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Abstract

Background: Meat-products are considered an enriched media for mycotoxins. This study aimed to investigate the
prevalence of toxigenic Aspergillus species in processed meat samples, HPLC-quantitative measurement of aflatoxin
B1 and ochratoxin A residues, and molecular sequencing of aflR1 and pks genes. One hundred and twenty
processed beef meat specimens (basterma, sausage, and minced meat; n = 40 for each) were collected from Ismailia
Province, Egypt. Samples were prepared for total mold count, isolation, and identification of Aspergillus species. All
samples were analyzed for the production of both Aflatoxin B1 and Ochratoxin A mycotoxins by HPLC. Molecular
identification of Aspergillus flavus and Aspergillus ochraceus was performed using PCR amplification of the internal
transcribed spacer (ITS) region; furthermore, the aflR1 and pks genes were sequenced.

Results: The total mold count obtained from sausage samples was the highest one, followed by minced meat
samples. The prevalence of A. flavus was (15%), (7.5%), and (10%), while the prevalence of A. ochraceus was (2.5%),
(10%), and (0%) in the examined basterma, sausage, and minced meat samples, respectively. Using PCR, the ITS
region was successfully amplified in all the tested A. flavus and A. ochraceus strains. Aflatoxin B1 was detected in six
basterma samples (15%). Moreover, the ochratoxin A was detected only in four sausage samples (10%). The aflR1
and pks genes were amplified and sequenced successfully and deposited in the GenBank with accession numbers
MF694264 and MF694264, respectively.

Conclusions: To the best of our knowledge, this is the first report concerning the HPLC-Molecular-based
approaches for the detection of aflatoxin B1 and ochratoxin A in processed beef meat in Egypt. The production of
aflatoxin B1 and ochratoxin A in processed meat constitutes a public health threat. Aflatoxin B1 is commonly
associated with basterma samples. Moreover, ochratoxin A was detected frequently in sausage samples. The routine
inspection of mycotoxins in processed meat products is essential to protect human consumers.
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Background
Beef meat and meat products are considered the most
desirable and favorable food in Egypt. Beef meat is char-
acterized by a high nutritional value due to its high con-
tent of essential amino acids, minerals, fats, and
vitamins. In 2019, Egypt imported beef meat with the
following values: 982 million US$ from Brazil (65% mar-
ket share), 466 million US$ from India (31% market
share), 16.2 million US$ from Colombia, 8.25 million
US$ from Australia, 5.08 million US$ from New Zea-
land, and 2.4 million US$ from the USA [1, 2]. Basterma
and sausage are processed meat products prepared from
meat with the addition of food additives. The contamin-
ation of beef meat and meat products with mycotoxins
constitutes public health hazards to the consumers. De-
pending on the type and predilection sites of the myco-
toxins, different symptoms in humans have been
determined including hepatotoxicity, liver cancer,
nephrotoxicity, immunosuppression, mutagenicity, ner-
vous and hormonal system disturbance [3].
Mycotoxins are commonly produced by the following

species: Aspergillus, Fusarium, and Penicillium [4]. Many
studies on mammals and poultry reported that: myco-
toxins have mutagenic, hepatotoxic, carcinogenic, terato-
genic, immunosuppressive, nephrotoxic, and
embryotoxic effects [5]. Although single mold species
could release more than one type of mycotoxin, one
mycotoxin could be produced by different mold species.
Globally, aflatoxins (AFs) are the most medically signifi-
cant mycotoxins that contaminate human and animal
foodstuff. According to the International Agency for Re-
search on Cancer (IARC), aflatoxins, produced primarily
by A. flavus have been confirmed as carcinogenic agents
that mainly affects liver causing hepatocellular carcin-
oma [6, 7]. The treatment of aflatoxins with ultra-high
temperature (UHT), roasting, pasteurization, baking, and
cold storage cannot destruct them because aflatoxins are
heat-stable. Numerous types of AFs exist naturally; but,
the most potent types are; B1, B2, G1, and G2 [8]. Ochra-
toxin A (OTA) is a secondary metabolite produced
mainly by Aspergillus species especially, A. ochraceus
when the environmental and storage conditions are
optimum for the growth and multiplication of these
fungi, such as in tropical and subtropical regions [9, 10].
The major types of OTA are A, B, and C, that pose a
significant threat to human and animal health [11].
Contamination of meat and meat products with molds

commonly results from contaminated equipment or air.
The mold contamination results in unfavorable alter-
ations in the meat and meat products that causes severe
infections, mycotoxicosis, and allergic reactions to con-
sumers [12]. Humans are subjected to OTA either by in-
gestion, inhalation, or skin contact. Certain types of
foods are considered the main source for OTA such as;

coffee beans, grapes, wine, beef meat, beef meat prod-
ucts, poultry, pork, fish, cheese, and eggs [13].
Processed meat products are considered excellent sub-

strate for mycotoxigenic fungal proliferation/
colonization and the subsequent mycotoxin production;
due to the mold contamination that occurs during the
handling, manufacturing, and storage [14]. Various spe-
cies of fungi produce hundreds of toxic metabolites.
Globally, meat products are considered a common
source of mycotoxins [15–19]. The mold contamination
of meat and meat products results in severe illness in
humans and animals due to the production of myco-
toxins such as aflatoxins and ochratoxin A (OTA) [7].
Several studies from different countries have reported
the occurrence of mycotoxins in both fresh and proc-
essed meat. Despite this topic has gained much attention
in the last years, the European Regulation does not set
specific limits for aflatoxins and ochratoxins in meat and
processed meat products. The existence of mycotoxins
in meat and meat products is considered a public health
threat that magnifiy the need for more investigations
concerning the detection of mycotoxins in such type of
food [20–26].
This study aimed to investigate the prevalence of toxi-

genic Aspergillus species in processed meat samples,
HPLC-quantitative measurement of aflatoxin B1 and
ochratoxin A residues, and molecular sequencing of afla-
toxin regulatory gene (aflR1) and polyketide synthase
gene (pks). To the best of our knowledge, this is first
study combined HPLC and Molecular assays for the de-
tection of aflatoxin B1 and ochratoxin A in processed
beef meat in Egypt.

Materials and methods
Samples collection and processing
A total of 120 processed beef meat specimens (basterma,
sausage, and minced meat; n = 40 for each type) were
collected randomly from licensed retail markets that
gained good hygiene practice (GHP) in 4 different local-
ities in Ismailia Province, Egypt. The collected specimens
were labeled, placed into polyethylene sterile bags, and
rapidly transported under complete aseptic conditions in
an icebox to the Microbiology laboratory, Animal Health
Research Institute, Egypt. For each specimen, 25 g were
minced aseptically in a grinder through a 4 mm sterilized
plate diameter (AC110V, China). In Egypt, the basterma
is prepared from beef meat (3–5 cm thickness), salt, and
other additives (ground fenugreek seed, ground paprika,
cumin, black pepper, cayenne pepper, and garlic). More-
over, beef sausage is mostly produced from beef meat,
fat tissues, salt, spices mixture (fennel, black pepper,
cubeb, Nutmeg, cinnamon, cumin, and clovers), garlic,
starch, and sodium glutamate. Besides, minced meat is
prepared by grinding beef meat and fat (75%:25%).
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Mold enumeration, isolation, and identification of
Aspergiluus spp.
For propagation of mold associated with food spoilage,
each minced sample was mixed with 225 mL of sterile
peptone water (0.1%), then ten-fold serial dilutions were
performed as previously reported by Downes and Ito
[27]. Briefly, 1 mL of the processed dilution was poured
into duplicated sterile Petri dishes, and then gently
mixed with Dichloran Rose Bengal Chloramphenicol
agar (Oxoid, UK). The inoculated plates were incubated
up to 1 week at 25 °C and then examined for the mold
growth and enumeration expressed as CFU/g. The sus-
pected colonies were inoculated onto Sabouraud Dex-
trose slant agar (Oxoid, UK), and incubated at room
temperature for up to 5 days for further mycological
examination. The identification of suspected colonies
was carried out depending upon the macroscopical
examination; growth rate, texture, diameter, color, and
characters of examined colonies, and the microscopical
examination using lactophenol blue staining to investi-
gate the morphological characters including; the conidial
stage and head, sclerotia production, conidia, and co-
nidiophore as previously described by Pitt and Hocking
[28].

Extraction and HPLC-quantitative measurement of
aflatoxin B1 and ochratoxin A residues
The chemicals and reagents used for extraction and
HPLC-quantitative measurement of mycotoxins in the
processed meat samples were purchased from Sigma
(Sigma, Germany). Phosphate-buffered saline (PBS) was
prepared by dissolving 8 g of NaCl, 0.2 g of KCl, 0.2 g of
KH2PO4, and 1.2 g of Na2HPO4 in 1000mL of water.
The pH for PBS was adjusted to 7.0 with 0.1M HCl.
Ten grams of each examined specimen were homoge-

nized with 40mL of acetonitrile: water (60:40, v/v) and
0.2 g NaCl for 90 s, then blended by a magnetic stirrer
for 10 min. The filtration of the mixture was carried out
through fast filtering Whatman No. 1 filter paper (What-
man Inc., Clifton, NJ, USA). Four mL of the filtrate were
diluted with 44 mL of 2% tween-20-PBS solution in a 50
mL Erlenmeyer flask. Then, the filtrate was cleaned up
using liquid/liquid extraction method as follows: 0.5 mL
aliquot of filtrate was mixed with 0.5 mL acetonitrile,
then 0.5 mL of the mixture was pipetted into an Alltech
1.5 mL Extract-Clean reservoir packed with 200 mg basic
aluminum oxide (9 mm high-layer adsorbent). The
quantitative detection of the mycotoxins was performed
by HPLC system (Thermo Fisher Scientific, Waltham,
MA 02451, USA) using 100 μL of the extract as previ-
ously described by Herzallah [29].
The fluorescence-detector was adjusted to an excita-

tion and an emission wavelength of 365 nm and 435 nm,
respectively. Concerning the validation and quality

assurance of the quantitative measurement of aflatoxins;
a seven-point standardization curve was conducted using
the following concentrations: (0.1, 0.5, 1, 2, 5, 10, and
20 μg/kg) for aflatoxin B1. Moreover, the signal-to-noise
approach was used to detect the limits of quantification
(LOQ) and the limits of detection (LOD).
To ensure the accuracy of the test, approximately 25 g

aflatoxins-free sample (for each sample type) was spiked
with aflatoxin B1 at levels of 3, 5, and 10 μg/ kg. The
spiked samples were examined using the HPLC, followed
by the estimation of both the recovery and standard de-
viation. The protocol was performed in three replicates.
For the validation and quality assurance of the quantita-
tive measurement of ochratoxins, a five-point
standardization curve was conducted using the following
concentrations: 0.5, 2, 5, 10, and 30 μg/kg.
Besides, the signal-to-noise approach was used to de-

tect the limits of quantification (LOQ) and the limits of
detection (LOD). To ensure the accuracy of the test,
about 25 g ochratoxin A-free sample (for each sample
type) was spiked with ochratoxin A at the levels of 1, 5,
and 20 μg/kg. The assay was performed in three repli-
cates. The recovery rate for aflatoxin B1 and ochratoxin
A was 90 and 92%, respectively [29, 30].

Molecular identification of A. ochraceus and A. flavus by
amplification of internal transcribed spacer (ITS) region
Colonies with distinct phenotypic characters were used
for DNA extraction. The DNA extraction was performed
using the Patho Gene-SpinTM DNA/RNA Extraction kit
(iNtRON cat. No. 17154, Korea). ITS region was ampli-
fied by PCR using the forward primer ITS1 5′-TCCG
TAGGTGAACCTGCGG-3′ and the reverse primer
ITS4 5′-TCCTCCGCTTTATTGATATG − 3′ (Sigma,
Germany) with variable expected amplicon size (700–
800 bp) [31]. PCR mixtures consisted of 50 μL contain-
ing; 25 μL master mix (Bioline, cat. BIO-25049, Eng-
land), one μL each primer, and 30 to 80 ng of genomic
DNA or distilled water (as a negative control). PCR was
programmed as follow: 94 °C for 4 min followed by 35
cycles of 94 °C for 1 min, 56 °C for 1 min and 72 °C for 1
min. A final extension step was done at 72 °C for 10 min.
PCR amplicons were visualized by gel electrophoresis
(1.5%).

Amplification and sequence analysis of aflatoxin
regulatory gene (aflR1) of A. flavus
PCR amplification for the aflR1 gene was performed in
six toxigenic isolates of A.flavus using the forward pri-
mer AflR-1F 5′-AAGCTCCGGGATAGCTGTA-3′ and
the reverse primer AflR-2R 5′-AGGCCACTAA
ACCCGAGTA − 3′ for the identified isolates with an
expected amplicon size of 1079 bp [32]. Fifty μL volume
of PCR was done as follow: initial denaturation at 95 °C
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for 10 min followed by 30 cycles of 94 °C for 30 s, 55 °C
for 45 s, and 72 °C for 75 s. A final extension step was
carried out at 72 °C for 10 min. As the retrieved A. flavus
isolates revealed harmony in their phenotypic character-
istics, the PCR product of one randomly selected isolate
was purified with the Gene JETPCR purification kit
(Thermo Scientific, Cat. K0701). PCR amplicons were
sequenced in both directions using the Applied-
Biosystem Automated 3730XL DNA sequencer (Macro-
gen, Seoul, South Korea). The obtained sequences were
deposited in GenBank with accession No. MF094441,
and then analyzed using the BLASTn tool at the Na-
tional Center of Biotechnology Information. The evolu-
tionary history was inferred by using the Maximum
Likelihood method based on the Tamura-Nei model
[33]. The evolutionary analyses were conducted using
MEGA6 software (http://www.megasoftware.net/) [34].

Amplification and sequence analysis of polyketide
synthase gene (pks) of A. ochraceus
Two sets of primers were used for PCR amplification of
the pks gene (Table 1) in 4 toxigenic isolates of A.ochra-
ceus. Fifty μL volume PCR was carried out as follows:
initial denaturation at 94 °C for 4 min followed by 35 cy-
cles of 94 °C for 40 s, 58 °C for 40 s, and 72 °C for 40 s. A
final extension step was carried out at 72 °C for 10 min.
Meanwhile, the recovered A. ochraceus isolates showed
harmony in their phenotypic characteristics: the PCR
product of one randomly selected isolate was purified
with was purified by the Gene JETPCR purification kit
(Thermo Scientific, Cat. K0701). PCR amplicons were
sequenced in both directions using the Applied-
Biosystem Automated 3730XL DNA sequencer (Macro-
gen, Seoul, South Korea). The obtained sequences were
deposited in GenBank with accession No. MF694264,
and then were analyzed using the BLASTn tool at the
National Center of Biotechnology Information. The evo-
lutionary history was inferred by using the Maximum
Likelihood method based on the General Time Revers-
ible model [36]. The evolutionary analyses were per-
f o rmed us ing MEGA6 so f twa r e (h t t p : / /www .
megasoftware.net/) [34].

Statistical analysis
The statistical analyses carried out using GraphPad
Prism version 8.0.1 (244) (San Diego, CA, USA). All

results were elaborated as mean together with standard
deviation (SD). The Chi-square was implemented to
analyze the data; the significance level was (P < 0.05).

Results
Total mold counts (CFU/g) in meat products samples
Total mold count (CFU/g) obtained from sausage sam-
ples was the highest one (2.9 × 102 ± 0.91 × 102), followed
by minced meat samples (1.74 × 102 ± 0.52 × 102), and
basterma samples (0.79 × 102 ± 0.31 × 102). Statistically,
there is a significant difference in the total mold count
among various examined samples (P < 0.0001) (Table 2).

The phenotyic chracterstics and prevalence of A. flavus
and A. ochraceus in the examined meat products samples
Concerning the phenotypic characteristics of the recov-
ered isolates, the colonies of A. flavus are characterized
by a white soft velvety surface that becomes raised and
turned floccose at the center after few days. The colonies
produced yellowish-green and olive conidia during the
sporulation. The conidia cover the entire surface of the
colonies except for the edges, where a white border was
produced. Sclerotia produced in white color then be-
came deep brown. The diameter of A. flavus colonies
ranged from 50 to 70mm. Moreover, the colonies of A.
ochraceus grow rapidly and are characterized with white
soft velvety surfaces then turned in a characteristic
yellow-gold color and have distinct globose conidial
heads. The conidiophores have a powdery form that
could be observed by the naked eye. Furthermore, the
mycelium is submerged mainly in the agar media, and
the conidial heads are commonly arranged in zones. The
reverse appearance of the petri dish is mainly brownish.
The diameter of A. ochraceus colonies ranged from 45
to 55mm. (Figs. 1 and 2).
In the present study, the prevalence of A. flavus was

(15%), (7.5%), and (10%) in the examined basterma, saus-
age, and minced meat samples, respectively. Moreover,
the prevalence of A. ochraceus was (2.5%), (10%), and
(0%) in the examined basterma, sausage, and minced
meat samples, respectively (Table 3).

Prevalence of aflatoxin B1 and ochratoxin A in the
examined meat products samples
Concerning the occurrence of aflatoxin B1 in the exam-
ined samples, it could be detected and quantified only in

Table 1 Primers used for the amplification of pks gene of A. ochraceus

Primer Oligonucleotide sequence Expected amplicon Size (pb) Reference

AoLc35-12 L 5′-GCCAGACCATCGACACTGCATGCTC-3’ 520 [35]

AoLc35-12R 5′-CGACTGGCGTTCCAGTACCATGAGCC-3’

AoOTA-L 5′-CATCCTGCCGCAACGCTCTATCTTTC-3’ 690

AoOTA-R 5′-CAATCACCCGAGGTCCAAGAGCCTCG-3’
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six basterma samples (15%). The minimum detected
level was 16.5 μg/kg, while the maximum level of detec-
tion was 26.6 μg/kg with a mean value of 21.80 ±
3.823 μg/kg. Moreover, the examined minced meat and
sausage samples were negative for aflatoxin B1.
Regarding the occurrence of ochratoxin A in the ex-

amined samples, it was detected only in four sausage
samples (10%). The minimum detected level was 3.8 μg/
kg, while the maximum level of detection was 17 μg/kg
with a mean value of 10 ± 2.9 μg/kg. Furthermore, the
examined basterma and minced meat samples were
negative for ochratoxin A. Statistically, the production of
aflatoxin B1 in basterma samples is significantly different
from sausage and minced meat (P < 0.0001). Moreover,
the production of ochratoxin A in sausage samples is
significantly different from basterma and minced-meat
(P = 0.0041; P < 0.05) (Table 4).

Molecular identification of A. flavus and A. ochraceus
by PCR amplification of internal transcribed spacer (ITS)
region
The genetic identification of the recovered A. ochra-
ceus and A. flavus isolates was carried out usig PCR
amplification of internal transcribed spacer (ITS) re-
gion. The PCR revealed that the ITS region was suc-
cessfully amplified in all tested A. flavus and A.
ochraceus isolates and giving the specific molecular
size.

Amplification and sequence analysis of aflatoxin
regulatory gene (aflR1) of A. flavus
Using PCR, the aflR1 gene was amplified successfully in
six A. flavus strains isolated from the examined basterma
samples (~ 1079 bp). The PCR products were sent for se-
quencing, and the retrieved sequences were deposited in
the GenBank with accession number: MF094441. Ac-
cording to the blastn tool at the NCBI, the identity was
99.73 with query covered 100% percentage to the other
aflR1 genes deposited in the Genebank database (Fig. 3).

Amplification and sequence analysis of polyketide
synthase gene (pks) for the of A. ochraceus
The PCR proved that the pks gene was amplified suc-
cessfully in four A. ochraceus strains isolated from saus-
age samples. The PCR products were sent for
sequencing, and the recovered sequences were deposited
in the GenBank with accession number: MF694264. Ac-
cording to the blastn tool, the similarity was 100 with
query covered 100% percentage to other pks genes de-
posited in the Genebank database (Fig. 4).

Discussion
Our results showed that the highest mean count (CFU/
g) was in sausage (2.9 × 10 2 ± 0.91 × 102), followed by
1.74 × 102 ± 0.52 × 102 for minced meat, and 0.79 × 102 ±
0.31 × 102 for basterma. A previous study reported that
the count was 2.8 × 102 ± 37.4 for basterma samples [37].
Moreover, Mousa et al. [38], and Ebraheem and

Table 2 Total mold count in examined meat products specimens (CFU/g)

Meat
products

Total mold count (CFU/g)

Minimum Maximum Mean(±SD) P value

Basterma 36 140 0.79 × 102 ± 0.31 × 102 *P < 0.0001

Sausage 103 380 2.9 × 102 ± 0.91 × 102

Minced meat 70 249 1.74 × 102 ± 0.52 × 102

*Significant, (P < 0.05)

Fig. 1 A. flavus and A. ochraceus colonies on SDA:. a. A. flavus: white soft velvety colonies that turn yellowish-green, a pigment of the conidial
spores. b. A. ochraceus: white soft velvety colonies that turn yellow-gold conidia, a pigment of the conidial spores
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Mohamed [39] reported that the mold count was 1.22 ×
102 ± 0.49 × 102 and 2.4 × 102 ± 0.27 × 102 in basterma
samples, respectively. Besides, a previous investigation
[40] reported that the mean total mold count was 2.26 ×
102 ± 0.58 × 102 in sausage samples. Molds are com-
monly detected inside or on the surface of definite aged,
preserved meats, especially fermented sausage and could
be metabolically active during the prolonged curing time
and the ripening time of sausage. Therefore, fungi ex-
tremely affect the appearance, flavor, and quality of these
meats. Moreover, the presence of cured salts, low water
activity condition (aw), pH falls due to fermentation pro-
cesses in sausage samples, and the ability of molds to
withstand high concentrations of cured meat make saus-
age a favorable environment for mold growth [41–43].
In the present study, ten retrieved isolates were toxi-

genic (10/18, 55.55%) including six A. flavus strains
(originated from the basterma samples) harbored the af-
latoxin B1 and four A. ochraceus strains (isolated from
sausage samples) harbored the ochratoxin A. Besides, A.
parasiticus and A. nomius were not detected during the
isolation and identification. In Egypt, A. flavus and A.
ochraceus are the most predominant species [38]. Our
findings revealed that A. flavus is the most predominant
mold species isolated from the processed meat samples.
Ebraheem and Mohamed [39] reported that the most
predominant isolated mold species from basterma and
luncheon samples was A. flavus. Besides, Makhlouf et al.
[44] reported that Aspergillus was the chief genus found
in the examined spices samples that used in the meat
processing; A. flavus and A. ochraceus were the most
predominant species, which is also in agreement with
the findings reported by previous studies in Morocco,

India, and Brasil [45–48]. In the current study, the
prevalence of A. flavus was higher than A. ochraceus in
the examined processed beef meat samples. A.flavus is a
ubiquitous microorganism widely distributed in nature,
soil, and different types of foods. A. flavus is an oppor-
tunistic microorganism characterized by a broad host
range. Besides, A. flavus commonly contaminates most
of the food additives used in meat processing [39, 49].
In the present study, the highest percentage of toxi-

genic isolated Aspergillus species was recorded in bas-
terma samples followed by sausage samples. Moreover,
no toxigenic Aspergillus species was detected in minced
meat samples. Zohri et al. reported that two out of the
four strains of A. flavus could produce aflatoxin B1 in
the examined sausage samples [50]. Besides, a previous
study reported that aflatoxins were detected in 15% of
minced meat samples and 10% of fresh sausage [51].
Mycotoxins production is mainly affected by the type
and composition of meat products, feed additives, the
kind of nutrient contents, and the mechanism of its pro-
cessing. Furthermore, numerous factors affecting both
the growth of different types of molds and their synthe-
sis for mycotoxins involve humidity, temperature, envir-
onment, water activity (aw), pH, nutrients, fungal load,
physiological state, nature of the substrate, and microbial
interaction. Molds commonly gained access to the pre-
served meats such as basterma and sausage that become
active with the prolonged ripening time of such types of
processed meat with subsequent mycotoxins production
[43, 52].
Our findings evident that the level of aflatoxin B1 re-

covered from examined basterma samples exceeded the
international regulatory limits for meat products (>

Fig. 2 Microscopical examination of A. flavus and A. ochraceus (40×): a. A. flavus: conidial heads are radiate to loosely columnar with age. b. A.
ochraceus: distinct globose conidial head

Table 3 The prevalence of A. flavus and A. ochraceus isolates in the examined meat product samples

Isolated
Aspergillus
species

Basterma (n = 40) Sausage (n = 40) Minced meat (n = 40)

Number of isolates % Number of isolates % Number of isolates %

A. flavus 6 15 3 7.5 4 10

A. ochraceus 1 2.5 4 10 0 0
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20 μg/kg). The estimation of aflatoxin B1 production is
essential during processing and storage. The food-
additives, especially spices, are considered a common
source of contamination with mycotoxins during meat
processing [53]. A previous study reported that more
than 80% of the isolated A. flavus strains are toxigenic,
and 47% of these strains produced aflatoxin B1 (chemo-
types I and III) [44]. In the present study, the prevalence
of aflatoxigenic strains is consistent with the findings of
several previous studies [45, 47, 54, 55]. In vitro, A. fla-
vus produces pronounced levels of aflatoxins. The emer-
gence of toxigenic A. flavus strains calls the need for the
application of strict hygienic measures during meat pro-
cessing and storage [44]. In light of our results, the och-
ratoxin A detected in four isolated A. ochraceus (80%),

which is considered a high percentage. However, Zohri
et al., 2014 reported that A. ochraceus did not produce
any detectable amounts of mycotoxins from sausage
samples [50]. In the current study, the detected level of
ochratoxin A in sausage samples is relatively high and
exceeded the legal limits suggested by Italy. Until now,
both European and American regulations didn’t set an
international legal limit of ochratoxin A in meat and
meat products. Only Italy set the legal limit of ochra-
toxin A as 1 μg/kg meat [56, 57].
In the present study, the macroscopic and microscopic

examinations and PCR amplification of the ITS region
were used to confirm the diagnosis of the retrieved A.
flavus and A. ochraceus isolates. Furthermore, PCR was
performed successfully for the amplification of aflR1 and

Table 4 Prevalence of aflatoxin-B1 and ochratoxin A in the examined meat product samples (μg/kg)
Meat
Products

Aflatoxin B1 Ochratoxin A

No. of + ve
samples

% Range (μg/
kg)

Mean ± SD P value No of + ve
samples

% Range (μg/
kg)

Mean ±
SD

P value

Basterma
N = 40

6 15 16.5–26.6 21.80 ± 3.823 *P <
0.0001

0 0 0 0.0 ± 0.0 *P = 0.0044

Sausage
N = 40

0 0 0 0.0 ± 0.0 4 10 3.8–17 10 ± 2.9

Minced
meat
N = 40

0 0 0 0.0 ± 0.0 0 0 0.0 ± 0.0

*Significant, (P < 0.05)

Fig. 3 Phylogenetic analysis of the aflR1 gene using maximum likelihood method. The tree was generated based on the aflR gene nucleotide
sequence; it illustrates the phylogenetic position of the retrieved strain (A.fla-Sa.1-EG016) with respect to other strains deposited in Genbank
where the topology of the joining tree of the aflR gene sequence is almost the same. The phylogenetic tree was created by
MEGA6 (http://www.megasoftware.net/)
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pks genes. The aflR1 gene was detected in six A. flavus
strains isolated from basterma with subsequent sequen-
cing. According to the blastn tool at the NCBI, the iden-
tity was 99.73 with query covered 100% percentage to
the deposited aflR1gene in the Genebank database (ac-
cession number MF094441). Besides, The pks gene was
detected in four A. ochraceus strains retrieved from
sausage samples and sequenced. According to the blastn
tool, the similarity was 100 with a query covered 100%
percentage to other pks genes deposited in the Gene-
bank database (accession number MF694264). Sequences
diversity and omissions in different genes/regions of the
aflatoxins and ochratoxins biosynthetic-clusters could be
used to detect the polyphyletic grouping of A. flavus and
A. ochraceus [58]. Aflatoxin B is a common carcinogenic
mycotoxin commonly produced by A. flavus. The afla-
toxin regulatory gene (aflR) is mainly involved in the
regulation of aflatoxins-biosynthesis. The aflR gene is
encoded for the AflR protein that is responsible for the
activation of the functional genes controlling the afla-
toxin production pathway. The down-regulation of the
aflR gene inhibits the expression of other genes and ad-
versely affects the production pathway [59].
Ochratoxin A produced by A. ochraceus is known

as a potent carcinogenic mycotoxin that is commonly
incriminated in chronic interstitial nephritis in
humans. Ochratoxin A is a polyketide-derived second-
ary metabolite. Therefore the polyketide synthase gene
(pks) is mainly involved in the biosynthesis of ochra-
toxin A. The molecular detection of the pks gene
plays a vital role in the demonstration of the

ochratoxigenic strains of A. ochraceus. The mutant
strains of A. ochraceus in which the pks gene is dis-
turbed or down-regulated were found to miss their
ability to produce the ochratoxin A [60].
In conclusion, to the best of our knowledge, this is the

first report regarding the HPLC-Molecular-based ap-
proaches for the detection of aflatoxin B1 and ochratoxin
A in processed beef meat in Egypt. The present study
emphasized the contamination of processed beef meat
products by the toxigenic A. flavus and A. ochraceus
strains that lead to their spoilage. The production of af-
latoxin B1 and ochratoxin A in processed meat consti-
tutes a public health threat. Aflatoxin B1 is commonly
associated with basterma samples; furthermore, the och-
ratoxin A is detected frequently in sausage samples. The
routine inspection of mycotoxins in processed meat
products is essential to protect human consumers.
HPLC is a reliable quantitative assay for the investigation
of mycotoxins residues in processed meat products. The
combination of both phenotypic and molecular
characterization is a reliable epidemiological tool for the
identification of the toxigenic A. flavus and A. ochraceus
in meat products. It is necessary to adopt proper hy-
gienic measures during the production and storage of
processed meat.
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