships. ,us, how to satisfy the compatibility between
network structures and text information in the network
should be exploited to better represent nodes.

In addition to the problem stated above, typical NE
methods are insensitive to the strength of the relationship
between nodes in unweighted networks. As an intuitive
example, we show some relationships from the real-world
online networks in Figure 1. In Twitter, Trump is a ce-
lebrity who has plenty of followers, and each follower links
to him by an edge. Alice and Bob are ordinary users, and
they link with each other because they are colleagues. ,ey
also follow Trump just because they are Americans. In this
case, the strength of the relationship between Alice and
Bob should be stronger than that between Alice and
Trump. As shown in Figure 1, we use dotted lines and solid
lines to describe the strength of relationships (edges).
Strong connection means high similarity between pair-
wise nodes, and weak connection means low similarity. In
unweighted networks, classical NE methods generally
treat the weight of the edge between nodes as a binary
variable and ignore the rich semantics of edges we il-
lustrated before. ,erefore, the strength of connections is
underlying structural information we need to take into

consideration when learning network representations in
real-world networks, which remains a great challenge.

From the aforementioned problems, the heterogeneity
and structural complexity in real-world networks pose spe-
cific hurdles for network representation learning. Fortunately,
in this paper, we propose a context attention heterogeneous
network embedding (CAHNE) method with an emphasis on
leveraging the rich and intrinsic information in heteroge-
neous networks. Specifically, CAHNE reconstructs the clas-
sical network represented as G � (V, E) to form the
heterogeneous text network denoted as G � (V, E, T). We
can extract a context node sequence for each node by breadth-
first search (BFS) on the redesigned network, and the root
node can be deemed the anchor node. ,rough a series of
specific operations that we will give a detailed elaboration in
the later section, combining the text information in a se-
quence, we can obtain a representation for the anchor of the
context node sequence, which is the context embedding of the
anchor node. ,erefore, CAHNE integrates text information
into the global structures of the network to learn the potential
intertextual associations in the network. Moreover, the in-
fluence of context nodes on the anchor node can vary with
different anchor nodes, and thus, we further the adopt at-
tention mechanism to enhance the expressiveness of the
influence from the context nodes on the specific anchor node.
Besides, for unweighted networks, CAHNE is expected to
preserve the underlying structural information on the
strength of edges. Based on this idea, we give the definition of
node importance that quantifies the strength of the re-
lationship between nodes and integrate it into the network
embedding method to learn a structure-based representation
for each node. Finally, we concatenate the context embedding
and the structure-based embedding of the node as the
complete representation for the node. Empirically, we apply
CAHNE to four network analysis tasks, i.e., network re-
construction, link prediction, node classification, and visu-
alization, using seven real-world networks as datasets.
Experimental results demonstrate that our method learns
better nodes embeddings when compared to a variety of state-
of-the-art baselines in the field of NE.

,e main contributions of our method are summarized as
follows:

(i) We propose a novel network embedding model,
namely, CAHNE. ,e method is able to learn
comprehensive representations for different types of
real-world networks, which confirms the flexibility
and robustness of our model.

(ii) We provide a key insight regarding the strength of
relationships in unweighted real-world networks.
We thereby propose the definition of node im-
portance for optimizing the objective, which more
closely shows the actual situations of the network.

(iii) We integrate heterogeneous information into network
representation and mitigate the incompatibility be-
tween network structures and text information by
extracting context node sequences accompanied by
the attentionmechanism to learn context embeddings.
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,e source code is available at https://github.com/
zhuo931077127/CAHNE.

2. Related Works

Network representation learning (NRL) has been well
researched for many years, for example, in earlier works
such as Isomap [9], multidimensional scaling (MDS) [10],
and Laplacian eigenmap (LE) [11]. ,ese approaches rep-
resent the network as an affinity graph by using the feature
vectors of the network nodes. For a given large-scale in-
formation network, e.g., social network and citation net-
work, these methods are less efficient and inflexible to
generate node representations.

In recent years, inspired by the development of the
machine learning and word embedding method Word2vec
[12], many NRL methods have been proposed for large-scale
information network representation. For example, Deep-
Walk [4] proposes to perform random walks on the graph to
obtain sequences of nodes. It introduces the Skip-Gram
model to achieve vertex representations. Based on Deep-
Walk, Node2vec [6] defines a flexible notion of a node’s
network neighborhood and designs a biased random walk
procedure to explore the network structure more efficiently.
Some other methods focus on finding multivariate structure
features in the network. For example, LINE [5] embeds the
network into a low-dimensional latent space to approximate
the first-order proximity and second-order proximity of the
network. Nevertheless, most of these network embedding
models only focus on homogeneous networks, without
taking heterogeneous information into consideration.

Different from homogeneous networks, heterogeneous
networks consist of complex node and edge attributes.
Several attempts have been done on heterogeneous in-
formation network (HIN) embedding and achieved prom-
ising performance in various tasks. Hin2Vec [13] learns the
embeddings of a HIN by conducting multiple prediction
training tasks jointly. CANE [8] learns network embeddings

from network structures and text descriptions with mutual
relations of pairwise nodes. ANRL [14] proposes a neighbor
enhancement autoencoder to incorporate both the network
structure and node attribute information in a principled
way. Paper2vec [15] aims to learn the paper node embed-
dings from the paper citation network.

In summary, existing methods in homogeneous network
embedding use either affinity matrix models or deep models
to preserve network structural features in a low-dimensional
space. And existing HIN embedding methods focus on
different types of heterogeneous information. ,ey have
been proven useful on network analysis, but they cannot
maintain the sophisticated interaction between network
structures and heterogeneous information (in this paper, we
consider text information). Additionally, to the best of our
knowledge, all existing NE models ignore the important
relationship information between nodes in unweighted real-
world networks we proposed before. In contrast, our pro-
posed model CAHNE can learn more comprehensive in-
formation than existing methods.

3. Preliminaries

In this section, we introduce basic definitions and formalize
the problem of context attention heterogeneous network
embedding.

3.1. Context Node Sequence (CNS). Forming a context node
sequence for the anchor node in the network can be viewed as
a sampling process of detecting nodes that most likely have
impact on the anchor node. Figure 2 shows the process of
obtaining a context node sequence. Concretely, we first
perform breadth-first search (BFS) on the original graph G
starting from a node vi ∈ V, and we regard vi as an anchor
node, which provides us with a BFS tree xi rooted at vi. xi can
be considered the unique relational tree of vi. Context nodes
are not only the neighborhood of the anchor node but also
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Figure 1: Example of relationships between users in Twitter and the content of their tweets. Dotted lines and solid lines represent weak
connections and strong connections, respectively.
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deeper layer nodes. Hence, we control the number of layers by
setting the parameter k to sample context nodes. Further-
more, the value of k is uncertain and determined by the type
of the given network. At last, for a given node vi, we can obtain
its context node sequence Si � vi : (vi,1, vi,2, · · · , vi,m)⟶

(vi,m+1, · · · , vi,m+n)⟶ · · ·}, wherem and n are the number of
context nodes in the first layer and second layer, respectively,
and so on. vi can also be treated as vi,0. It is worth noting that
each node can only appear once or 0 times in a context node
sequence and building BFS trees for all nodes is not com-
putationally expensive because of the sparsity of real-world
networks.

3.2. Problem Formulation. Now, we formally define the
problem of CAHNE. Compared to conventional homoge-
neous network embedding such as DeepWalk and Node2-
vec, which only focus on a single network structure, our goal
is to learn a representation for each node in a network graph
with convergence of more heterogeneous associated in-
formation. Text information is widely available in real-world
networks, e.g., social networks and citation networks, so we
integrate it into the traditional graph definition (G � (V, E))
[16]. We first define a heterogeneous text network as follows.

Definition 1 (heterogeneous text network (HTN)). ,e HTN
is denoted as G � (V, E, T), where V � v1, . . . , vV  rep-
resents the set of nodes, E � eij 

|V|

i,j�1 represents the set of
edges, and eij is the relationship between two nodes (vi, vj)

linked with each other, with an associated weight wij (in
this paper, we only consider unweighted networks). T �

t1, t2, . . . , t|V|  denotes the text information of nodes. For
the text information of a specific node vc ∈ V, we can
represent it as a word sequence tc � w1, w2, . . . , wnc

 ,
where nc � |tc| denotes the number of words in tc.

Noticing the difference between the definition of the
heterogeneous text network G � (V, E, T) and conventional
network G � (V, E), the heterogeneous text network con-
tains richer information. Empirically, weight often indicates
the strength of the edge between two nodes. In practice, for
unweighted real-world network datasets, weights are only
formed as binary variables. For example, if vi has a neighbor
vj, the weight of the edge between them is 1; otherwise, it is 0.
However, we expect to measure the strength of the relations
more in line with the actual situations of real-world online
networks. ,us, we propose the definition of node impor-
tance as follows.

Definition 2 (node importance). Node importance is
denoted as NI, which is a quantitative representation for
each node in the network. It measures the strength of the
edge between a given node and its neighbors. For an anchor
node vi ∈ V, NI(vi) is the value of node importance for vi.

In real-world networks such as citation networks and
social networks, each node has its own context node se-
quence. We can integrate all nodes’ CNSs and get a global
sequence for G, SG � (S1, S2, . . . , S|V|). ,e more the CNSs a
node consists of, in other words, the more the times a node
appears in SG, the less the importance for this node to its
neighbors. For instance, in Twitter, a celebrity has thousands
of followers, which means this celebrity consists of abundant
CNSs. However, for ordinary users, the importance of the
relationship with a celebrity is less than that with their real
friends who have relationships with them.

Definition 3 (network embedding). Given a heterogeneous
text network denoted as G � (V, E, T), network embedding
aims to map the network data into a low-dimensional latent
space, where each node v ∈ V can learn a low-dimensional
embedding v ∈ R d according to its graph structure and
other information. Note that d≪ |V| is the dimension of the
latent embedding space.

Embedding a network into a low-dimensional space is
helpful for many analysis tasks. In this process, the structures
and properties of the network are preserved and encoded. In
a heterogeneous text network, structure-based network
embedding is not enough and the heterogeneous in-
formation is usually highly correlated with the network
structure. ,us, we further propose the definition of context
embedding.

Definition 4 (context embedding). Aiming to learn a vector
representation for the text information of each node
in an HTN, context embedding learns a mapping function
f : ti⟶ ti ∈ Rdc for a node vi ∈ V, where dc is the di-
mension of context embedding.

It is worth mentioning that more than integrating text
features of the anchor node, it also takes the context node
sequence into consideration. For instance, the context
embedding of the anchor node vc is determined by its CNS Sc

and its own text description tc. In this paper, our method
CAHNE introduces the attention mechanism to weight the
context nodes for each anchor node so that we can mitigate
the incompatibility between network topologies and text
features to obtain more comprehensive and accurate rep-
resentations for the network.

υi

BFS tree

υi

υi,1

Original graph rooted at υi

υi,2 υi,3 Si = {υi : (υi,1, υi,2, υi,3)}, if k = 1,

Si = {υi : (υi,1, υi,2, υi,3)  (υi,4, υi,5, υi,6, υi,7, υi,8)}, if k = 2,

υi,4 υi,5 υi,6

xi

υi,7 υi,8

Context node sequence

…
Figure 2: Example of the generating strategy for a context node sequence. ,e blue node is an anchor node vc.
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4. CAHNE: The Proposed Method

In this section, we will give a detailed introduction to our
method CAHNE.

4.1. Overall Framework. For CAHNE, we need to take full
use of network structures and associated text information.
We propose two types of embedding for a node v ∈ V, i.e.,
structure-based embedding vs and context embedding vc.
Structure-based embedding can capture the network
structural information, which incorporates node impor-
tance, while context embedding can capture the textual
meanings of anchor nodes accompanied by their context
node sequences’ text information. We concatenate two types
of embeddings and obtain the overall node embedding for a
node as follows:

v � v
s ⊕ v

c
, (1)

where ⊕ indicates the concatenation operation. In the fol-
lowing sections, we will give a detailed introduction to the
two types of embeddings, respectively.

4.2. Structure-Based Embedding. Without loss of univer-
sality, we assume the heterogeneous text network is directed.
For the undirected network, we consider two directed edges
with opposite directions and equal weights. And then,
CAHNE fuses node importance as the weight for each node
in the network.

4.2.1. Node Importance. As noted in Definition 2, in a re-
alistic network, the more the times a node appears in se-
quence SG, the less the importance to its neighbors. ,e
quantitative representation of the importance of a node is
the product of two statistics, node frequency (NF) and in-
verse CNS frequency (ICF).,e node frequency refers to the
frequency of a given node that appears in a context node
sequence, which is a binary variable. In order to get the node
frequency of vi, first we denote fij as whether vi constitutes
Sj, where vj ∈ V:

fij �
0, vi ∉ Sj,

1, vi ∈ Sj.

⎧⎨

⎩ (2)

We denote fSj
as the total number of nodes in the

sequence Sj. And then, we define NF(i, j) as the node
frequency of vi in Sj, which can be formulated as
NF(i, j) � fij/fSj

.
ICF can be considered a measure of the universal im-

portance of a node because it captures the distribution of
importance in real-world networks. For a given node vi, we
can denote ICF(i) as the inverse CNS frequency as follows:

ICF(i) � log
|V|

j : vi ∈ Sk 
, (3)

where k ∈ 1, 2, . . . , |V|{ }. After incorporating the mentioned
node frequency and inverse CNS frequency, the node im-
portance (NI) of a given node vi can be measured as

NI(i) � log


|V|
j (NF(i, j) · ICF(i))

|V|
. (4)

Note that NI is a context-based measure for each node in
the network, and it extends TF-IDF thinking to network
node analysis. Compared with the degree-based PageRank
[17], NI incorporates richer contextual semantic structures
rather than pairwise nodes, which enables our model to
measure the importance of a node in the high-order
neighborhood [18].

For a node vi in an unweighted network, NI(i) can be
served as the weights of edges starting from vi. We can also
consider NI as the ranking of node popularity in the net-
work. ,e smaller the value, the higher the prevalence of a
node. After obtaining the quantitative representations of NI
in a given network, we can simply obtain the empirical
distribution of the network, which can be defined as follows:

p(i) �
NI(i)

vj∈VNI(j)
. (5)

4.2.2. Structure-Based Objective. Formally, we model the
conditional probability of vj generated by vi as

p vj | vi  �
exp vs

j · vs
i 

vz∈Vexp vs
z · vs

i( 
. (6)

,is equation can be interpreted as the probability of
detecting the edge from vi to vj, which denotes the
reconstructed distribution.

With the empirical distribution of the coincident probability
between nodes and the reconstructed distribution, to preserve
the node importance and network structures, a straightforward
way is to minimize the following objective function:

O � distance(p(·), p(·)), (7)

where distance(·, ·) is the distance between the two distri-
butions. We choose KL divergence of two probability dis-
tributions to measure the difference between distributions.
,us, replacing distance(·, ·) with KL divergence, we can
obtain the following objective:

Ls eij  � KL(p ‖ p) � 

vi,vj( ∈E

p vjvi log
p vj | vi 

p(i)
⎛⎝ ⎞⎠

∝ − 

vi,vj( ∈E

NI(i)logp vj | vi .

(8)

With this formulation, we can minimize the objective
equation (8) to obtain vectors vi i�1..|V| ∈ R

ds that represent
nodes in the ds-dimensional latent space based on the
network structure. We summarize the structure-based
embedding method in Algorithm 1.

4.3. Context Embedding. CAHNE is expected to integrate
typical heterogeneous information like text features in the
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network. A straightforward way is to learn representations
from text information of nodes and network structures
independently. However, it ignores the complex interactions
and associations between topological structures and het-
erogeneous information. To bridge this gap, we introduce
context embedding to fuse information of context nodes for
an anchor in the network so that we can overcome the
incompatibility problem.

As shown in Figure 2, we sample context nodes for the
anchor node vi and obtain a context node sequence Si when
setting k as 2. In a CNS, text features of different context nodes
have various impacts on the anchor node. ,us, we expect to
give a weight to each context node in a CNS, and the weights
can reflect the impact trend of context nodes. To this end, we
introduce exponentially weighted moving average [19].

4.3.1. Exponentially Weighted Moving Average (EWMA).
Moving average (MA) is a calculation to analyze sequential data
which reflect the changing trend in the sequence. Based onMA,
exponentially weighted moving average (EWMA) applies
weighting factors which decrease exponentially. ,e older data
are attached with lower weights, but weights never reach zero.
,e EWMA for a sequence Y can be formulated recursively:

EWMA(t) � cEWMA(t − 1) +(1 − c)y(t)

� (1 − c)y(t) + c
2EWMA(t − 2)

+ c(1 − c)y(t − 1)

⋮

� 
t

i�1
c

t− i
(1 − c)y(i),

(9)

where c is a parameter that represents the degree of weight
decrease and 0≤ c< 1. y(t) is the current data, and EWMA(t)

represents the EWMA value of the current data. In the tree xi,
the deep layer nodes need to be given small weights because
they are farther away from the anchor node. As a result, we can
attach weight for each context node in Si. However, the nodes
in the same layer need to be sorted first. For consistency, we
sort the same layer nodes according to their NI values. And
then, a normalized context node sequence can be generated for
the anchor node vi as Si � vi : (vi,1, vi2

, · · · , vi,e) , where

(vi,1, · · · , vi,e) are sampled context nodes of vi. Afterwards, we
apply EWMA on the context nodes from vi,1 as follows:

EWMA vi,t  � cEWMA vi,t+1  +(1 − c)vi,t. (10)

As the similarity we introduced EWMA, we treat
ct− 1(1 − c) as the weight of the context node vi,t, which is
denoted as Wi,t.

4.3.2. Text Information Representation. With the develop-
ment of deep learning, there are many neural network models
to learn text representations, e.g., convolutional neural network
(CNN) [8, 20, 21], recurrent neural network (RNN) [22], long
short-term memory (LSTM) [23], and gated recurrent units
(GRUs) [24]. In this paper, we investigate different Word2vec
models and find the CNN has the best performance on our
tasks, which can capture comprehensive semantics in the
heterogeneous text network.

In Figure 3, we show the framework of a generating
process of context embedding. Given a normalized con-
text node sequence Si rooted at vi, we take the word se-
quence of each node in Si as the input, and the CNN
obtains text embedding through three layers, i.e., encoder
and looking-up, convolution, and mean-pooling. And
then, we adopt weighted summations for the represen-
tation vectors of the anchor node and its context nodes to
obtain context embedding vc

i for vi.

(1) Encoder and Looking-Up. First, we map all words in the
heterogeneous text network to a sequence of word IDs.
Hence, we can obtain an ID sequence for t ∈ T. And then,
the looking-up layer transforms each word w ∈ t into a
vector w ∈ Rdw , where dw is the dimension of word em-
beddings. Finally, we can obtain an embedding sequence
Wi � (w1, . . . , wni

) for vi. As is shown in Figure 3, after the
encoder and looking-up layer, we can get a matrix sequence
P(i) � (Pi, . . . Pi,m, . . . , Pi,n), and Pi is equivalent to Pi,0.

(2) Convolution. After the encoder and looking-up layer, we
use the convolution layer to extract the features of the input
matrix sequence P(i). We perform convolution operation by
a kernel K ∈ Rdt×(1×dw) to slide row by row in
Pi,x (x ∈ 0, · · · , n{ }) as follows:

Input: network G, context node sampling parameter k, dimensionality ds, and learning rate η
Output: ds-dimensional embedding results H

(1) Initialize nodes’ relational trees xi 
|V|
i�1 by performing BFS on G starting from each node;

(2) Obtain a context node sequence S by sampling context nodes layer by layer for each anchor node according to k;
(3) for i� 1 to |V| do
(4) Calculate NI(i) by equation (4);
(5) end for
(6) while not convergence do
(7) Update the value of loss function equation (8) and node representations H by the Adam algorithm with learning rate η;
(8) end while
(9) Return H;

ALGORITHM 1: Structure-based embedding with node importance.
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yi,x � K · Pi,x + b, (11)

where yi,x � [yx
1 , . . . , yx

nx
] denotes the feature vector of Pi,x,

in which nx is the number of words in ti,x (the text of vi,x ),
and b is the bias vector.

(3) Mean-Pooling. We test different pooling regulations. To get
full-scale features of the text information for a node, we perform
mean-pooling to get the text embedding vt. ,en, we choose
tanh as the nonlinear activation function over yi,x, which is

aj � tanh mean y
x
1 , . . . , y

x
nx

  , (12)

where j ∈ 1, 2, . . . , dt , in which dt is the dimension of text
embedding. At last, we can get the embedding of the text
information for vi,x as vt

i,x � [a1, . . . , adt
].

So far, we have obtained text embedding by the CNN for
each node in a context node sequence. Following this, we do
weight summations on the context node embeddings
(vt

i,1, · · · , vt
i,n), and this operation is sum-pooling in Figure 3.

,e strategy of generating context embedding for vi is as follows:

v
c
i � tanh v

t
i + 

n

j�1
Wi,jv

t
i,j

⎛⎝ ⎞⎠. (13)

,rough the method stated, we establish correlations
between the anchor node and its context nodes in terms of
representation vectors and maintain text relevance. Even-
tually, we can get context embedding for a given node vi, and
the whole representation of vi is bespoken as vi � vs

i ⊕ vc
i .

,e text embedding part of the context embedding
framework shown in Figure 3 looks like the convolution
method of CANE.,e difference is that the input of our model
is the CNS of a node, while the input of CANE is a pair of
nodes. In addition, we sort the nodes in the CNS according to
NI andweight each node in CNSwith EWMAvalues, as shown
in equation (13).

4.3.3. Context Embedding Objective. Context embedding
objective aims to measure the log-likelihood of a given
directed edge (vi, vj) ∈ E as

O � log
exp vc

i · vc
j 

vz∈Vexp vc
i · vc

z( 
. (14)

,us, the loss function of generating context embedding
can be represented as Lc(eij) � − O. With above formula-
tions, CAHNE aims to minimize the overall loss function as

Context node 
sequence Si

Text
content

Text
content

Text
content

Context
embedding

Encoder
+ looking-up

Encoder
+ looking-up

Encoder
+ looking-up

Convolution

Mean-pooling
+ tanh

Mean-pooling
+ tanh

Mean-pooling
+ tanh

Text
embedding

Sum-pooling +
tanh

Pi,m

vi vi,m vi,n

Pi,n

vit

vic

vti,m vti,n

γm–1(1 – γ) γn–1(1 – γ)

Mi

Pi

Figure 3: An illustration of context embedding for the anchor node vi.
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L � 
eij∈E

Ls eij  + Lc eij  .
(15)

At last, the workflow of the context embedding method
is summarized in Algorithm 2.

4.4. Optimization of CAHNE

4.4.1. Attention for Context Node Sequence. Noticing the
context embedding-generating strategy in equation (13), the
vector representation of the anchor node vi is decomposed as
the affinity between vt

i and its context nodes’ representations


n
j�1Wi,jv

t
i,j. Intuitively, the affinity between context nodes

and the anchor nodes should depend on the specific anchor
node. For instance, vi and vj are anchor nodes in a real-world
network, but they have different properties; as a result, they
have varied intensity of affinity with their context nodes.
,erefore, it is a requisite to incorporate such characters of
the anchor nodes inmodeling the unique excitation effects α.

In line with the attention mechanism [25], a novel and
popular model for machine translation, we define the
weights between the anchor node and its context nodes with
the softmax unit as follows:

αi �
exp vt

i + 
n
j�1Wi,jv

t
i,j 

m′exp vt
i + 

n′
j�1Wm′,jv

t
m′,j 

. (16)

,erefore, equation (13) can be reformulated as

v
c
i � tanh v

t
i + αi 

n

j�1
Wi,jv

t
i,j

⎛⎝ ⎞⎠. (17)

4.4.2. Negative Sampling. For equation (8) and equation
(14), CAHNE aims to maximize the conditional probability
between vi and vj, which is computationally expensive be-
cause of the softmax function for all nodes. To address this
problem, we adopt the method of negative sampling [26] to
approximate the objective function as the following form:

log σ v
T
j · vi  + 

n

c�1
Ez∼P(v) log σ − v

T
j · z  , (18)

where σ(x) � 1/(1 + exp(− x)) represents the logistic
function and n is the number of randomly sampled vertices.
We set P(v)∝ d3/4

v , where dv is the out-degree of v. At last,
we adopt the Adam algorithm [27] for optimizing equation
(18) and set the learning rate as 0.001.

5. Experiment

In this section, we empirically evaluate the performance of
the proposed framework CAHNE.

5.1. Dataset Descriptions. In order to comprehensively
evaluate the effectiveness of our model CAHNE, we use
seven real-world datasets, including two social networks,
two citation networks, one language network, one

co-occurrence network, and one communication network,
for four applications, i.e., network reconstruction, link
prediction, node classification, and visualization. ,e de-
tailed descriptions are listed as follows:

(i) Zhihu [28] is a network of social relationships
which is an online Q&A platform in China. Users
follow each other, asking and answering questions
on Zhihu. ,e text information is concerned topics
of each user, which is expressed as full text.We filter
out 10000 users from Zhihu who have information
on concerned topics. ,e size of the vocabulary is
9035, and the average length of the text is 89. We
evaluate this dataset on the link prediction task.

(ii) HEP-TH [8] is a citation network from arXiv. After
filtering out the papers without abstract, 1038 pa-
pers are preserved. ,e text information is
expressed as full text. ,e size of the vocabulary is
2970, and the average length of the text is 54. We
evaluate these data on the link prediction task.

(iii) Cora (https://linqs.soe.ucsc.edu/data) is also a ci-
tation network containing 2708 machine learning
papers with text information classified into one of
seven classes. ,e citation network consists of 5429
links. ,e text information is expressed as full text.
,e size of the vocabulary is 16426, and the average
length of the text is 88. Cora is used for the link
prediction task and node classification task.

(iv) BlogCatalog (http://leitang.net/social_dimension.
html) is a large social network of online users lis-
ted on the BlogCatalog website. ,ere are 39 dif-
ferent categories of labels for this dataset, and each
label represents the metadata provided by a user.
Since this dataset does not contain text information,
it will be evaluated on the node classification task
and network reconstruction for CAHNE (without
context embedding).

(v) Wikipedia [29] is a co-occurrence network which
contains 2045 nodes, 17981 edges, and 19 different
labels. ,e tf-idf matrix of the Wikipedia dataset
describes the text information for this dataset.
,ere are 4973 columns that correspond to 4973
different words. ,is dataset will be evaluated on
the node classification task.

(vi) 20-NewsGroup (http://qwone.com/∼jason/20News
groups/) is a collection of approximately 20,000
newsgroup documents, partitioned (nearly) evenly
across 20 different newsgroups. We choose the news
documents labeled as comp.graphics, rec.sport.base-
ball, and talk.politics.gums to evaluate our model on
the visualization task. ,ere are 1720 pieces of news
contained and expressed as full text. ,e size of the
vocabulary is 30127, and the average length of the text
is 206. Besides, 20-NewsGroup is a weighted network.

(vii) Email-Enron (https://snap.stanford.edu/data/email-
Enron.html) is a communication network that
covers the email communication within a dataset.
Nodes are email addresses, and edges denote
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interactions between emails. Text descriptions of this
dataset are full email message text. ,e size of the
vocabulary is 29523, and the average length of the
text is 149. We filter 6820 nodes and 23968 edges
from the original dataset.

,e detailed statistics are summarized in Table 1.

5.2. Baselines. We consider the following six NE methods to
demonstrate the effectiveness and robustness of CAHNE:

(i) DeepWalk [4]: it adopts truncated random walk and
Skip-Gram model to learn node representations.

(ii) LINE [5]: it preserves the first-order and second-
order proximity among nodes in the network.

(iii) Node2vec [6]: it proposes a biased random walk
based on DeepWalk to learn node representations.

(iv) GraRep [30]: it integrates global structural in-
formation of the graph and uses SVD to train the
model.

(v) Naive Combination: we directly concatenate the
text feature embeddings learned by the CNN and
node representations learned from LINE for net-
work representation. We choose LINE to learn
structure embedding because it can exploit both
first-order and second-order proximity in the
network, which is more comprehensive than
DeepWalk and Node2vec.

(vi) TADW [29]: it integrates text features into
network embedding by employing matrix
factorization.

(vii) TENE [31]: it learns the representations of nodes
under the guidance of both the proximity matrix
which captures the network structure and the text
cluster membership matrix derived from cluster-
ing for text information.

(viii) ASNE [32]: it learns representations of nodes by
preserving both the structural proximity and at-
tribute (text) proximity.

5.3. Experimental Settings. To be fair, we set the embedding
dimension d � 100 for all methods on HEP-TH, Cora,
Email-Enron, and 20-NewsGroup. And for Zhihu, Blog-
Catalog, and Wikipedia, we set d � 200. For DeepWalk, we

set the window size as 10, the walk length as 80, and the
number of walks for each node as 10. For LINE, we set the
learning rate as 0.001 and the number of negative samples as
5. For Node2vec, we choose the hyperparameters p and q to
obtain the best performance by grid search. For GraRep, we
set the maximummatrix transition step s as 5. For TENE, we
set the parameter of the contribution of text information
α � 10 and the parameter β to guarantee the accuracy of the
text cluster membership matrix as 107.

For our model CAHNE, we set the number of negative
samples as 5 to speed up the training process. Besides, we set
c � 0.5 and k � 2 for all datasets. Hereinafter, we use
“CAHNE-a” to validate the effectiveness of our method with
the attention mechanism, and “CAHNE(w/o context)” de-
notes CAHNE without incorporating context embedding.

5.4. Network Reconstruction. Reconstructing the network
and preserving the original network structure are funda-
mental objectives for network embedding methods. Defi-
nitely, we train an NE method to obtain vector
representations of nodes and rank pairwise nodes according
to the inner product similarities of them. Since the larger
similarities mean higher probabilities of existing edges be-
tween pairwise nodes, the top ranking pairwise nodes are
used to reconstruct the network efficiently. ,e precision@k
[33] is used as the evaluation metric, which is formulated as

precision@k �


k
i�1ξi



k
, (19)

where k is the number of evaluated pairwise nodes and ξ is a
binary variable. ξi � 1 denotes the i-th reconstructed pair of
nodes is correct; otherwise, it is wrong.

We use a real-world social network BlogCatalog and a
communication network Email-Enron as representatives.

Input: network G, context node sequences S, dimensionality dt, learning rate η, EWMA parameter c, and NI values
Output: dt-dimensional embedding results C

(1) Normalize context node sequences S layer by layer with NI values;
(2) Apply EWMA on normalized context nodes with parameter c to obtain a weight for each context node;
(3) Encode text contents of nodes in the context node sequence and input them into the CNN;
(4) while not convergence
(5) Update the value of loss function Lc and node representations C by the Adam algorithm with learning rate η;
(6) end while
(7) Return C;

ALGORITHM 2: Generating strategy of context embedding.

Table 1: Statistics of the dataset.

Dataset #Nodes #Edges #Labels
Zhihu 10000 43894 —
HEP-TH 1038 1990 —
Email-Enron 6820 23968 —
Cora 2708 5429 7
BlogCatalog 10312 333983 39
Wikipedia 2405 17981 19
20-NewsGroup 1720 Fully connected 3
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,e result on the precision@k is shown in Figure 4, from
which we make the following observations:

(i) Figure 4 shows that the precision@k of our method
CAHNE almost outperforms that of other methods
with the increase of k, which verifies that CAHNE
can perfectly preserve the network structure.

(ii) Because there is no text information in BlogCatalog,
Figure 4(a) can clearly reveal that using node im-
portance to weight edges is effective.

(iii) Figure 4(b) shows our method has comparable
performance on Email-Enron. We can notice that
methods integrating text information are obviously
better than other methods, and CAHNE-a can have
a relatively high position.

From the above observations, we regard that our method
CAHNE and its expansion CAHNE-a achieve a significant
advance in efficiency on the task of network reconstruction.

5.5. Link Prediction. For link prediction, we use AUC [34] to
evaluate the performance, which means the probability that
nodes in a random edge are higher than those in a casual
nonexistent edge. In this task, as shown in Tables 2–4, we
randomly hide certain percentages of edges, respectively, from
85% to 5% onHEP-TH, Cora, and Zhihu and use the left graph
to train. We use the logistic regression method to predict the
probability of a given pair of nodes has an edge between them.

From these tables, some observations can be listed:

(i) ,e results show that the fewer the training edges,
the more the nodes are ignored and the lower the
performances of all methods. ,e results on Zhihu
are worse than those on other datasets probably
because real-world social networks are often ac-
companied by more complex information from
both structures and properties compared to citation
networks. However, our proposed model CAHNE-a
always achieves the best performances compared to
all other baselines on all different datasets. Espe-
cially, when the ratio of training edges reaches 95%
in Cora and HEP-TH, AUC values of CAHNE-a are
higher than 95.

(ii) CAHNE(w/o context) performs better than
other structure-only methods (DeepWalk, LINE,
Node2vec, and GraRep). It demonstrates that
merging node importance when learning network
representation is valid and leads to better predicting
power for new link formation.

(iii) TADW, TENE, ASNE, and CAHNE perform better
than all other structure-only methods. It verifies our
assumption that text information cannot be
neglected in heterogeneous text networks. However,
CAHNE cannot always perform better than TADW,
such as shown in 15% in Table 2 and 15% in Table 3.
We notice that this phenomenon occurs only when
the training ratio is under 35%, which we believe is
due to the fact that the CNS cannot contain most
context nodes of the anchor node when the training

ratio is too low. Also, if the CNS is too incomplete, it
will lose a lot of information from the context.
Table 5 shows the average length of CNSs when
extracting different ratios of edges as training sets in
three datasets. ,e completeness of CNSs will affect
the effectiveness of CAHNE.

,us, the results in tables can serve as evidence that
CAHNE-a has a stable and best performance on all
datasets and different training ratios. It demonstrates the
flexibility and robustness of CAHNE, and the attention
mechanism is significant when learning representations
for real-world networks.

5.6. Node Classification. For this task, we choose Blog-
Catalog, Cora, and Wikipedia as training datasets in
which each node is assigned a label. Given the node
embeddings obtained by different NE methods as node
features, we train a logistic regression classifier to predict
the node labels. We use Macro-F1 and Micro-F1 as
measurements to evaluate the performance. We vary the
size of the training set from 50% to 90%, and the
remaining nodes are the testing set. We repeat each
classification experiment ten times and report the average
performance in terms of both Macro-F1 and Micro-F1
scores. ,e results on BlogCatalog, Cora, and Wikipedia
are shown and compared in Figure 5. Since BlogCatalog is
without text information, we only consider CAHNE(w/o
context) on this dataset.

From the results, we obtain the following observations:

(i) ,e performances in BlogCatalog are worse than
those in other datasets because of the complexity of
social networks, and BlogCatalog has the most
nodes which could reduce the capability of
the classification task, but our proposed model
CAHNE(w/o context) still obtains the most satis-
factory results.

(ii) For structure-only methods, CAHNE(w/o context)
has the best effectiveness on all datasets. It dem-
onstrates that the network representations merging
with node importance can be better generalized to
the classification task.

(iii) CAHNE(w/o context) performs better than
CAHNE and CAHNE-a on Wikipedia as measured
by Macro-F1, which indicates this dataset is not
sensitive to text information. We believe this is
because the text descriptions between different
entries vary widely.

5.7. Visualization. Another intuitive way to investigate the
qualities of network embedding methods is visualization,
and in this experiment, we reduce the dimensionality of
each representation vector to 2. ,ere are many ways to
visualize high-dimensional vectors, e.g., PCA [35], Iso-
map [9], and t-SNE [36]. In this paper, we adopt t-SNE to
achieve dimension reduction because t-SNE can preserve
local and global structures of the data. ,erefore, we use
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baselines and our method CAHNE-a to learn represen-
tations of the 20-NewsGroup network and input them
into t-SNE. From 20-NewsGroup, since all categories of
graphs are full connection, to simplify the computational

process and improve visualization performance, we filter
three categories of news and their documents, comp.-
graphics, rec.sport.baseball, and talk.politics.gums, as our
training set.

Table 2: AUC scores on HEP-TH.

% training edges 15% 25% 35% 45% 55% 65% 75% 85% 95%
DeepWalk 0.658 0.757 0.819 0.864 0.891 0.898 0.897 0.919 0.912
LINE 0.500 0.594 0.717 0.755 0.788 0.806 0.846 0.839 0.923
Node2vec 0.663 0.776 0.845 0.866 0.884 0.899 0.906 0.929 0.915
GraRep 0.628 0.735 0.776 0.841 0.853 0.872 0.885 0.896 0.914
Naive Combination 0.766 0.782 0.788 0.802 0.827 0.856 0.883 0.912 0.928
TADW 0.806 0.818 0.857 0.893 0.902 0.918 0.924 0.936 0.948
TENE 0.778 0.807 0.839 0.862 0.899 0.923 0.928 0.938 0.939
ASNE 0.783 0.802 0.833 0.869 0.893 0.905 0.918 0.926 0.938
CAHNE(w/o context) 0.730 0.796 0.854 0.894 0.893 0.913 0.916 0.921 0.923
CAHNE 0.786 0.818 0.860 0.896 0.902 0.928 0.935 0.937 0.954
CAHNE-a 0.858 0.854 0.869 0.898 0.910 0.929 0.941 0.945 0.977
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Figure 4: precision@k on (a) BlogCatalog and (b) Email-Enron.

Table 3: AUC scores on Cora.

% training edges 15% 25% 35% 45% 55% 65% 75% 85% 95%
DeepWalk 0.614 0.708 0.777 0.807 0.853 0.858 0.871 0.877 0.898
LINE 0.608 0.743 0.807 0.827 0.853 0.865 0.870 0.885 0.894
Node2vec 0.654 0.722 0.768 0.812 0.838 0.861 0.871 0.878 0.908
GraRep 0.589 0.732 0.786 0.826 0.852 0.874 0.897 0.898 0.914
Naive Combination 0.668 0.772 0.801 0.826 0.852 0.866 0.904 0.921 0.942
TADW 0.803 0.824 0.834 0.862 0.887 0.888 0.903 0.918 0.945
TENE 0.779 0.818 0.822 0.859 0.879 0.881 0.892 0.913 0.916
ASNE 0.718 0.742 0.809 0.832 0.849 0.870 0.902 0.921 0.933
CAHNE(w/o context) 0.654 0.747 0.803 0.843 0.877 0.885 0.901 0.909 0.915
CAHNE 0.793 0.805 0.828 0.863 0.892 0.898 0.908 0.925 0.954
CAHNE-a 0.805 0.830 0.837 0.872 0.892 0.907 0.915 0.926 0.963
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Table 4: AUC scores on Zhihu.

% training edges 15% 25% 35% 45% 55% 65% 75% 85% 95%
DeepWalk 0.469 0.472 0.497 0.507 0.533 0.537 0.556 0.574 0.587
LINE 0.521 0.569 0.618 0.624 0.655 0.636 0.646 0.676 0.698
Node2vec 0.488 0.482 0.507 0.505 0.552 0.546 0.558 0.582 0.590
GraRep 0.583 0.619 0.642 0.659 0.654 0.662 0.663 0.668 0.663
Naive Combination 0.524 0.553 0.579 0.618 0.653 0.672 0.689 0.705 0.703
TADW 0.558 0.576 0.593 0.625 0.655 0.697 0.696 0.723 0.729
TENE 0.551 0.549 0.607 0.622 0.660 0.666 0.668 0.692 0.711
ASNE 0.586 0.563 0.608 0.633 0.661 0.682 0.699 0.700 0.728
CAHNE(w/o context) 0.595 0.600 0.603 0.604 0.612 0.618 0.639 0.657 0.679
CAHNE 0.623 0.693 0.706 0.709 0.707 0.711 0.713 0.722 0.731
CAHNE-a 0.631 0.707 0.721 0.724 0.723 0.727 0.736 0.748 0.759

Table 5: Average length of context node sequences when extracting different ratios of edges.

% training edges 15% 35% 55% 75% 95%
HEP-TH 0.8 2.2 5.7 6.9 7.2
Cora 2.6 4.3 7.9 15.2 17.7
Zhihu 2.3 4.1 6.6 9.7 10.3
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Figure 5: Macro-F1 and Micro-F1 on (a) BlogCatalog, (b) Cora, and (c) Wikipedia.
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,e resulting visualizations with baselines and
CAHNE-a are illustrated in Figure 6, from which we have
the following observations:

(i) For DeepWalk and GraRep, all points of different
categories are chaotic and mixed with each other.
Since the network is weighted, DeepWalk cannot
handle weighted networks when random walking,
which leads to chaos. GraRep integrates weights of
edges into representation learning by using E-SGNS,
which is powerless to capture the nonlinear re-
lationship between nodes.

(ii) For LINE, ASNE, TENE, and Naive Combination,
we can intuitively find the clusters, but the boundary
of each category is not clear.

(iii) For Node2vec, we can distinguish three categories
more explicitly than for LINE because of a larger
space between each cluster. However, the downsides
of these clusters are not divisible.

(iv) For TADW, the shapes of clusters are not regular,
and the blue points are not getting together.

Obviously, the visualization of our model CAHNE-a has
a clear boundary, and the shapes of clusters are more regular
than those reported in other baselines.

6. Conclusions

In this paper, we propose a novel method to learn node
representations for heterogeneous networks, namely,

(a) (b) (c)

(d) (e) (f )

(g) (h) (i)

Figure 6: Visualization of the 20-NewsGroup network. Green represents the category of talk.politics.gums, orange represents the category
of comp.graphics, and blue represents the category of rec.sport.baseball. (a) DeepWalk. (b) LINE. (c) Node2vec. (d) GraRep. (e) Naive
Combination. (f ) TADW. (g) TENE. (h) ASNE. (i) CAHNE-a.
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CAHNE. By formulating the context node sequence for each
node in a real-world network and redefining the conven-
tional network to integrate text information, CAHNE
achieves the learning of node embedding and captures the
comprehensive semantic information, maintaining the
compatibility between network structures and text in-
formation simultaneously. For the unweighted network, we
analyze the strength of the relationship between nodes and
propose the definition of node importance to quantify it as
the weight between nodes. We integrate node importance
into the learning process of structure-based embedding to
explore the potential structural information in the network.
Furthermore, by plugging an attention mechanism in the
influence rate of the context nodes, CAHNE obtains the
capacity to decide the influence degree from context nodes
for different anchor nodes. Extensive experiments prove the
competitiveness of CAHNE against baselines and demon-
strate the flexibility, stability, and robustness of CAHNE.
Future work includes incorporating more types of hetero-
geneous information like attributes of nodes and edges and
optimizing the training process on larger networks.
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