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a b s t r a c t

3D image reconstruction with electron tomography holds problems due to the severely limited range of
projection angles and low signal to noise ratio of the acquired projection images. The maximum a
posteriori (MAP) reconstruction methods have been successful in compensating for the missing in-
formation and suppressing noise with their intrinsic regularization techniques. There are two major
problems in MAP reconstruction methods: (1) selection of the regularization parameter that controls the
balance between the data fidelity and the prior information, and (2) long computation time. One aim of
this study is to provide an adaptive solution to the regularization parameter selection problem without
having additional knowledge about the imaging environment and the sample. The other aim is to realize
the reconstruction using sequences of resolution levels to shorten the computation time. The re-
constructions were analyzed in terms of accuracy and computational efficiency using a simulated bio-
logical phantom and publically available experimental datasets of electron tomography. The numerical
and visual evaluations of the experiments show that the adaptive multiresolution method can provide
more accurate results than the weighted back projection (WBP), simultaneous iterative reconstruction
technique (SIRT), and sequential MAP expectation maximization (sMAPEM) method. The method is
superior to sMAPEM also in terms of computation time and usability since it can reconstruct 3D images
significantly faster without requiring any parameter to be set by the user.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

Electron tomography (ET) is a widely used powerful technique
in the field of biology revealing the interior structure of the bio-
logical samples in 3D at nanometer scale. This is achieved by
collecting 2D projections of the specimen from different viewing
angles. In its common application, the sample is rotated around a
single axis with fixed intervals while its projections are acquired
by transmission electron microscope. Then, these projections are
used to reconstruct the biological sample in 3D. The accuracy and
the resolution of the reconstruction are limited by two major
factors: (1) due to the mechanical and physical limitations, the
projections typically collected only from 760° to 70° tilt angle
range are used in the reconstruction (missing wedge problem).
(2) The signal to noise ratio (SNR) of the projection data is low
since the total amount of applied electrons is limited in order to
prevent radiation damage to the biological sample imaged.
ocessing, Tampere University
d.
The maximum a posteriori (MAP) reconstruction methods are
well suited for reconstruction from such incomplete and noisy
projection data. They are able to use a priori information to
compensate for the imperfection and incompleteness of the
measurements. Any structural or statistical information about the
sample or the imaging conditions can be utilized to improve the
reconstruction process. These methods try to satisfy the fidelity of
the reconstruction to the measurements and utilize the prior in-
formation at the same time. The balance between the data fidelity
and the prior information is controlled by the regularization
parameter. The value of this parameter highly affects the visual
quality of the reconstructed image. Its optimum value depends on
several factors, such as the noise level, sample variation, resolu-
tion, and validity of the prior information.

The computation of the regularization parameter in MAP esti-
mation is usually based on the SNR analysis of the data, structural
information about the objects reconstructed, or predefined set of
parameters aiming to provide a solution as general as possible.
One of these methods, the L-curve method, analyzes the images
reconstructed for different values of regularization parameter [1].
For each reconstruction, the relationship between the squared
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norm of the solution and the squared norm of the residual error is
analyzed to find the optimum regularization parameter. A similar
approach, S-curve method, was implemented for wavelet-based
reconstruction [2] and total variation regularization [3] making the
assumption that the reconstructed data is sparse in wavelet do-
main and gradient domain, respectively. Both L-curve and S-curve
methods require multiple reconstructions of the data with differ-
ent regularization parameters, which heavily increases the com-
putational cost of the overall image reconstruction. In another
method, Wen and Chan used discrepancy principle for total var-
iation regularization in the image restoration context [4]. Their
method requires prior information about the SNR of the data,
which is not always straightforward to obtain in tomographic
imaging. In this study, one of our aims was to develop an adaptive
regularization method, which does not require additional analysis,
structural a priori information about the data nor the imaging
system, or the user manipulation according to the application
purpose.

The other aim of this paper was to reduce the computation
time, which is realized by employing multiresolution reconstruc-
tion in a sequential scheme. Multiresolution reconstruction grids
[5] and multiresolution detector space [6] was used previously to
improve the convergence rate of maximum likelihood expectation
maximization (ML-EM) method in positron emission tomography
(PET). It was also utilized in scanning transmission electron mi-
croscopy (STEM) [7] and discrete tomography that reconstructs
images composed of small number of intensity levels representing
only a few different materials [8]. In this paper, we use the mul-
tiresolution method in electron microscopy for the reconstruction
of biological specimens with maximum a posteriori probability
expectation maximization (MAPEM) method. Multiresolution ap-
proach introduced in MAPEM reconstruction enables the weight of
the regularization to vary from strong to weak throughout the
reconstruction. One reason is that the image size is increased
during the reconstruction while the regularization filter size is
fixed. The other reason is the number of binned projection data
and so its averaging effect decreases throughout different resolu-
tion stages. By decreasing noise with these two mechanisms, the
reconstruction converges smoothly to a coarse estimate of the
reconstructed image at the first resolution stages. Then the num-
ber of binned pixels is decreased step by step to improve the re-
solution of the estimates. Since each step is initialized with a
spatially coarse estimate of the image, they give better results in
fewer iterations compared to initialization with an image of ran-
dom or constant value. The computations take shorter time also
because the calculations are faster in the smaller reconstruction
grids used in the lower resolution stages. We developed the
adaptive regularization method first as a parameter-free re-
construction process and then introduced the multiresolution
approach to obtain the final adaptive multiresolution reconstruc-
tion method.
2. Method

An accurate model for the formation of TEM images would be
based on quantum and relativistic aspects of the illumination of
the specimen, electron–specimen interaction, microscopy optics,
and the detection of the electrons. However, this would be a
computationally unfeasible model. Therefore, we apply some
simplifications and statistical modeling to obtain a feasible image
formation model.

A transmission electron microscope can be operated in differ-
ent imaging modes depending on the illumination of the speci-
men, the contrast mechanism based on the interaction of the
electrons with the specimen, and the detector type. In the dark
field imaging mode, the detection of scattered electrons plays the
major role in image formation, whereas it is the detection of
transmitted electrons in bright-field imaging mode. We consider
the bright field mode, used conventionally for ET in life sciences, in
this study. In this imaging mode, a parallel beam of electrons il-
luminates the specimen, and the image is formed in the back focal
plane of the objective lens by the electrons that pass through the
aperture. For the image contrast mechanism, we only consider the
amplitude contrast generated due to the electrons that are blocked
from reaching the detector and we ignore the phase shift created
by the electron-specimen interaction. This model is sufficient for
medium-resolution contrast (beyond 2–3 nm) imaging however
phase contrast should also be considered at higher resolutions
where the features to be detected are smaller than the coherence
length of the electron [9]. We also assume that successive elec-
trons do not interact with each other so that they can be treated
independently. This assumption holds for TEM imaging of biolo-
gical specimens since the specimen is thinner than the mean
distance between two successive electrons [10]. Under these as-
sumptions the formation of the image can be expressed as:

{ }( ) ( )θ θ= − * ( )p C PSF p v, , 1
raw

where θ( )praw is the data acquired for the tilt angle θ , C is the
data that would be acquired if there was no specimen, PSF re-
presents the point spread function of the imaging system, * is the
convolution operation, and ( )θp v, is the ray transform of v in the θ
direction. The result of this transform can be expressed as a vector
of elements pd where
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p v a .
2

d
b

b db

Here, vb is proportional to the probability that an incident
electron traveling along θ is scattered inside the bth voxel of the
discretized specimen volume. The contribution of the bth voxel to
the dth projection data, pd, is represented by adb. C and PSF in (1)
can be determined by separate calibration experiments and they
can be excluded from the equation by subtraction and deconvo-
lution. After this basic preprocessing of the raw data, the problem
reduces to estimate the parameters of distribution describing vb's
in (2). In parallel beam projection geometry, the reconstruction
space can be divided into slices orthogonal to the tilt axis and the
slices can be reconstructed independently. Then the slices can be
concatenated to reconstruct the final 3D volume. Therefore, the
method will be described here for single slice of the volume to be
reconstructed. The image formation geometry is presented in
Fig. 1. The parameter estimation can be realized for each slice in-
dependently by MAPEM method which maximizes a posteriori
probability distribution using the Baye's rule as:

( | ) = ( | ) ( ) ( ) ( )P Img Data P Data Img P Img P Data/ 3

|( )P Data Img is the likelihood of the measured data to be ob-
served given the image to be reconstructed. ( )P Img and ( )P Data are
the a priori probability distributions. ( )P Data can be assumed to be
constant and excluded from the expression. In ET, very low dose of
electrons is applied to a very thin sample in order to prevent ra-
diation damage to the biological sample. Considering the char-
acteristics of the signal and the noise, Poisson distribution can be
assumed to represent the measurements. This assumption can be
extended to model the number of electrons blocked by each pixel
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Fig. 1. The projection geometry. The volume is divided into x–z slices which are reconstructed independently. vb is proportional to the probability that an incident electron is
scattered inside the bth pixel of the x–z slice image. It is modeled by a Poisson distribution with mean λb. pd is the dth projection data.
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of the image. The statistical chain from generation of the electrons,
via the scattering events inside the specimen, to the measurement
detector, is assumed to be a cascaded Poisson process. This as-
sumption is useful to satisfy the positivity constraint throughout
the iterations. It was also utilized in the development of the
adaptive regularization method described below (in Section 2.2).
Using Poisson distribution and (2), the likelihood of observing the
projection data, p, conditioned on the mean values λ ( |( )P Data Img )
can be expressed as:

( ) ∏λ λ
λ

| = ( −
( )

( )!
)

( )
pL exp a

a
v a 4db

b db
b db

v a

b db

b db

where λb is the parameter of the Poisson distribution describ-
ing vb. By taking the logarithm and derivative of this expression
with respect to λb and equating it to zero, the maximum likelihood
can be obtained as:
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∑
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b
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Since v ab db is unavailable, it will be replaced by its conditional
expected value at each iteration of the expectation maximization
algorithm. The expected value can be calculated as:

λ
λ

λ
| =

∑ ( )′ ′ ′

⎡⎣ ⎤⎦E v a p a p
a

a
, .

6
b db d b

k
db d

b
k

db

b b
k

db

where ′b is the pixel index of the image to be reconstructed.
Using the expected value of v ab db in (4), the maximum likelihood
estimate of λ can be expressed iteratively as follows.
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In addition to the likelihood term, Cb
L k , MAPEM reconstruction
involves a regularization term, Cb
P k , that represents ( )P Img . The

overall update equation of the MAPEM is
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For ( )P Img , local similarity in the small neighborhood of each
pixel of the reconstructed image is a common choice. With Median
Root Prior (MRP) [11], the regularization term is expressed as:
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where ()med operator represents the median filtering and β is
the regularization parameter which controls the strength of this
penalization filter.

2.1. Sequential MAPEM reconstruction method

Sequential maximum a posteriori expectation maximization
(sMAPEM), was introduced to ET recently to compensate for the
missing wedge effects [12,13]. The method assumes Poisson dis-
tribution to model the image to be reconstructed and median filter
(median root prior, [11]) to regularize the iterations. Instead of
using one constant regularization parameter value, the method
used a sequence of these in the decreasing order. At each reg-
ularization stage, predefined number of iterations was performed
with constant regularization parameter value. The initial stages
with high values of regularization parameters provided a rough
but robust estimate of the image for the following stages by highly
suppressing the noise. The regularization parameter value was
decreased to enhance the resolution and contrast of the final re-
constructed image. This sequential method was consistently su-
perior to the conventional reconstruction methods, weighted
back-projection (WBP) and a simultaneous iterative reconstruction
technique (SIRT), in terms of accuracy and noise suppression due
to its capability of filling the missing wedge [12]. However, sMA-
PEM has some parameters, which affect the final resolution, the
final contrast, and the visual impression of the reconstruction re-
sult. The number of regularization stages, the number of iterations
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Fig. 2. The flow diagram of the amMAPEM reconstruction method. λ k is the image at kth iteration. The method is initialized with a uniform image of positive values. The
number of binned pixels is quartered and the number of binned radial projection samples is halved at the end of each resolution stage. The resulting image of each stage
initialized the next one after rescaling the image size and the intensity range. The final image is reconstructed at the last stage using the original projection data.
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per each stage, and the regularization parameters need to be set
properly by the user according to the data and the application.
Moreover, the method requires a long computation time.

2.2. Adaptive regularization

MAPEM methods maximize the likelihood of observing the
measured projections subject to the prior knowledge. During this
maximization, noise in the projection data makes the pixels with
high variance of intensity values vary around their expected values
more than the ones with low variance. It would be wise to adjust
the regularization parameter pixel-wise considering the amount of
local variance. This way, the prior information can be used more
strongly for the pixels with high variance of intensity values than
the ones with low variance of intensity values.

The intensity values of the pixels at each iteration correspond
to the mean values of the Poisson distributions. For Poisson dis-
tribution, the variance of the distribution is equal to its mean va-
lue. Therefore, the intensity values at each iteration, λb

k , can be
used as a measure of variance and so for the regularization
strength. For the positivity constraint of the pixels, the regular-
ization parameter, β, needs to be in the range [0,1]. Therefore, the
intensity values were normalized considering this range at each
iteration and used as the pixel-wise regularization parameter in
this study. Hence, the adaptive regularization term can be ex-
pressed as:
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The likelihood term, Cb
L k , and the overall update equation are

the same as in (6) and (7), respectively. Note that, we assign a
different regularization parameter to each pixel at each iteration
instead of using a constant regularization parameter for the whole
image.

2.3. Adaptive multiresolution MAPEM reconstruction method

The strength of the penalization depends on the regularization
parameter value and the filter size relative to the reconstructed
image size. sMAPEM method used a sequence of regularization
parameter values in the decreasing order to weaken the penali-
zation filter sequentially [12]. In this way, noise was highly sup-
pressed in the reconstruction in the first regularization stages to
have coarse but robust estimate of the structure. In the following
stages, the regularization parameter value was decreased to en-
hance the resolution and contrast of the estimate. In addition to
changing the regularization parameter value adaptively to control
the noise penalization, adaptive multiresolution MAPEM (amMA-
PEM) reconstruction method changes the reconstruction image
size while keeping the filter size constant. In our experiments, we
fixed the window size of the filter to its smallest value (3�3) in
order to minimize the loss of resolution due to filtering (The
reader may refer to [11] for the effect of different filter sizes on
MRP regularization). The same size of filter affects the small size
image more strongly than the large one. With amMAPEM method,
the strength of the penalization filter is weakened by increasing
the image size stage by stage sequentially. The advantage of this
approach is its computational efficiency.

The flow diagram of the amMAPEM method is given in Fig. 2
for single x–z slice of the reconstructed volume. The method is
initialized with a uniform image of size 4�4 so that



Fig. 3. Zero tilt projection images of the datasets used in the experiments. (a),
(b) and (c) show the phantom dataset images at SNR 50, 10 and 1, respectively.
(d) and (e) are images from the experimental datasets CCDB-P2005 and EMPIAR-
10048, respectively.
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3�3 median filter can fit in properly. At each resolution stage,
adaptive regularization is applied using the binned projection data
and rescaled reconstruction grid. The result of each regularization
stage is scaled up by a factor of 2 using bilinear interpolation. The
scaled image initializes the following regularization stage. The
binning factor of the projection data is also decreased throughout
the stages. With this method, the averaging effect of binning op-
eration decreases the noise contamination together with the
median filter employed inside the iterations of adaptive regular-
ization. Decreasing the number of binned pixels step by step im-
proves the resolution of the reconstruction. The final image is
obtained at the last stage using the result of previous stages and
the original projection data P.

The method is implemented in MATLAB (MathWorks Inc., MA,
USA) and the code is available together with the data related to
this study at http://www.cs.tut.fi/sgn/m2obsi/m2obsiWWW/de
mos/amMAPEM/amMAPEM.html.

2.4. Stopping rule

The iterations for each resolution stage of amMAPEM were
stopped when the difference between two consecutive images
throughout the iterations was insignificant. The difference was
measured by normalized mean squared error (NMSE) and the level
of significance was determined to be −10 7 experimentally. The
NMSE values are calculated as:

λ λ

λ
=

∑ ( − )
∑ ( ) ( )

−

−
NMSE

12
k b b

k
b

k

b b
k

1 2

1 2

3. Materials

3.1. Datasets

3.1.1. Numerical phantom dataset
A 256�256�64 nm3 simulated numerical phantom was gen-

erated in MATLAB for the evaluation of the methods. It is com-
posed of about 25 spherical objects located additively in the vo-
lume. 25 hollow spheres were also added to the phantom to si-
mulate vesicles. The intensity levels and diameters of the objects
were determined randomly following a uniform distribution in the
range [0 1] and [19,42] nm, respectively. The projection images
were calculated with 1° angular step in the range 760°. The
images were generated at a pixel size of 1 nm�1 nm. Two types of
noise were added to the projection data (1) Poisson noise to si-
mulate the randomness in the counting process of transmitted
electrons and (2) Gaussian noise to simulate the variations at the
detector level. Three noise levels were simulated to have SNRs
(ratio of the signal and the noise variances) of 50, 10, and 1. The
zero tilt images of the dataset are presented in Fig. 3.

3.1.2. CCDB-P2005 dataset
The experimental dataset consists of a freeze-substituted Ver-

oE6 cultured cell infected with the SARS-CoV (The Cell Centered
Database, project P2005, microscopy product 6021, [14,15]). It in-
cludes 131 TEM images acquired with a 1° angular step at the
range [�65°, þ65°] using single tilt projection geometry. The
images were collected at 80 kV with a Philips CM-10 transmission
electron microscope (Philips, The Netherlands). Spherical gold
particles with diameter 10 nm were applied to the surface of the
specimen to serve as fiducial markers to align the tilt series. The
original images with size 2048�2048 were cropped to
1024�1024 pixels for computational simplicity. The pixel size was
1.2 nm. The zero tilt image of the dataset is presented in Fig. 3d.

3.1.3. EMPIAR-10048 dataset
The experimental dataset is comprised of a single axis tilt series

of chlamydia trachomatis type III secretion systems in contact with
a HeLa cell [16,17]. It contains 36 cryoEM images collected in 3°
increments at the range [�60°, þ45°]. The dataset also includes
spherical gold particles with diameter 10 nm. The alignment and
CTF correction of the projection images were realized in IMOD
[18]. The raw projection image size was 3708�3838 pixels. 2�2
binning and cropping were applied to the images after the align-
ment and CTF correction process. The resulting image size was
1369�1448 and the pixel size was 1.08 nm. The zero tilt image of
the dataset is presented in Fig. 3e.

3.2. Evaluation criteria

3.2.1. Mean squared error
In order to have a general assessment of the overall image

quality, the mean squared error (MSE) between the reconstruction
result and the ground truth was calculated as:

( )( ) ( )∑= −
( )

MSE
N

I i I i
1

,
13i

gt
2

N is the number of voxels, Igt is the ground truth and I is the
reconstructed volume.

3.2.2. Fourier shell correlation
Fourier shell correlation (FSC) is the normalized cross-correla-

tion coefficient between two 3D volumes calculated over shells in
Fourier space [19]. It can be calculated using the ground truth and
the reconstructed volume as:

( ) =
∑ ( ) ( )*

∑ ( ) ∑ ( ) ( )

∈

∈ ∈

FSC r
F r F r

F r F r

.

. 14

r r gt i i

r r gt i r r i
2 2

i

i i

where Fgt and F are the Fourier transforms of the ground truth
and the reconstructed volume, respectively. ri is the ith voxel at
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radius r . FSC expresses the correlation between two volumes with
respect to spatial frequency. The cutoff frequency providing cor-
relation higher than a certain threshold value is used as a measure
of resolution in the field of electron microscopy.
4. Results

In order to evaluate the contribution of adaptive multi-
resolution method to the reconstruction process, the evaluation
results were compared with sMAPEM, and the conventional
methods, WBP and SIRT [20]. sMAPEM reconstructions were per-
formed using the recommended parameters. In WBP reconstruc-
tions, a ramp filter and a Hamming filter with cutoff frequency
0.5 cycles/pixel were used. 50 iterations were used for the SIRT
reconstructions. Positivity constraint was applied for WBP and
SIRT reconstructions. All the methods were implemented in
MATLAB.

4.1. Numerical phantom reconstructions

The MSE values calculated between the reconstruction results
and the ground truth are presented in Table 1 for different noise
levels. The MSE value of amMAPEM was lower than the WBP, SIRT
and sMAPEM values on average. The values for different noise
levels show that amMAPEM is more robust against noise than
sMAPEM. The increasing noise results in bigger increase in MSE for
sMAPEM than for amMAPEM.

We also calculated Fourier shell correlation (FSC) between the
reconstructed images and the ground truth to evaluate the images
for their capability of resolving the details. The FSC curves are
shown in Fig. 4. The correlation values get close to 1 as the re-
construction result gets close to the ground truth. It is seen in the
figure that the correlation values with respect to spatial fre-
quencies are clearly higher for sMAPEM and amMAPEM than for
FS
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Fig. 4. FSC analysis of the reconstruction results for different noise levels. The correlat
correlation values decrease with the increasing noise. The decrease is bigger for sMAPEM
than sMAPEM.

Table 1
MSE analysis of the resulting numerical phantom images for different reconstruc-
tion methods and noise levels. The MSE values are scaled by 10�3.

Reconstruction method MSE (SNR
50)

MSE (SNR
10)

MSE (SNR
1)

Average MSE

WBP 2.70 3.00 6.16 3.95
SIRT 4.60 4.56 5.79 4.98
sMAPEM 0.82 1.69 6.17 2.89
amMAPEM 0.87 1.21 2.92 1.67
WBP, SIRT. The correlation with the ground truth decreases with
the increasing noise. The decrease is bigger for sMAPEM compared
to amMAPEM. This shows amMAPEM can handle noise variations
better than sMAPEM.

The visual assessment of the reconstruction results is in line
with the numerical evaluations. The resulting images of the re-
constructions for the highest (SNR 1) and lowest (SNR 50) noise
levels are given in Fig. 5. The missing wedge artifacts are clearly
visible in WBP and SIRT reconstruction results. The spherical ob-
jects are elongated in z direction and the elongated objects create
artificial objects in the x–y slices. It is also seen that hollow spheres
are deformed and look open in the in the WBP and SIRT re-
construction results because of the missing wedge. However, these
missing wedge effects are compensated better in sMAPEM and
amMAPEM reconstructions.

Fig. 5 also shows that the noise suppression capability of the
amMAPEM method with the adaptively selected parameters is
better than that of the sMAPEM method. The effect of noise is
visible inside the smooth regions of the spherical objects. The
results also show that the amMAPEM method can preserve the
edges while suppressing the noise. It is clear in the images that the
smooth regions are smoother with amMAPEM than with sMAPEM
while the boundaries are still sharp. Fig. 6 shows the line profiles
of a circular object in z direction. WBP and SIRT profiles are wider
than the ground truth profile while the sMAPEM and amMAPEM
profiles show edges as sharp as the ground truth. Both sMAPEM
and amMAPEM can keep the object boundaries quite close to the
ground truth. The major difference between the profiles of these
two methods is seen in the plateau with the high intensity values.
amMAPEM profile is flatter than sMAPEM profile in this region for
all noise levels due to the adaptive regularization.

4.2. CCDB-P2005 dataset reconstructions

The slice images taken from the reconstruction results for dif-
ferent methods are analyzed in Fig. 7. The zoomed-up views of the
gold particle show the elongation effect in z direction due to the
missing wedge. The spherical shape of the gold particle is highly
distorted in WBP and SIRT reconstruction results. However, it is
still close to its original spherical shape in the sMAPEM and am-
MAPEM reconstructions. In Fig. 8, the gold particle images are
analyzed in more detail using line profiles taken through the
center of the particle shown in Fig. 7. The profiles taken in the x
and z directions show that the edges of the sMAPEM and am-
MAPEM profiles are sharper than the WBP and SIRT profiles. The
plateau with the high intensity values is supposed to be flat be-
cause of the homogeneity of the gold particle. This region is flatter
quency (1/nm) Spatial Frequency (1/nm)
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ion values are clearly higher for sMAPEM and amMAPEM than for WBP, SIRT. The
compared to amMAPEM. This shows amMAPEM can handle noise variations better
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for amMAPEM compared with sMAPEM.
The gold particles in the reconstructed volumes were also

analyzed quantitatively. For that purpose, randomly selected
5 gold particles were isolated and compared in terms of FSC with
the ground truth generated using the known size of the gold
particles. The x–z and x–y projection images for three of these gold
particles are presented in Fig. 9. The average of 5 FSC curves is
presented in the figure. The images and the FSC curve show that
sMAPEM and amMAPEM methods provide more accurate results
with less elongation artifacts compared to WBP and SIRT.
4.3. EMPIAR-10048 dataset reconstructions

The slice images taken from the reconstruction results are
presented in Fig. 10. The WBP images are noisier than the other
images. The boundary of the circular object is preserved better in
amMAPEM image compared to the other results. The quantitative
analysis of the reconstructed volumes was performed using the
gold particles as it was done for the CCDB-P2005 dataset. The x–z
and x–y projection images for three of the isolated gold particles
are presented in Fig. 11. The average of FSC curves calculated using
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5 randomly selected gold particles is presented in the figure. The
images and the FSC curve show that sMAPEM and amMAPEM
results are closer to the ground truth compared with the WBP and
SIRT results. It is also seen that sMAPEM images are noisier than
amMAPEM images.
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Fig. 7. The slice images taken from the x–y and x–z planes of the experimental datasets C
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amMAPEM reconstructions compared with WBP and SIRT reconstruction results.
4.4. Computational analysis

The datasets were divided into x–z slices and the slices were
reconstructed independently. WBP and SIRT slices were re-
constructed one by one using a desktop PC. For amMAPEM and
am
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sMAPEM, a grid of computers with various configurations was
utilized to reconstruct the slices in parallel. In order to compare
the computational efficiencies of the reconstruction methods, we
measured single slice computation times for each method. The
computations were performed using MATLAB on an Intel(R) Core
(TM) i5@3.20 GHz desktop computer with Windows 64 bit oper-
ating system. The computation times are presented in Table 2. The
computation time for amMAPEM increases with the increasing
noise. The computation times of the other methods are same for
all noise levels since they use fixed parameter settings. amMAPEM
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Table 2
The computation times for different reconstruction methods.

Method Computation time (s)

Phantom
data

Experimental data
CCDB-P2005

Experimental data EM-
PIAR-10048

WBP 0.15 4.8 2.68
SIRT 11 321 177
sMAPEM 1360 17,804 12,228
amMAPEM 245 (SNR 50) 3361 2972

289 (SNR
10)
612 (SNR 1)
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was significantly faster than the sMAPEM method. Although the
WBP and SIRT computation times were shorter than those of
sMAPEM and amMAPEM, the visual quality and accuracy of these
reconstructions were much worse than sMAPEM and amMAPEM.
5. Discussion

The present research demonstrates that the proposed amMA-
PEM method can reconstruct 3D ET images more accurately than
the conventional reconstruction methods, WBP and SIRT, sig-
nificantly suppressing the missing wedge artifacts. It also provides
images with better quality than with sMAPEM in shorter time
without requiring special effort for parameter setting. The pro-
posed adaptive regularization method extracts all necessary in-
formation simultaneously from the reconstructed image
throughout the iterations. Instead of using a single regularization
parameter for the whole image, it updates the regularization
parameter pixel-wise according to the local noise contamination.
This way, we calculate the regularization strength adaptively.

The major advantage of sMAP-EM and amMAPEM methods is
their gap filling ability. The methods provide a compensation for
the missing angular gap in the frequency domain by using the
prior information of local smoothness. The gap filling ability arises
from the MRP regularization. The median filter used throughout
the iterations acts as an interpolator in the frequency domain. The
information source for the interpolation is the relation of the pixel
values in the local neighborhood. The filter preserves the edges in
the spatial domain while using this information. The reader may
refer to the previous studies for the detailed analysis of gap filling
capability of sMAPEM in comparison with the conventional re-
construction methods [12,13]. One of the major drawbacks of
sMAPEM is that it requires a large number of iterations for gap
filling. We overcome this computation time problem with am-
MAPEM method by employing multiresolution reconstruction.

The amMAPEM method uses the intensity values, which re-
present the mean of the Poisson model used for each pixel, as a
measure of noise contamination since the variance of a Poisson
distribution equals its mean. With Poisson model, it was possible
to characterize the distribution by a single positive parameter. This
provided positivity constraint to be satisfied implicitly for the re-
construction in addition to simplicity of the solution.

The usability of the iterative reconstruction methods in elec-
tron tomography highly depend on their computation time. The
opportunities provided by the modern computing technology (e.g.
GPU [21], SIMD extensions of the modern processors [22]) can be
utilized to improve the performance of the methods. We used the
computer grid Techila (Techila Technologies Ltd., Tampere, Fin-
land) for the reconstruction of the experimental data in this study.
However, methodological improvements still play an important
role in accelerating the image reconstruction besides these im-
provements in the software implementation level.

Ordered subsets (OS) is one method to decrease the compu-
tation time in tomographic image reconstruction [23]. The method
divides the projection data into predefined number of subsets and
updates the reconstructed image for each subset during the
iterations. Since there is a large block of information gap and SNR
is low in ET, updating the image using even sparser subsets of
projection data can exaggerate noise throughout the iterations.
Therefore, we utilized the multiresolution approach instead of OS
to reduce the computation time. It was shown with the phantom
and experimental datasets that the computation time is much
shorter for amMAPEM than for sMAPEM. The multiresolution re-
construction also contributed to the visual quality of the re-
construction results in addition to computation time acceleration.
Its averaging effect and usage together with the median filter
suppressed noise throughout the iterations. Each regularization
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stage (except the first one) is initialized with a coarser estimate of
the image. Starting with this coarser estimate of the image to be
reconstructed instead of a random or uniform one improved the
reconstruction result.

The MAP reconstruction method presented in this paper pro-
vides a successful solution to compensate for the missing wedge
artifacts and noise in electron tomography. Since the method does
not require any parameter setting and it has improved computa-
tional efficiency, it can be widely used in the field of electron
microscopy.
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