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The RASSF1A tumor suppressor gene is frequently inactivated by promoter methylation in human tumors. The RASSF1A protein
forms an endogenous complex with tubulin and promotes the stabilization of microtubules. Loss of RASSF1A expression sensitizes
cells to microtubule destabilizing stimuli. We have observed a strong correlation between the loss of RASSF1A expression and the
development of Taxol resistance in primary ovarian cancer samples. Thus, we sought to determine if RASSF1A levels could dictate
the response to Taxol and whether an epigenetic therapy approach might be able to reverse the Taxol resistant phenotype of
RASSF1A negative ovarian tumor cells. We found that knocking down RASSF1A expression in an ovarian cancer cell line inhibited
Taxol-mediated apoptosis and promoted cell survival during Taxol treatment. Moreover, using a combination of small molecule
inhibitors of DNA Methyl Transferase enzymes, we were able restore RASSF1A expression and Taxol sensitivity. This identifies a
role for RASSF1A in modulating the tumor response to Taxol and provides proof of principal for the use of epigenetic therapy to
overcome Taxol resistance.

1. Introduction

RASSF1A is a poorly understood tumor suppressor that can
modulate the cell cycle, tubulin dynamics and apoptosis [1–
3]. It is subjected to epigenetic inactivation at high frequency
in a broad range of human tumors, including approximately
50% of ovarian tumors [1, 4, 5]. Overexpression of RASSF1A
promotes hyperstabilization of microtubules reminiscent of
Taxol [6, 7], and previous investigations have shown that
loss of RASSF1A sensitizes cells to microtubule destabilizing
drugs such as nocodazole [7]. Thus, RASSF1A appears to
play an important role in modulating microtubule stabiliza-
tion. This implies that the RASSF1A levels in a tumor cell
may impact how the cell responds to Taxol treatment. The
development of resistance to Taxol remains a serious problem
in the treatment of ovarian cancer.

The most frequent mechanism by which RASSF1A is
inactivated in tumors is by hypermethylation promoter lead-
ing to transcriptional silencing [1, 4, 5]. Thus, the gene
remains intact, just dormant. Over recent years, a series of
small molecules have been identified that can inhibit the
DNA methylation system and restore expression of genes that

have suffered aberrant promoter methylation [8]. This has
given rise to the concept of epigenetic therapy, whereby a
tumor would be treated with drugs to restore the expression
and function of RASSF1A or some other epigenetically
inactivated target. If RASSF1A plays a key role in the response
to Taxol, epigenetic therapy could be potentially serve as an
approach to overcome the resistance.

In an attempt to address the issue of RASSF1A expression
and Taxol resistance, we measured the expression levels of
RASSF1A in a series of primary ovarian tumor samples
that were characterized for resistance or sensitivity to Taxol.
The results showed a very strong correlation between the
reduced relative expression of RASSF1A and Taxol resistance
in primary ovarian cancer. We then used an shRNA-based
approach to generate a matched pair of ovarian tumor cell
lines that were positive or negative for RASSF1A expression.
In this system, loss of RASSF1A impaired the ability of Taxol
to promote microtubule polymerization and rendered the
cells resistant to the growth inhibitory effects of Taxol. Using
an epigenetic therapy approach, we found that reactivating
RASSF1A expression in a RASSF1A-negative ovarian tumor
cell line enhanced the sensitivity of the cells to Taxol. Thus
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we confirm the hypothesis that RASSF1A plays a role in the
cellular response to Taxol and provide proof of principal
for the use of epigenetic therapy as strategy to address the
problem of Taxol resistance ovarian cancer.

2. Materials and Methods

2.1. Tissue Culture. A547 and UCI-107 cells were grown in
DMEM/10% FBS. Cells were transfected with shRNA con-
structs described previously [9] using lipofectamine 2000
(Invitrogen, Carlsbad, CA, USA) using the manufacturers
protocol and selected in 1 μg/mL puromycin. Cells were
treated with Taxol (Sigma, St. Louis, MI, USA) at the de-
scribed doses for 48 hours prior to assay. Cell numbers were
measured by trypsinization and counting in a haemocytome-
ter. Cells were treated with Zebularine [10] and/or RG108
[11] dissolved in DMSO for 48 hours prior to assay. t-tests
were used to determine statistical significance.

2.2. Quantitative Real-Time PCR. qRT-PCR analysis was
used to evaluate the expression of RASSF1A in primary
ovarian tumors essentially as described previously [12] using
the following primers to RASSF1A: forward, 5′-GGACGAG-
CCTGTGGAGTG-3′, and reverse, 5′-TGATGAAGCCTGT-
GTAAGAACC-3′. β-actin was used as the reference gene. Se-
quences of the β-actin primers have been previously de-
scribed [13].

2.3. Western Blotting. Cells were lysed in modified RIPA
buffer as described previously [14], and subjected to Western
analysis using an RASSF1A polyclonal antibody described
previously [6]. Tubulin antibodies were purchased from
Santa Cruz biochemical (Santa Cruz, CA, USA). Protein con-
centrations in lysates were measured prior to loading using
the Bio-Rad Protein Assay (Bio-Rad, Hercules, CA, USA).
Densitometry was performed using a Densitometer and
Quantity One software. Values are expressed as adjusted vol-
ume Optical Density units/mm2.

2.4. Caspase Assays. Cells were plated in 12-well plates at
30% confluency and treated with Taxol the next day. 22 hours
later cells were lysed and assays with the Caspase-Glo kit
(Promega, Madison, WI, USA) as described by the man-
ufacturer.

3. Results

3.1. RASSF1A Downregulation Correlates with Acquisition of
Taxol Resistance in Primary Ovarian Tumors. mRNA isolated
from the tumors of patients with stage III or IV papillary
serous ovarian cancer [12] whose tumors were either respon-
sive or nonresponsive to Taxol were assayed by qRT-PCR for
the levels of RASSF1A expression. Ten samples were used for
each group and the data expressed as fold change relative to
RASSF1A expression in the nonresponder group, after nor-
malization to the expression of β-actin. Those tumors which
responded to Taxol showed considerably higher levels of
RASSF1A mRNA than those which were resistant (Figure 1).

0

2

4

6

8

10

12

14

16

18

Nonresponders

Fo
ld

 c
h

an
ge

 R
A

SS
F1

A
 e

xp
re

ss
io

n

Responders

Figure 1: RASSF1A downregulation correlates with acquisition of
Taxol resistance in primary ovarian tumors: qRT-PCR analysis of
primary ovarian tumors correlates loss of RASSF1A expression with
the development of Taxol resistance. Left column is relative expres-
sion of RASSF1A in Taxol-resistant patients; right column is relative
expression in Taxol-sensitive patients. Data is expressed as fold
change relative to the nonresponder group after normalization to
β-actin expression. t-test was used to determine P was <.05.

3.2. RASSF1A Knockdown Induces Resistance to Taxol. UCI-
107 cells are a Taxol-sensitive ovarian cancer cell line [15]. We
transfected the cells with our validated RASSF1A shRNA [9]
or the empty vector and generated a stable matched pair by
selection in puromycin. The cells were then western blotted
for RASSF1A using our polyclonal rabbit antibody [6].
Figure 2(a) shows that RASSF1A expression was effectively
knocked down in the shRNA transfected cell line.

The matched pair system was then challenged with Tax-
ol for 48 hours and cell survival measured. Loss of RASSF1A
enhanced the survival of the treated cells (Figure 2(b)).
RASSF1A is a proapoptotic protein and loss of RASSF1A
expression may induce resistance to apoptosis [9]. To deter-
mine if that may be the case in ovarian cancer cells treated
with Taxol, we then examined the effects of RASSF1A ex-
pression on apoptosis after Taxol treatment. The RASSF1A±
UCI-107 cells were treated with Taxol for 22 hours and then
assayed for apoptosis using the Promega Caspase 3/7 kit,
which is a fluorescent measure of caspase activation. Figure
2(c) shows that downregulation of RASSF1A promotes re-
sistance to apoptosis induced by Taxol. We also observed a
very slight reduction in the basal levels of caspase activation
in the cells transfected with the RASSF1A shRNA.

3.3. Loss of RASSF1A Reduces the Ability of Taxol to Promote
Microtubule Polymerization. RASSF1A binds microtubules
and promotes their stabilization/polymerization [6, 7, 16].
Indeed, the effects of overexpressing RASSF1A in cells on
tubulin is reminiscent of the effects of treating them with
Taxol [6]. Moreover, downregulation of RASSF1A makes
cells more sensitive to Nocodazole, a microtubule destabi-
lizing drug [7]. Thus, we hypothesized that the presence of
RASSF1A may be important to the ability of Taxol to induce
microtubule polymerization. This would confirm RASSF1A
loss as a component of the development of Taxol resistance in
ovarian cancer and explain the results obtained in Figure 1.
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Figure 2: Loss of RASSF1A confers resistance to taxol-mediated apoptosis. A matched pair of RASSF1A ± cells was generated by stably
knocking down RASSF1A expression in UCI-107 ovarian cancer cells using a RASSF1A-specific shRNA. Knockdown of RASSF1A was
confirmed by western blotting. Tubulin served as a loading control (a). The UCI-107 RASSF1A ± cells were grown to 50% confluency
and then treated with 25 nM Taxol or vehicle control 48 hours and cell number determined (b). Data represent an average of triplicate
experiments, ∗P < 0.1 compared to parental or vector control cells. (c). The RASSF1A ± UCI-107 cells were treated with 25 nM Taxol for 22
hours and caspase activation measured as a readout for apoptosis using a luminescent caspase activation assay. Data represent the average of
two assays performed in triplicate. ∗, statistically different from vector control cells treated with taxol, P < 0.05.
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Figure 3: The ability of Taxol to promote tubulin acetylation is dependent on RASSF1A. The UCI-107 RASSF1A±matched pair was treated
with Taxol for 48 hours, cell lysates prepared and equal amounts of protein subjected to western blotting using antibodies specific for total or
acetylated tubulin. The relevant bands from the western blot were quantified and average data from three experiments expressed as a ratio of
acetylated tubulin to total tubulin to give a fold change. Knockdown of RASSF1A resulted in an approximately 50% reduction in the relative
acetylation of tubulin, P = 0.042275.

When Taxol polymerizes, it becomes acetylated and this
has been used as a marker for polymerization [17]. The UCI-
107 RASSF1A ± matched pair of cell lines was treated with
Taxol. After 48 hours the cells were lysed and equal quantities
of protein subjected to Western analysis first for total tubulin

and then for acetylated tubulin using an acetylated tubulin
specific antibody. The ratio of acetylated tubulin to total
tubulin was determined by densitometric scanning of the
western blots to permit quantitative assessment of the effects
of the presence of RASSF1A. Figure 3 shows that loss of
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Figure 4: Synergistic reactivation of RASSF1A expression by RG108 and Zebularine. (a). RASSF1A negative A547 ovarian cancer cells were
treated with DMSO, Zebularine, RG108 or Zebularine and RG108 in combination for 48 hours and surviving cells counted as a measure
of toxicity. Treatment with either of the demethylating agents resulted in no significant difference in cell number. (b). A547 cells were
treated with the indicated doses of RG108 and Zebularine alone or in combination for 48 hours and cell lysates prepared. Equal amounts of
proteins were immunoprecipitated with an anti-RASSF1A antibody and the immunoprecipitates subjected to Western analysis for RASSF1A.
Densitometric quantification of the bands is shown below the figure.

RASSF1A expression reduces the ability of Taxol to promote
microtubule polymerization.

3.4. Synergistic Restoration of RASSF1A Expression with
DNMT Inhibitors. To examine the possibility that small mo-
lecule-induced restoration of RASSF1A expression might
affect the cellular response to Taxol, we used the ovarian
cancer cell line A547 that is negative for RASSF1A expression
and exposed it to treatment with the DNA Methyl Trans-
ferase (DNMT) inhibitors Zebularine [10] and RG108 [11].
Zebularine has previously been shown to be active in
restoring RASSF1A expression but is more specific and hence
less toxic than the first generation DNMT inhibitor 5-AzaC
[11, 18]. RG108 is a novel DNMT inhibitor that was designed
to specifically inhibit the enzyme DNMT1 [19]. We also
used the two in combination. Examination of the toxicity
of RG108 and Zebularine allowed the determination of the
minimal dose that provoked no detectable changes in cell
growth or morphology. Combination of these two doses
also resulted in no overt cell death (Figure 4(a)). Western
analysis showed that Zebularine was more effective than
RG108 at restoring RASSF1A expression but in combination
their effects were greater than additive (Figure 4(b)).

3.5. Combined Epigenetic Therapy Restores Taxol Sensitivity.
Having determined that RG108 and Zebularine could act
synergistically to restore RASSF1A expression at doses that
were too low to induce cell toxicity, we examined the effect
of the treatment on the Taxol response of the cells. Figure 5
shows that A547 cells pretreated with the Zebularine/RG108
epigenetic therapy regimen exhibited an enhanced sensitivity
to Taxol.
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Figure 5: Synergistic epigenetic therapy enhances the taxol re-
sponse of ovarian tumor cells. A547 cells were treated with carrier
(DMSO) or a combination of RG108 and Zebularine (mix) for 48
hours, after which 400 nM Taxol was added and the cells incubated
for an additional 48 hours. The number of viable cells was deter-
mined by trypan blue staining. Data are expressed as percent sur-
viving cells relative to non-Taxol-treated cells for each condition.

4. Discussion

The RASSF1A tumor suppressor is frequently inactivated by
an epigenetic process of aberrant promoter methylation in
ovarian cancer [1]. RASSF1A complexes with microtubules
and enhances their polymerization. Inactivation of RASSF1A
results in an increased sensitivity to microtubule destabi-
lizing drugs. Overall, the data suggests that RASSF1A plays
an important role in the stabilization of microtubules. As
the drug Taxol is thought to work in large part by stabi-
lizing microtubules, we hypothesized that loss of RASSF1A
expression might play a role in the development of resistance
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to Taxol. Our analysis of primary ovarian tumors showed
that RASSF1A levels were much lower on average in Taxol
resistant tumors. Based on this supporting evidence we pro-
ceeded to generate a matched pair of ovarian tumor cell lines
that were identical other than for RASSF1A expression. Using
this system, we showed that loss of RASSF1A expression
caused a significant increase in the resistance of the cells to
growth inhibition and apoptosis induction by Taxol.

These data supported the idea that if we could restore
RASSF1A expression then we might be able to restore Taxol
sensitivity to a tumor cell. Using a combination of demethy-
lating drugs we were able to restore RASSF1A expression.
These drugs, RG108 and Zebularine, appear much less tox-
ic than the established demethylating drug 5-Aza-C, even
when used in combination (unpublished observation, G.
Clark). The cells with restored RASSF1A expression proved
much more sensitive to Taxol. Thus, we provide proof of
principle for the use of epigenetic therapy to overcome Taxol
resistance in ovarian cancer. Moreover, the methylation of
the RASSF1A promoter might serve as a predictive marker
for the effectiveness of Taxol based therapy.

These studies focused on the role of RASSF1A in the
Taxol response because of the apparent role of RASSF1A in
supporting microtubule polymerization. However, RASSF1A
has a general role in apoptosis and has now been shown to
play a role in DNA repair. Thus, RASSF1A restoration might
also be expected to enhance the effects of drugs which act
by inducing apoptosis and DNA damage. Indeed, Zebularine
has been shown to enhance the effects of Cisplatin in ovarian
cancer models [20].

In these studies, we used Zebularine and RG108 as
DNMT inhibitors. As they have different mechanisms of
action, we hypothesized that they might have a synergistic
activity. This would appear to be the case. As better agents
arise that are more specific, for example Nanaomycin [21],
the effectiveness and practicality of this strategy is likely to
increase.

RASSF1A exhibits an SNP, which is present in excess
of 20% of the Caucasian population. This SNP produces a
variant protein where Alanine 133 is substituted for a serine.
The A(133)S variant protein is defective for interacting with
certain isoforms of tubulin [22] and is defective for binding
the microtubule association protein MAP1a [23]. Mutations
close to this SNP can impair the ability of RASSF1C to pro-
mote microtubule polymerization [6]. Thus, it may be inter-
esting to determine if the presence of this SNP may also affect
the response of an individual to Taxol treatment.
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