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Recent progress in high-throughput instrumentations has led to an astonishing growth in both volume and complexity of
biomedical data collected from various sources. The planet-size data brings serious challenges to the storage and computing
technologies. Cloud computing is an alternative to crack the nut because it gives concurrent consideration to enable storage and
high-performance computing on large-scale data.Thiswork briefly introduces the data intensive computing systemand summarizes
existing cloud-based resources in bioinformatics.These developments and applicationswould facilitate biomedical research tomake
the vast amount of diversification data meaningful and usable.

1. Introduction

In more and more cases, the ability to gain experimental data
has far surpassed the capability in doing further analyses.
DNA sequencing presents a particularly good example of
this trend. By current next-generation sequencing (NGS)
technologies, an individual laboratory can generate terabase-
scales of DNA and RNA sequencing data within a day at a
reasonable cost [1–3]. However, the computing technologies
required to maintain, process, and integrate the massive
datasets are beyond the reach of small laboratories and
introduce serious challenges even for larger institutes. Success
at all fields will heavily rely on the ability to explain these
large-scale and great diversification datasets, which drives us
to adopt advances in computing methods.

The coming age of sharp data growth and increasing data
diversification is a major challenge for biomedical research
in the postgenome era. Cloud computing is an alternative
to crack the nut because it gives concurrent consideration
to enable storage and massive computing on large-scale data
[4–6]. More than this cloud platform can considerably save
costs in server hardware, administration, and maintenance
by the virtualization technology, which allows systems to

act like real computers with flexible specification of the
number of processors, memory, and disk size, operating
system, and so on. With flexible cloud architectures that can
harness petabyte scales of data, Internet-based companies,
such as Google and Amazon, offer on-demand services to
tens of thousands of users simultaneously. In addition, cloud
storages allow large-scale and potentially shared datasets to
be stored on the same infrastructure where further analyses
can be run [7]. A good example is the data from the 1000
Genomes Project, which has grown to 200 terabytes of
genomic data including DNA sequenced from more than
1,700 individuals, and it is now available on the Amazon
cloud [8]. Developing translational biomedical applications
with cloud technologies will enable significant breakthroughs
in the diagnosis, prognosis, and high-quality healthcare.This
study introduces the data-intensive computing system and
summarizes existing cloud-based resources in bioinformat-
ics. These developments and applications would facilitate
biomedical research tomake themassive datasetsmeaningful
and usable.

This paper is organized as follows. Section 2 introduces
the state of the art in the cloud developments of trans-
lational biomedical science. Subsequently, we review the
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framework and platforms formassive computing in the cloud
in Section 3. Finally, Section 4 draws our conclusion.

2. Translational Biomedical Science in
the Cloud

Over the last decades, biomedical informatics has contributed
a vast amount of data. In the genomic side, the data deluge
comes from genotyping, gene expression, NGS data, and so
on. The sequence read archive (SRA) provides the scientific
community with an archival destination for raw sequence
data, whose volume has reached 1.6 petabytes in 2013 [9].
A key goal of 1000 Genomes Project is to investigate the
genetic contribution to human disease by characterizing the
geographic and functional spectrum of genetic variation on
a great deal of sequencing data [10]. More genome-wide
association studies (GWAS) continue to identify common
genetic factors that influence health or cause disease [11–13].
On the other hand, the diagnosis side constantly generates
data from pharmacy prescription data, electronic medical
and insurance records, healthcare information, and so forth.
Electronic health record (EHR) is a digital data for the tradi-
tional document-based patient chart and has been essential
to manage the wealth of existing clinical information. US
health care data alone reached 150 exabytes (=109 gigabytes)
in 2011, while at this rate its volume would be zettabyte
(=1012 gigabytes) scale soon [14]. In many respects, the
two sides of biomedical data growth have yet to converge;
however, the biomedical infrastructure for big data analysis
lags behind the applications. The healthcare system has no
capacity yet to distill the implicit meaning of the planet-
size data for timely medical decision making. Despite the
strong challenge of big data, there are considerable works in
the bioinformatics community to develop feasible solutions.
In what follows, existing cloud-based resources and GPU
computing are summarized to the two types of biomedical
data.

2.1. Genomic-Driven Data. Today new technologies in
genomics/proteomics generate biomedical data with an
explosive rate. With data volume getting larger more quickly
than traditional storage and computation can afford, it is the
time for biomedical studies to migrate these challenges to the
cloud. Cloud computing offers new computational paradigms
to not only deal with data and analyses at scale but also reduce
the building and operation costs. By cloud technologies,
numerous works have reported successful applications in
bioinformatics (Table 1). These recent developments and
applications would facilitate biomedical studies to harness
the planet-size data.

Cloud-based tools in Table 1 combine distributed com-
puting and large-scale storage to come with an effective solu-
tion in terms of data transfer, storage, computation, and anal-
ysis of big biomedical data. By deploying applications with
these tools, small laboratories couldmaintain and process the
large-scale datasets within affordable costs, which is increas-
ingly thorny even for large institutes. For example, BioVLab
infrastructure [28, 36] built on the cloud is developed for

genome analysis by utilizing the virtual collaborative lab, a
suite of tools that allow scientists to orchestrate a sequence
of data analysis tasks using remote computing resources
and data storage facilities on demand from local devices.
Furthermore, the Crossbow [21] genotyping program applies
the MapReduce workflow on Hadoop to launch many copies
of the short-read aligner Bowtie [20] in parallel. Once the
aligned reads are generated, Hadoop automatically starts
the MapReduce workflow of consensus calling to sort and
aggregate the alignments. In the benchmark set on the
Amazon EC2 cloud, Crossbow genotyped a human sample
comprising 2.7 billion reads in less than 3 hours using a 320-
CPU cluster for a total cost of $85 [21].

2.2. Diagnosis-Driven Data. More and more requirements
to the healthcare quality raise difficulties in processing both
the heavy and heterogeneous biomedical data. For example,
the high-resolution and dynamic data of medicinal images
imply that the data transfer and image analysis are extremely
time-consuming. Several works leverage the cloud approach
to tackle the difficulties. MapReduce, the parallel computing
framework in cloud, has been used to develop an ultrafast
and scalable image reconstructionmethod for 4D cone-beam
CT [37]. A solution to power the cloud infrastructure for
digital imaging communication in medicine (DICOM) is
introduced as a robust cloud-based service [38]. Whereas
cloud-based medical image exchange is increasingly preva-
lent in medicine, its security and privacy issues to the data
storage and communication need to be improved [39, 40].

An alternative to attack compute-intensive problems
relies on the graphics processing unit (GPU), where there are
two dominantAPIs forGPUcomputing: CUDAandOpenCL
[41]. GPU architectures feature several multiprocessors with
each number of stream processors. The kernel is a function
on GPU, while it splits works into blocks and threads. Blocks
are assigned to run on multiprocessors, each of which is
composed of a user-defined number of threads. The number
of threads in a block can be different to the number of
stream processors inside a multiprocessor because they run
in groups of constant threads called warps. Stream processors
are similar to CPU cores, but they share a single fetch-decode
unit within the same multiprocessor, which forces threads
to execute in lockstep. The mechanism likes the traditional
single instructionmultiple data (SIMD) instruction; however,
any thread can diverge from the common execution path so
as to increase the flexibility. Two review papers present the
works on GPU accelerated medical image processing and
cover algorithms that are specific to individual modalities
[42, 43]. Intel quite recently unveiled its new Xeon Phi
coprocessor as their many integrated core (MIC) product,
while the China Tianhe-2 with the coprocessor inside was
announced by TOP500 as the world’s fastest supercomputer
in 2013 [44]. The new coprocessor has a dramatic impact on
the high-performance computing field and will drive more
bioinformatics applications [45].

As to the clinical informatics, a major challenge is to inte-
grate a wide range of heterogeneous data into a single and
space-saving database for further queries and analyses. EHR
could be an ideal solution because it is the patient-centered
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Table 1: Cloud-based bioinformatics tools.

Program Description URL Reference
Sequence alignment

Cloud-Coffee Multiple sequence alignment http://www.tcoffee.org/ [15]

USM MapReduce solution to sequence
comparison http://usm.github.io/ [16]

Sequence mapping and assembly
CloudBurst Reference-based read mapping http://cloudburst-bio.sourceforge.net/ [17]
CloudAligner Short read mapping http://cloudaligner.sourceforge.net/ [18]

SEAL Short read mapping and duplicate
removal http://biodoop-seal.sourceforge.net/ [19]

Crossbow Combine sequence aligner Bowtie and
the SNP caller SOAPsnp [20] http://bowtie-bio.sourceforge.net/crossbow/ [21]

Contrail De novo assembly http://contrail-bio.sourceforge.net/ [22]
Eoulsan Sequencing data analysis http://transcriptome.ens.fr/eoulsan/ [23]

Quake Quality-aware detection and
correction of sequencing errors http://www.cbcb.umd.edu/software/quake/ [24]

Gene expression

Myrna Differential expression analysis for
RNA-seq http://bowtie-bio.sourceforge.net/myrna/ [25]

FX RNA-seq analysis tool http://fx.gmi.ac.kr/ [26]

ArrayExpressHTS RNA-seq process and quality
assessment http://www.ebi.ac.uk/services [27]

Comprehensive application

BioVLab A virtual collaborative lab for
biomedical applications https://sites.google.com/site/biovlab/ [28]

Hadoop-BAM Directly manipulate NGS data http://sourceforge.net/projects/hadoop-bam/ [29]

SeqWare A scalable NoSQL database for NGS
data http://seqware.sourceforge.net [30]

PeakRanger Peak caller for ChIP-seq data http://ranger.sourceforge.net/ [31]

YunBe Gene set analysis for biomarker
identification http://tinyurl.com/yunbedownload/ [32]

GATK Genome analysis toolkit http://www.broadinstitute.org/gatk/ [33]

Cloud BioLinux A virtual machine with over 135
bioinformatics packages http://cloudbiolinux.org/ [34]

CloVR A virtual machine for automated
sequence analysis http://clovr.org/ [35]

record by integrating and managing personal medical infor-
mation from various sources. EHRs are built to share infor-
mation with other healthcare providers and organizations,
while the cloud technologies can facilitate EHR integration
and sharing. Developing EHR services on the cloud can not
only reduce the building and operation costs but also support
the interoperability and flexibility [46]. There are a great
number of works that contributed different cloud-supported
frameworks to improve EHR services. For instance, an e-
health cloud system is defined to be capable of adapting itself
to different diseases and growing numbers of patients, that
is, improving the scalability [47]. Khansa et al. proposed an
intelligent cloud-based EHR system and claimed that it has
the potential to reduce medical errors and improve patients’
quality of life [48]. A recent work introduces the state of
cloud computing in healthcare [49]. Moreover, there are a
number of security issues/concerns associated with cloud

computing, which is one of the major obstacles for the com-
mercial considerations. As the emerging cloud technology
to the healthcare system, more recent studies investigate the
security and privacy issues [50–53].

3. Massive Computing in the Cloud

Cloud computing started with the promise of inexhaustible
resources so that the data-intensive computing can be eas-
ily deployed. The three service models of cloud comput-
ing, that is, Infrastructure-as-a-Service (IaaS), Platform-as-
a-Service (PaaS), and Software-as-a-Service (SaaS), drive
more complex and sophisticated markets. What makes cloud
computing different from traditional IT technologies are
mainly service delivery and consumer utilization models.
Cloud platform is rapidly growing as a new paradigm for
provisioning both storage and computing as a utility [54].
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Based on the platforms, the IT capability is raised so that
services can be easily deployed in a pay-as-you-go model.
Subsequently, lots of resources could be acquired with a
relatively low cost to test novel ideas or conduct extensive
simulations. One could access more computing resources in
lab to carry out his innovation based on a self-service and
self-managed environment. Also, the feature of scalability for
cloud platforms allows a lab-scale tool to be extended to
a cloud application or a data-intensive scalable computing
(DISC) system with fewer efforts [55, 56].

3.1. MapReduce Framework. One cannot mention DISC
without mentioning MapReduce, while even many works
regard MapReduce as the de facto standard for DISC [55,
57]. In 2004, Google announced a distributed computing
framework,MapReduce, as the key technology for processing
large datasets on a cluster made by upwards of one thousand
commodity machines [58].TheMapReduce framework facil-
itates the management and development of massively parallel
computing applications. A MapReduce program consists of
two user-specified functions: map and reduce. The map
function processes a <key, value> pair to generate a set of
intermediate pairs, whereas the reduce function merges all
intermediate results associated with the same key. In the
beginning, the programming framework is used to assist
Google in speedy searches, and nowadays more than 10,000
distant programs have been conducted at Google for the
large-scale data analysis [57]. Once applications are modeled
to the MapReduce manner, they all enjoy the scalability
and fault-tolerance inherent in its execution platform sup-
ported by Google File System (GFS), whereas the successful
implementation of the MapReduce model, the open-source
platform Hadoop, along with the MapReduce framework,
has been extensively used outside of Google by academia
and industry [59]. Moreover, Ekanayake et al. compared
the performances of Hadoop MapReduce, Microsoft Dryad-
LINQ, and MPI implementation on two bioinformatics
applications and suggested that the flexibility of MapReduce
will become the preferred approach [60]. Recently, more and
moreMapReduce applications are proposed for bioinformat-
ics studies [16–18, 33, 37, 61].

3.2. Cloud Platform. PaaS provides a substantial boost with
the manageable cost, and there have been a number of
solutions, such asGoogleAppEngine (GAE), AmazonElastic
Compute Cloud (EC2), and Windows Azure. GAE offers a
robust and extensible runtime environment for developing
and hosting web-based applications in Google-managed
infrastructure, rather than providing direct access to a cus-
tomized virtual machine. Malawski et al. investigated how
to use GAE service for free of charge execution of compute-
intensive problems [62], while Prodan et al. compared GAE
and Amazon EC2 in performance and resource consumption
by four basic algorithms [63]. EC2 is a cloud service whereby
one can rent virtual machines from Amazon data center
and deploy scalable applications on them. Several works are
conducted to evaluate EC2 performance [64]. Wall et al.
concluded that the effort to transform existing comparative
genomics algorithms from local infrastructures to cloud is

not trivial, but the cloud environment is an economical
alternative in the speed and flexibility considerations [65].
Further, two works explore the biomedical cloud built on
Amazon service with several case studies [66, 67].

Windows Azure platform provides a series of services for
developing and deploying Windows-based applications on
the cloud, and it makes use of Microsoft infrastructure to
host services and scale them seamlessly [68–70]. Moreover,
Aneka provides a flexible model for developing distributed
applications, which can be integrated with external cloud
platforms further. Aneka presents the possibility to avoid
vendor lockin through a virtual infrastructure, a private
datacentre, or a server, so that one could freely scale to cloud
platforms when required. Its deadline-driven provisioning
mechanism also supports QoS-aware execution of scientific
applications in hybrid clouds [71]. It is handy to leverage
famous PaaS platforms for compute-intensive applications;
however, commercial cloud services charge for CPU time,
storage space, bandwidth usage, and advanced functions.
Apart from the service charge, the commercial cloudplatform
is still difficult for data-intensive applications. The critical
factor is that current network infrastructure is too slow
to enable terabytes of data to be routinely transferred. A
feasible solution for transferring planet-size data is to copy
the data into a big storage drive and then send the drive to
the destination. In addition, the private cloud solution helps
developers to construct cloud platforms for local use [72].

4. Conclusions

Recent technologies on next-generation sequencing and
high-throughput experiments cause an exponential growth
of biomedical data, and subsequently serious challenges
arise in processing data volume and complexity. Numerous
works have reported successful bioinformatics applications
to harness the big data. Developing cloud-based biomedical
applications can integrate the vast amount of diversification
data in one place and analyze them on a continuous basis.
This wouldmake a significant breakthrough to launch a high-
quality healthcare. This work briefly introduces the data-
intensive computing systems and summarizes existing cloud-
based resources in bioinformatics. These developments and
applications would facilitate biomedical applications to make
the planet-size data meaningful and usable.
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