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Transition metal ions and neurotransmitters:
coordination chemistry and implications
for neurodegeneration

Jeasang Yoo, a Jiyeon Han *b and Mi Hee Lim *a

Neurodegeneration is characterized by a disturbance in neurotransmitter-mediated signaling pathways.

Recent studies have highlighted the significant role of transition metal ions, including Cu(I/II), Zn(II), and

Fe(II/III), in neurotransmission, thereby making the coordination chemistry of neurotransmitters a growing

field of interest in understanding signal dysfunction. This review outlines the physiological functions of

transition metal ions and neurotransmitters, with the metal-binding properties of small molecule-based

neurotransmitters and neuropeptides. Additionally, we discuss the structural and conformational

changes of neurotransmitters induced by redox-active metal ions, such as Cu(I/II) and Fe(II/III), and briefly

describe the outcomes arising from their oxidation, polymerization, and aggregation. These observations

have important implications for neurodegeneration and emphasize the need for further research to

develop potential therapeutic strategies.

Introduction

Signal transmission is crucial to maintain homeostasis in
central and peripheral nervous systems.1–3 This process relies
on neurotransmitters to regulate membrane potentials, biological
cascades, or gene expression, which ultimately controls neuronal
growth, differentiation, and cell proliferation.1–3 The accuracy of
synaptic functions depends on the precise release of neurotrans-
mitters in response to neural activity, which is largely regulated by
biochemical signaling for efficient information processing.
Although the relationship between neurotransmitter dysregula-
tion and neurodegeneration remains a controversial topic, some
studies suggest that disrupting the production, concentration,
and metabolism of neurotransmitters may contribute to the
development of neurodegeneration.4–8

Extensive research has been conducted on the involvement of
alkali and alkaline earth metal ions in signal transmission.9,10

Na+ and K+ regulate the electrochemical gradient across neuro-
nal membranes to generate and propagate action potentials.9 In
addition, Ca2+ serves as a second messenger in the phosphoino-
sitol pathway to mediate stimulus-responsive reactions in cells.10

Transition metal ions, such as Cu(I/II), Zn(II), and Fe(II/III), also
play a crucial role in physiological systems. These metal ions
function as cofactors in the active sites of metalloenzymes and

assist in the structural folding of proteins.11–15 Moreover, in
neurotransmission, transition metal ions facilitate the biosynth-
esis of neurotransmitters, coordinate with biomolecules, and
even act as neurotransmitters themselves.13,16–18 The colocaliza-
tion between transition metal ions and neurotransmitters has
led to significant interest in their potential inter-communication
and impact on neurotransmission.13,16–23 This review overviews
the physiological roles of transition metal ions, their coordina-
tion with neurotransmitters, and the subsequent structural or
conformational changes in neurotransmitters, with particular
emphasis on their potential implications in neurodegeneration.

Physiological roles of Cu(I/II)

Copper, which exists in two major oxidation states Cu(I) and
Cu(II), has multiple coordination numbers and geometries.24 As a
result, Cu(I/II) can serve as a catalyst in biological systems. The
possible geometries for d10 Cu(I) are two-coordinate linear, three-
coordinate trigonal planar, and four-coordinate tetrahedral. In the
case of d9 Cu(II), four-coordinate square planar, five-coordinate
trigonal bipyramidal, and six-coordinate octahedral geometries
are observed, the latter of which is often distorted by Jahn–Teller
distortion effects.25 The redox ability of copper changes its
electronic configuration, which makes it have different coordina-
tion modes.24,25

In biological systems, the ligand environment of static Cu(I/II)
pools varies depending on enzymatic functions, such as antiox-
idant defense and the synthesis of neurotransmitters.26–29
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The concentration of Cu(I/II) has been reported to be ranging
from 60 to 110 mM in human frontal lobes and cerebellums.30 As
depicted in Fig. 1a, for instance, superoxide dismutase (SOD)
coordinates Cu(II) with four His residues (His46, His48, His63,
and His120) to form a distorted square planar geometry.26 This
structural flexibility between square planar and tetrahedral
geometries [for Cu(II) and Cu(I), respectively] allows for rapid
redox reactions against superoxide anion radicals (O2

��) with a
minimal reorganization energy.26,29 Copper is also found in the
active site of dopamine-b-monooxygenase (DbM), which is
responsible for the biosynthesis of dopamine (DA).27,28 DbM
comprises two copper centers, as described in Fig. 1b: (i) one
sulfur (S) donor atom and two nitrogen (N) donor atoms from
Met487, His412, and His414, respectively; (ii) three N donor
atoms from His262, His263, and His333.27,28 Such differences in
the coordination sphere can be correlated with distinct functions
at each copper center. The formal one with 2N1S coordination
initiates the oxidation of DA via reducing O2 to O2

��, while
another copper center provides an additional one electron to
terminate the whole reaction.27,28 While the coordination chem-
istry of static copper sites in metalloenzymes has been exten-
sively studied, the existence and functions of labile copper pools
have been relatively less understood.31–34 Recent studies have
shown the presence of endogenous labile copper pools in
cultured hippocampal neurons and retinal tissue slices, suggesting
the potential role of labile copper in regulating normal neuronal
functions.32,34–36 Interestingly, labile copper can also behave as a
neurotransmitter modulator. For example, copper can regulate
neurotransmission by acting as an antagonist of g-aminobutyric
acid (GABA) receptors upon binding to the His residues located in
the extracellular domain.20,37–39

Physiological roles of Zn(II)

Zn(II) is found in biological systems (at approximately 150 mM in the
brain).30 The coordination number varies from four to six with
tetrahedral and octahedral geometries being the most
common.40,41 Zn(II) has a closed d-shell, resulting in uniform ligand
field stabilization energy (LFSE), making it thermodynamically
stable even when it undergoes changes in the geometry or
coordination number.42 The distinct d10 electron configuration
of Zn(II) is explained for its role in the structural folding and
stability of metalloproteins.42

Unlike Cu(I/II), which drives electron-transfer reactions (vide
supra), Zn(II) primarily functions to organize and stabilize the
structures of proteins, such as zinc finger proteins.43,44 As
depicted in Fig. 1c, Zn(II) in zinc finger proteins is coordinated
to four Cys or His residues in a tetrahedral geometry, forming
Zn(II)(Cys)2(His)2, Zn(II)(Cys)3(His), and Zn(II)(Cys)4. It should be
noted that Asp and Glu can also be part of the coordination
spheres.43,44 Zn(II) binding to zinc finger proteins enables
interactions with nucleic acids, which allows them to function
as a transcription factor.45,46 In addition, Zn(II) can act as a
Lewis acid that can activate nucleophiles.40,47,48 For instance,
the Zn(II) center in carboxypeptidase A is coordinated with two N
donor atoms and one O donor atom from His69, His196, and
Glu72, respectively, which facilitates the deprotonation of a water
molecule in the coordination sphere of carboxypeptidase A to
catalytically hydrolyze amide bonds of peptides.49 In addition,
Zn(II) has been reported to modulate neurotransmission, with one
well-documented example being its inhibitory effect on the
GABAA-activated current.38,50 Although the detailed mechanism
remains unclear, it has been suggested that Zn(II) coordination to

Fig. 1 Coordination of metal ions found in metalloproteins and metal transport across cellular membranes. (a)–(d) Cu(II), Zn(II), and Fe(II/III) coordination
found in Cu/Zn SOD (amino acid residues are numbered according to human cytoplasmic Cu/Zn SOD although the coordinates used were those of the
bovine enzyme) (PDB 2SOD26), peptidylglycine a-hydroxylating monooxygenase (structural analog of DbM) (PDB 1PHM28), zinc fingers (PDB 1SP144), and
cytochrome c (PDB 1C2R62). (e) Uptake and release of Cu(I/II), Zn(II), and Fe(II/III) across cellular membranes through metal transporters. Examples of metal
transporters include CTR1, DMT1, ATP7A, and ATP7B for Cu(I/II) transport, ZIP1 and ZnT1 for Zn(II) transport, and TfR1 and FpN for Fe(II/III) transport.
Copper, zinc, and iron are depicted in blue, orange, and green, respectively.
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Glu137 and His141 in the a1 subunit, and Glu182, His267, and
Glu270 in the b3 subunit may be involved.38,50 As a neurotransmitter
itself, Zn(II) is co-released with glutamate to modulate the excitatory
neurotransmission, and it is involved in learning and memory.51 For
example, the lowered levels of Zn(II) can induce hippocampus-
dependent memory deficits, mediated by decreasing the activation
of extracellular signal-regulated kinases 1 and 2 (Erk1/2).51

Physiological roles of Fe(II/III)

Iron is the most available transition metal in biological systems
(at approximately 720 mM in normal brains), and it participates in a
wide range of enzymatic reactions.30,52,53 Iron can accommodate
multiple oxidation states, such as Fe(II), Fe(III), and Fe(IV), under
physiological conditions.54 The coordination number of Fe(II/III) is
commonly observed to be six with an octahedral geometry, but
three-coordinate trigonal planar, four-coordinate tetrahedral or
square planar, and five-coordinate trigonal bipyramidal geometries
are also found on the iron centers.55–57 As expected from various
geometries and oxidation states of iron, it is utilized in a broad
range of redox-mediated reactions, including oxygen transfer,
electron transfer chain, and the biosynthesis of neurotrans-
mitters.52,58 For instance, heme proteins are a prime example of
iron-based electron transfer systems, where heme is the structural
framework composed of iron coordinated to a porphyrin ligand
with a 4N coordination mode.59 In cytochromes, heme is bound to
a Cys-Xxx-Xxx-Cys-His motif, and the internal His residue is
considered as an additional axial ligand with either Met or
Tyr.60–62 As depicted in Fig. 1d, cytochrome c containing a heme
moiety transfers an electron from complex III to complex IV,
generating a proton gradient across the mitochondrial membrane
and producing adenosine triphosphate (ATP).60–62 Iron–sulfur
clusters represent another example of iron’s use in electron
transfer.58,63,64 By virtue of the redox properties of iron, thiolates
are bridged to iron(s) with different ratios, producing 2Fe–2S, 3Fe–
4S, and 4Fe–4S clusters that are associated with nitrogen fixation,
oxidative phosphorylation, mitochondrial respiratory pathways,
and ribosome assembly.58,63,64 Additionally, iron is involved in
the production of neurotransmitters. In particular, the biosynthesis
of catecholamine-based neurotransmitters is highly dependent on
the reaction of iron-containing hydroxylase (e.g., phenylalanine
hydroxylase that coordinates with Fe(II) through two His residues
and one Glu residue).65 The role of iron as a neurotransmitter
has not been well elucidated; however, several reports have
indicated that iron is highly related to dopaminergic systems
and anxiety-like behaviors.16,66,67 Moreover, ferroptosis caused
by the imbalance of iron species is implicated to be the
pathogenesis of neurodegeneration.16,66–71

Metal ion homeostasis

Transition metal ions, such as Cu(I/II), Zn(II), and Fe(II/III), are
essential for physiological functions in the brain and neuro-
transmission (vide supra).13,16–23 The uptake and release of
these elements are tightly regulated by metal transporters and

metallochaperones, as illustrated in Fig. 1e. In this review,
we briefly overview the influx and efflux of Cu(I/II), Zn(II), and
Fe(II/III). Other review papers are available for detailed
information.17,21,48,51,66,67,72–74

Copper uptake protein 1 (CTR1) is a representative trans-
porter that involves almost 70% of total copper import into the
brain.72 X-ray absorption spectroscopic studies revealed that
the human CTR1 trimer binds two Cu(I) through three-
coordinate Cu–S bonds within the Met-Xxx-Xxx-Xxx-Met motif,
providing a copper channel.75,76 Intracellular copper is then
appropriately delivered to target enzymes, such as cytochrome c
oxidase (CcO) and SOD, by metallochaperones, including
COX17 (for CcO) and CCS (for SOD), or stored in glutathione
(GSH).72,77 Excess copper is removed from brain cells into the
cerebrospinal fluid (CSF) followed by being stored in ATP7B for
potential transport to the CSF or transported into the blood by
ATP7A.72,78

Zn(II) homeostasis is maintained by several transporters,
such as Zrt-, Irt-like protein (ZIP) and zinc transporter (ZnT)
proteins.48,51,73 ZIP8, ZIP10, and ZIP14 are mainly linked to the
uptake of Zn(II), while ZnT1 and ZnT10 manage its efflux. ZnT3
transports Zn(II) from the cytosol into synaptic vesicles.48,51,73

These transporters coordinate to Zn(II) via three oxygen (O)
donor atoms and one N donor atom from three carboxylate
groups in Asp and one imidazole group in His.73,79

In the case of iron, once exported from endothelial cells to
the interstitial fluid through ferroportin (FpN), Fe(II) is trans-
ferred into neuronal cells through divalent metal transporter
1 (DMT1), or it is oxidized to Fe(III) by ceruloplasmin (Cp) to
undergo a transferrin (Tf)-mediated pathway.53,67 Tf is composed
of two domains and coordinates to two Fe(III).80 Fe(III) is coordi-
nated to Tf through five O donor atoms from Asp63, Tyr95,
Tyr188, and CO3

2�, and one additional N donor atom from
His249, forming an octahedral geometry.80 The coordination of
CO3

2� onto the Fe(III) center induces the conformational differ-
ence between apo-Tf and holo-Tf, which can be recognized by Tf
receptor 1 (TfR1).80 Fe2Tf bound to TfR1 can be internalized via
endocytosis.81 The activation of proton pumps can lower endoso-
mal pH to around 5.6, and the reduction of Fe(III) to Fe(II) directs
the dissociation of Fe(II) from Fe2Tf.81 The released Fe(II) is stored
as its oxidized form, Fe(III), in ferritin for future use in biological
systems.81

Small molecule-based
neurotransmitters and their metal-
mediated chemical transformations

Small molecule-based neurotransmitters are associated with
the regulation of both physiological and behavioral processes
through neurotransmission.82,83 These neurotransmitters can
be derived from a single amino acid residue.83 Monoamine-
based neurotransmitters synthesized from Tyr or Phe possess a
distinct structure featuring an amino group linked to an aro-
matic ring by an ethylene linker.82,83 Interestingly, some amino
acids themselves can act as neurotransmitters, such as Glu,
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Asp, Gly, Trp, and Phe, which are directly or indirectly involved
in signaling pathways.83 This section illustrates the physiologi-
cal functions of Tyr, Trp, and Phe-derived neurotransmitters
that are known to interact with transition metal ions and,
subsequently, undergo structural transformations.

Dopamine

Dopamine (DA) is a monoamine-based neurotransmitter categor-
ized as a catecholamine, as presented in Fig. 2a.84 The gradual
loss of DA-producing neurons in the substantia nigra is believed
to contribute to Parkinson’s disease (PD); thus, efforts have been
made to elucidate the role of DA in neurodegenerative
disorders.84–86 DA is primarily involved in four axonal pathways:
nigrostriatal, mesolimbic, mesocortical, and tuberoinfundibular,
initiating physiological responses for the control of movement,
learning and memory, motivated behavior, attention, emotion,
milk production, and lactotroph proliferation.84 Particularly in
PD, however, the degeneration of dopaminergic neurons can
reduce the production and release of DA, resulting in several
characteristic motor symptoms, such as tremors, rigidity, brady-
kinesia, and balance instability.85–87

Under aerobic conditions, the catechol moiety shown in DA
can be oxidized to quinone [E1/2 = 0.801 V versus standard
hydrogen electrode (SHE)], as depicted in Fig. 2a.88 Waite and
coworkers reported that the oxidation of DA is notably accelerated
upon binding to Cu(II) via its catechol moiety.89 This copper–
catechol chemistry results in electron transfer, producing Cu(I)
and DA�, with the latter reducing additional Cu(II) and transform-
ing into dopaquinone.90 Dopaquinone readily undergoes cycliza-
tion to form dopachrome, which is oxidized to the relatively stable
dopaminechrome, rearranged into 5,6-dihydroxyindole, and
finally converted into 5,6-indolequinone.89 The oxidation process
of DA is characterized by monitoring the absorbance at

approximately 475–480 nm, indicating the presence of a dopami-
nechrome intermediate.89

The metal-mediated oxidation of DA summarized in Fig. 2a
can induce toxicity. In detail, DA can generate reactive oxygen
species (ROS) through Fenton-like reactions (redox reactions
between Cu(I) and Cu(II) in the presence of DA and O2).91–93

Following similar mechanisms, Fe(II/III) can also generate qui-
none species and ROS via iron–catechol chemistry or Fenton
chemistry.91–93 ROS can cause oxidative stress in cellular sys-
tems, resulting in lipid peroxidation and protein misfolding.93,94

Furthermore, unstable quinone intermediates, such as dopaqui-
none, dopaminechrome, and 5,6-indolequinone, may induce
neurotoxicity via the stabilization of toxic oligomers and proto-
fibrils of amyloidogenic proteins (e.g., a-synuclein, a pathological
factor associated with PD), mitochondrial dysfunction mediated
by adduct formation with complex I, III, and IV, and the
disruption of proteasome and lysosomal systems by inactivating
the parkin system or simply generating complexes with ubiquitin
C-terminal hydrolase L1 (UCH-L1), a-tubulin, and b-tubulin.95–97

Such adduct formation was suggested to occur via Michael
addition with polar side chains, such as His, Cys, and Lys.93

In addition, another DA metabolite, 3,4-dihydroxyphenylacetal-
dehyde (DOPAL), also stabilizes toxic oligomers and protofibrils
of amyloidogenic peptides and proteins [e.g., amyloid-b (Ab) and
a-synuclein], inducing high toxicity.98

Interestingly, the neuroprotective roles of DA have continuously
been reported by multiple groups.99–102 For instance, DA can
alleviate inflammation and oxidative stress induced by Ab, a
pathological factor associated with Alzheimer’s disease (AD).99,100

Govindaraju and coworkers suggested the neuroprotective proper-
ties of DA to mitigate Ab-mediated toxicity by modulating
its aggregation and exhibiting antioxidant activity.99 Lim and
coworkers presented that DA undergoes oxidation when it is
incubated with Cu(II) in both the absence and presence of Ab.100

Fig. 2 Impact of Cu(II) on the chemical transformation of DA with its effects on the aggregation and cytotoxicity of Ab (a) Oxidative transformation of DA
in the presence of Cu(II). (b) Analysis of DA transformation in the presence of Ab40 with and without Cu(II) by mass spectrometry. (c) Inhibitory impact of
DA on metal-free and metal-added Ab aggregation in vitro. The size distribution and morphology of Ab aggregates produced with and without DA and
metal ions were investigated by gel/Western blot and TEM, respectively. (d) Improvement of cytotoxicity upon incubation with DA. Reproduced with
permission from ref. 100 Copyrightr 2018 American Chemical Society.
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When DA is incubated with metal-free Ab, the slow oxidation of DA
was observed by mass spectrometry, as depicted in Fig. 2b. In the
presence of Cu(II) and Ab, however, the oxidation process of DA is
facilitated.100 Notably, DA can also modulate the aggregation path-
way of Ab incubated with and without Cu(II) and Zn(II), as shown in
Fig. 2c. The analysis by gel electrophoresis with Western blotting
(gel/Western blot) revealed that DA could modify the aggregation of
metal-free and metal-added Ab, generating amorphous Ab aggre-
gates that were detected by transmission electron microscopy
(TEM). Moreover, as illustrated in Fig. 2d, the treatment of DA
alleviated the cytotoxicity triggered by Ab.100 Taking account of the
coordination mode of Cu(I)–Ab complexes, His13 and His14 in Ab
have been suggested to provide a platform for Cu(I) coordination.101

The Cu(I)–Ab complex interacts with the catechol group of DA and
O2 to give a dopamine o-semiquinone radical and O2

��.101 The
dopamine o-semiquinone radical can disproportionate with a
second semiquinone species, generating dopaquinone and DA.101

This process results in the oxidation of Ab at Met35 and its covalent
modification with quinone species, which alters Ab aggregation
pathways.100–102 In summary, both neurotoxic and neuroprotective
effects of DA with transition metal ions have been suggested, and
further research can provide a better understanding of the role of
DA in neurodegeneration.

Tryptophan

Tryptophan (Trp) (Fig. 3a) is one of the 20 amino acids that make
up proteins, which is not synthesized in humans but from
bacteria, fungi, and plants.103 Trp is well documented that its
supplementation improves sleep quality and maintenance.104,105

Although the spectroscopic evidence to support the binding of
transition metal ions to Trp is very limited, DFT studies have
suggested its possible coordination to divalent metal ions, such
as Ni(II), Cu(II), and Zn(II), via the amine, carboxylate, and ring
moieties.106,107 Interestingly, Trp undergoes several metabolic
pathways under physiological conditions, generating essential
neurotransmitters, such as 5-hydroxytryptamine (5-HT) and
kynurenine (KYN).108–115 As illustrated in Fig. 3a, Trp can be
oxidized to oxyindolylalanine, which is consecutively metabo-
lized into N-formylkynurenine and KYN.114,115 KYN then follows
a metabolic pathway, also known as the KYN pathway to
generate NAD+.108–113 Such KYN pathways have been reported
to modulate dopaminergic, nicotinergic, and glutaminergic neu-
rotransmission, which may be related to numerous psychiatric
and neurodegenerative symptoms.108–113,116

In neurodegeneration, however, the oxidation process of
Trp to KYN can be facilitated in the presence of redox-active
transition metal ions producing ROS.114,115 The imbalance in

Fig. 3 Structural transformations of Trp and 5-HT. (a) Metabolic pathway of Trp to KYN in the presence of ROS. (b) Metabolites from the KYN pathway.
(c) Cu(I/II)-mediated oxidation and polymerization of 5-HT. (d) Oxidized products of 5-HT monitored by 1H NMR spectroscopy, mass spectrometry, and
HPLC. Reproduced with permission from ref. 122 and 123 Copyrightr 2007 John Wiley and Sons and 2014 Springer Nature.
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the KYN concentration can accelerate the KYN pathway, upre-
gulating the overall amount of KYN metabolites.108–115 Among
various metabolites from the KYN pathway illustrated in Fig. 3b,
3-hydroxykynurenine (3-HKYN), 3-hydroxyanthranillic acid (3-HAA),
and quinolinic acid (QA) have shown toxicity.108,109,112 To be
specific, 3-HKYN elevates oxidative stress by blocking antioxidant
catalases.108,109,112 QA, on the other hand, exhibits neurotoxicity by
stimulating the release of glutamate and inhibiting the astroglial
reuptake with the reduced activity of glutamine synthase.108,109,112

This elevates the extracellular concentration of glutamate
and persistently activates excitatory neurons, leading to mito-
chondrial dysfunction, the release of cytochrome c, and the
activation of proteases and caspases.108,109 Interestingly, 3-HAA
and QA can generate ROS with the interactions between redox-
active transition metal ions, such as Cu(I/II) and Fe(II/III), which
promotes neurodegeneration through various effects, including
lipid peroxidation.108–110,112

Serotonin

Serotonin, also known as 5-HT (Fig. 3c), is a monoamine-based
neurotransmitter synthesized in serotonergic neurons in the
central nervous system.117,118 5-HT is involved in cell growth and
differentiation, smooth muscle activity, neuronal development,
and signaling pathways.117,118 Due to these essential functions, it
has been suggested that altered serotonergic neurotransmission
may contribute to mood, motor, sensory, autonomic, cognitive,
and sleep disorders that are commonly found in PD and other
neurodegenerative disorders.3,119 Moreover, studies have shown
that 5-HT receptors impact amyloid precursor protein processing
into Ab by activating these receptors, which increases non-
amyloidogenic APP processing in vitro.120 Furthermore, the
chronic treatment of selective 5-HT reuptake inhibitors, such
as citalopram, reduces cerebral Ab levels in mice, suggesting a
potential therapeutic target for neurodegenerative diseases.121

In the presence of redox-active transition metal ions, which
include Cu(I/II) and Fe(II/III), 5-HT is transformed through an
electron-transfer process, as illustrated in Fig. 3c.122–124 At the
initial stage of oxidation, 5-HT is oxidized by one electron to form
a 5-HT radical intermediate, which can be detected at approxi-
mately 410 nm by electronic absorption spectroscopy.122 As
depicted in Fig. 3d, the treatment of Cu(II) to 5-HT for 24 h
resulted in the appearance of new peaks at 6.9, 7.1, and 7.5 ppm
in 1H nuclear magnetic resonance (NMR) spectra.122 In particular,
the singlet peak at 7.1 ppm suggested that only one proton exists,
derived from either C2 or C4. The disappearance of the 1.9 Hz
coupling between C4 and C6 clarified the dimerization of 5-HT via
coupling of two species at the C4 position.122 The dehydrogenative
coupling of two 5-HT molecules was also supported by mass
spectrometry.122 Heme–Ab complexes have been found to induce
the same dimerization of the 5-HT radical intermediate, as
observed by electronic absorption spectroscopy.123 Alternatively,
the 5-HT radical intermediate can be oxidized to tryptamine-4,5-
dione. As shown in Fig. 3d, investigations by high performance
liquid chromatography (HPLC) showed a minor peak (peak 3),
assigned to be tryptamine-4,5-dione produced by the oxidation of
the 5-HT radical.123 Moreover, the 5-HT radical intermediate may

subsequently form covalent adducts with thiol groups of proteins
and enzymes, including tryptophan hydroxylase.125–127 This can
direct the irreversible loss of function. While the impact of
tryptamine-4,5-dione on cytotoxicity is still a topic of debate, some
studies have reported that it may upregulate the mRNA and
protein expression of NAD(P)H quinone dehydrogenase 1
(NQO1) and heme oxygenase-1 (HO-1) responsible for relieving
the cytotoxicity induced by hydrogen peroxide (H2O2).128,129 The
transformation of 5-HT in the presence of redox-active transition
metal ions can lead to diverse outcomes that require further
investigation.

Epinephrine

Epinephrine, also known as adrenaline, plays a key role in
physiological muscle contraction, especially in the vascular
smooth muscle and intestinal sphincter muscle, upon binding
to a1 and a2 adrenergic receptors.130 The activation of b1 receptors
by epinephrine contributes to the increase in heart rate, myocar-
dial contractility, and renin release, while binding to b2 receptors
provokes bronchodilation and glucose metabolism.130 Chronic
stress can alter the level of epinephrine, disrupting the regulation
of the stress response and potentially contributing to pathological
conditions, such as cancer, cardiovascular dysfunction, and
neurodegeneration.131 Thus, maintaining the proper levels of
epinephrine is crucial for overall health and well-being.

The involvement of epinephrine’s oxidation in neurodegen-
eration has received attention as a major contributing
factor.132,133 The oxidation of catecholamines at physiological
pH is generally very slow; however, it can be facilitated by
enzymatic or metal-mediated catalysis.134 As illustrated in
Fig. 4a, copper–catechol chemistry is involved in the oxidation
process, where epinephrine reduces two Cu(II) to generate epine-
phrinequinone and two Cu(I).132,135 The structural instability of
epinephrinequinone makes it readily cyclized to form leucoepine-
phrinechrome, or it can coordinate to GSH. Leucoepinephrine-
chrome, retaining the catechol moiety, undergoes another round of
electron-transfer process, leading to epinephrinechrome, which
can fall into three different fates: a reverse reaction to leucoepine-
phrinechrome accompanied by ROS generation, polymerization, or
coordination to a thiol moiety of enzymes.132,135 In particular, the
adduct formation between epinephrinequinone and GSH was
observed to result in the overall depletion of GSH concentration,
causing noxious effects on cellular function and defense.132

Moreover, 5-(glutathione-S-yl)epinephrine has been reported to
induce toxicity by activating caspase-3 or oxidizing DNA bases.136

Rael and coworkers presented that chelating out copper by D-Asp–D-
Ala–D-His–D-Lys (D-DAHK) could exert a protective effect from
oxidative stress induced by the copper–epinephrine interaction,134

suggesting that redox-active metal ions are highly related to
cytotoxicity in the progression of neurodegeneration.

Phenylalanine & phenethylamine

Phenylalanine (Phe) (Fig. 4b) can be obtained from various food
sources, including meat, wheat, and milk products.137 As a
neurotransmitter, Phe is associated with controlling chronic
pain, depression, and other disorders.137 Moreover, Phe is a
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precursor to monoamine-based neurotransmitters like DA and
5-HT, making its cellular levels indirectly related to signaling
pathways.138 Interestingly, Phe can be decarboxylated by phenyl-
alanine decarboxylase to generate phenethylamine (b-PEA;
Fig. 4b),138 the specific role of which has not been fully eluci-
dated. Several studies, however, suggest that b-PEA is involved in
dopaminergic transmission.139,140 b-PEA inhibits the influx of
DA, 5-HT, and norepinephrine by binding to amine-associated
receptor 1,139 while the interaction with the DA receptor stimu-
lates the release of DA in striatal brain slices.140

In the presence of metal ions, however, the aforementioned
functions of Phe and b-PEA as neurotransmitters begin to
diminish, and toxicity arises.141–144 In the case of Phe, Chakra-
borty and coworkers presented that divalent and trivalent metal
ions, including Zn(II), Cd(II), Hg(II), Al(III), Ga(III), and In(III),
could induce the self-aggregation of Phe.141 The impact of
metal ions on Phe aggregation was investigated by confocal
laser scanning microscopy and field emission scanning electron
microscopy, as shown in Fig. 4c. It should be noted that the
production of fibrillar species was monitored by the thioflavin-T
(ThT) that is broadly used for quantitative analysis of b-sheet
structures.145 In the presence of divalent metal ions, monomeric
Phe rapidly generated microspheres that were fused into vesi-
cular structures and transformed into mature fibrils over time.
In particular, in the presence of Zn(II), the fibrils elongated in a
dendritic fashion, orienting in one common center.141 On the
other hand, b-PEA could increase the level of O2

�� upon incubation
with copper and copper-binding fragments of the prion pro-
tein, as presented in Fig. 4d.142 Alternatively, even in the
absence of metal ions, b-PEA could aggravate oxidative stress

by inhibiting the activity of NQO1 as well as mitochondrial
complex I and complex III.143,144

Peptide-based neurotransmitters and
their conformational and functional
changes mediated by metal ions

Peptide-based neurotransmitters, referred to as neuropeptides,
are involved in neuronal signaling associated with analgesia,
reward, food intake, metabolism, social behaviors, learning,
and memory.146 Recent advances in biotechnologies coupled
with solid-phase peptide synthesis have opened up new avenues
for developing peptide-based medicines, which are being actively
explored in the therapeutic field against neurodegeneration.147

Notably, several studies have shown that transition metal ions
interact with neuropeptides and distinctively affect signaling
pathways, indicating the importance of elucidating how metal
coordination influences the physiological and pathological func-
tions involved in neurodegeneration caused by metal ion
dyshomeostasis.148–154 Such a comprehensive understanding
can pave the way for novel therapeutic strategies for neurode-
generation. The following section covers recent studies on the
coordination chemistry of transition metal ions with neuropep-
tides, particularly focusing on those containing a disulfide bond:
somatostatin (SST), vasopressin (AVP), and oxytocin (Oxt).

Somatostatin

Somatostatin (SST; Fig. 5a) is a naturally occurring neuropep-
tide composed of 14 amino acid residues (AGCKNFFWKTFTSC)

Fig. 4 Structural changes of epinephrine as well as fibrilization and ROS generation of Phe and b-PEA in the presence of divalent metal ions. (a) Oxidation and
polymerization of epinephrine in the presence of Cu(II). (b) Chemical structures of Phe and b-PEA. (c) Aggregation of Phe into fibrillar species in the presence of
divalent metal ions, including Zn(II), Cd(II), and Hg(II). Reproduced with permission from ref. 141. Copyrightr 2022 American Chemical Society. (d) Increased levels of
O2
�� by incubation of b-PEA, Cu(II), and fragments of the prion protein. Reproduced with permission from ref. 142. Copyrightr 2006 Ivyspring International Publisher.
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with an intramolecular disulfide bond between Cys3 and
Cys14.155 SST plays a vital role in nervous systems despite its
short half-life (around 3 min), inhibiting the secretion of growth
hormone (GH) mediated by the growth hormone-releasing hor-
mone (GHRH) from anterior pituitary somatotrophs.156 In obese
patients, GH secretion may be affected, with the subsequent
responsivity of SST for suppressing insulin and glucagon.157 SST
can also inhibit adenyl cyclase and Ca(II) channels, leading to the
inhibition of cell proliferation,157 as well as olfactory
systems.158,159 As the homeostasis of SST is impaired, it may
behave differently, however.160,161 In PD patients, the concen-
tration of SST decreases in frontal and temporal cortices, and its
colocalization with Lewy bodies is observed, which is thought to
be a cause of the disease impacting olfactory systems and non-
motor symptoms, such as tiredness, depression, and pain.162 In
the case of AD, SST has been reported to specifically bind toxic
Ab42 oligomers.163,164

Recently, Lim and coworkers have demonstrated that the
presence of Cu(II) could result in the loss of function of SST as a
neurotransmitter.148 Cu(II) was observed to coordinate to the
N-terminal primary amine, the backbone carbonyl group
between Ala1 and Gly2, and two water molecules, one of
which is deprotonated by the C-terminal carboxylate group, as

illustrated in Fig. 5b.148 Cu(II) binding to SST could partially
fold the N-terminal region of the peptide, which may be a
driving force for its self-assembly via hydrophobic interactions,
antiparallel b-sheet formation, or the Cu(II)(SST)2 generation. It
should be noted that other Cu(II)-binding sites, in addition to
the N-terminal region, have also been suggested within the
sidechain of Phe6 and Phe7 via cation–p interactions.165

The formation of SST aggregates upon incubation with Cu(II)
was detected by the gel/Western blot, as shown in Fig. 5c.148

Moreover, SST species produced with Cu(II) were shown to have
less binding properties to the receptor, confirmed by the studies
employing the GPCR-activation-based sensor (GRABSST).148 It
should be noted that such conformational and functional changes
of SST were not observed in the presence of Zn(II).148 These
findings suggested that Cu(II) interaction could cause the aggrega-
tion of SST and, consequently, inhibit its receptor binding proper-
ties critical for signaling.148 When SST was incubated with Ab in
both the absence and presence of Cu(II) and Zn(II), the aggregation
of SST into oligomers was also observed, resulting in reduced
interactions against cell membranes.148 The co-incubation
between metal ions and SST has been shown to mitigate the
cytotoxicity mediated by Ab.148 Overall, these results and observa-
tions suggest the alteration of the structure and activity of SST

Fig. 5 Interactions of SST, AVP, and Oxt with metal ions. (a) Amino acid sequences and chemical structures of SST, AVP, and Oxt. (b) Potential metal
binding to SST and Oxt.148,152,153 (c) Aggregation and change in the receptor binding of SST in the presence of Cu(II). Reproduced with permission from
ref. 148. Copyrightr 2022 Springer Nature. (d) Adduct formation between Oxt and various divalent metal ions, including Mg(II), Ca(II), Mn(II), Ni(II), Co(II),
Cu(II), and Zn(II). Reproduced with permission from ref. 152. Copyrightr 2008 American Chemical Society.
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under pathological conditions and provide broader insight into
the new role of neuropeptides in the pathologies of neurodegen-
erative diseases.

Vasopressin

Vasopressin (Fig. 5a), also known as arginine vasopressin (AVP),
is a nonapeptide neurotransmitter (CYFQNCPRG) that forms a
cyclic structure through a disulfide bond between Cys1 and
Cys6.166 AVP is importantly linked to osmoregulation.166–169 It
is also involved in increasing the mean arterial blood pressure
by binding to vasopressin type 1 (V1) receptors, which mediates
vasoconstriction in the skin, skeletal muscle, and mesenteric
blood vessels.166,170,171 Furthermore, AVP binding to V3 recep-
tors can control thermoregulation, cognition, memory, and
behavior regulation.172,173 The expression levels of AVP are
decreased in patients with neurodegenerative disorders, such
as Huntington’s disease (HD).174 Interestingly, AVP(4-8) has
been shown to improve cognitive function in an AD mouse
model,175 suggesting the involvement of AVP metabolites in
neurodegeneration.

An AVP mutant in which the side chain of Phe3 is substi-
tuted with naphthalene (Nal) has been found to bind divalent
metal ions, including Cu(II), Zn(II), and Mn(II).149 A different
AVP mutant with an additional Ala residue at the N-terminus
has demonstrated the same result.150 Metal coordination to
AVP could stabilize its active structure and potentiate its
function.176 Cu(II)-binding residues in AVP have been proposed
through CD, electron paramagnetic resonance, and electronic
absorption spectroscopies.150 Cu(II) was observed to coordinate
with four N donor atoms, including one from the N-terminal
primary amine and three from the amide backbones between
Cys1/Tyr2, Tyr2/Phe3, and Phe3/Gln4.151 Cu(II) coordination to
AVP has been suggested to constrain the receptor-binding
residues (e.g., Tyr2 and Phe3), which may alter its contractile
activity;151 however, the exact mechanism is still unclear.

Oxytocin

Oxytocin (Oxt; Fig. 5a) is a nonapeptide (CYIQNCPLG) with a cyclic
structure formed by the disulfide bond formation between Cys1
and Cys6.177 Notably, the sequence of Oxt resembles that of AVP,
differing only in two amino acid residues (i.e., Ile3 and Leu8). Oxt
plays diverse physiological roles in lactation, parturition, memory,
recognition, affiliation, aggression, learning, stress, and
depression.177 In addition, Oxt is also involved in cell prolifera-
tion, slowing the heart rate, and myoblast fusion with myotubule
formation.178 Several studies have suggested that Oxt could have a
neuroprotective role in neurodegeneration, as it could promote
anti-inflammation, reduce ROS generation, and diminish pro-
inflammation cascades in microglia.179–181 Such effects were also
observed in the tMCAO stroke rat model.182

The interactions between Oxt and transition metal ions are
an area of interest in bioinorganic chemistry.152–154 The coor-
dination of Oxt to divalent metal ions, including Mg(II), Ca(II),
Mn(II), Ni(II), Co(II), Cu(II), and Zn(II), has been identified, as
represented in Fig. 5d.152 Bowers and coworkers reported two
different binding modes of Cu(II) to Oxt by computational

analysis (Fig. 5b).152 Both modes include the primary amine
at the N-terminus and two N donor atoms from the amide
backbones between Pro7/Leu8 and Leu8/Gly9. A fourth ligand
differs depending on the mode. It is either one N donor atom
from the amide backbone between Asn5 and Cys6 or the
amidated C-terminus.152 Recent paramagnetic enhancement
NMR studies reported another 4N coordination mode of
Cu(II)(Oxt).153 Hurevich and coworkers illustrated the coordina-
tion sphere in Oxt composed of the N-terminal primary amine
and three N donor atoms from amide backbones, including one
between Cys1 and Tyr2 and two consecutive (Fig. 5b).153 The
effect of Cu(II) complexation with Oxt on its receptor binding
has not yet been fully elucidated, however. The disulfide bond
in Oxt may be cleaved in the presence of ROS,154 which can
affect normal functions of cyclic peptides (vide supra).37,72

In the case of Zn(II), computational studies showed two types
of coordination modes to Oxt composed of either six or five O
donor atoms.152 As depicted in Fig. 5b, the coordination sphere
in a quasi-octahedral geometry contains the carbonyl group
from the amidated C-terminus and the amide backbones
between Tyr2/Ile3, Ile3/Gln4, Gln4/Asn5, Cys6/Pro7, and Leu8/
Gly9.152 Another Zn(II)-binding mode is in a quasi-trigonal
bipyramidal structure with the 1N4O coordination: the N donor
atom from the N-terminal primary amine and four O donor
atoms from the carbonyl groups of the amidated C-terminus
and the amide backbones between Cys1/Tyr2, Gln4/Asn5, and
Cys6/Pro7.152 Zn(II) binding of Oxt can align Ile3, Gln4, and
Asn5 in the same plane, three of which are essential for the
interaction with a hydrophobic pocket on Oxt receptors. Such
conformational rigidity attributed to the complexation between
Zn(II) and Oxt can facilitate the hormone–receptor binding.152

Conclusions and future perspective

Neurotransmitters are the fundamental building blocks of
neuronal signaling pathways, which regulate the intricate
homeostasis of our body system.13,16–18 Their vital roles in
maintaining normal physiological functions have been docu-
mented in the literature.11–15 The binding of transition metal
ions to neurotransmitters, however, can potentially disrupt their
normal functions, thereby leading to the development of various
neurodegenerative diseases, such as AD, PD, amyotrophic lateral
sclerosis, and HD.100,127,142,147,148,154 Nonetheless, some interac-
tions between metal ions and neurotransmitters have been
reported to ameliorate the processes associated with
neurodegeneration.100–102 In this review, we briefly introduce
small molecule-based neurotransmitters and peptide-based neu-
rotransmitters and summarize their metal-binding properties.
Transition metal ions, such as Cu(I/II), Zn(II), and Fe(II/III), can
directly or indirectly interfere with normal functions of neuro-
transmitters through multiple mechanisms, including coordina-
tion, conformational or structural changes, and ROS generation.
It should be noted that other various metalloproteins exist in
physiological systems exhibiting different functions,11–15 which
was not covered in this review.
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Despite significant progress in understanding the pathology
of neurodegenerative diseases, the precise interplay between
transition metal ions and neurotransmitters remains
unclear.100,127,142,147,148,154 This highlights the urgent need for
detailed investigations into the coordination chemistry of
neurotransmitters. Such studies are expected to yield crucial
insights into the influence of transition metal ions on the
functions of neurotransmitters, thereby paving the way for
the development of novel therapeutic strategies in the field of
neurodegeneration. Thus, we anticipate that future research
will focus on identifying new therapeutic targets and potential
drug candidates against the inter-communication between
transition metal ions and neurotransmitters.
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M. Gonzalez-Rodriguez, S. Villar-Conde, V. Astillero-
Lopez and A. Martinez-Marcos, Somatostatin, olfaction,
and neurodegeneration, Front. Neurosci., 2020, 14, 96.

161 Y.-H. Song, J. Yoon and S.-H. Lee, The role of neuropeptide
somatostatin in the brain and its application in treating
neurological disorders, Exp. Mol. Med., 2021, 53, 328–338.

162 A. Flores-Cuadrado, I. Ubeda-Bañon, D. Saiz-Sanchez and
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