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A B S T R A C T   

COVID-19 is a pandemic requiring immediate solution for treatment because of its complex pathophysiology. 
Exploration of novel targets and thus treatment will be life savers which is the need of the hour. 2 host factors- 
TMPRSS2 and ACE2 are responsible for the way the virus will enter and replicate in the host. Also NRF2 is an 
important protein responsible for its anti-inflammatory role by multiple mechanisms of action like inhibition of 
NF-kB, suppression of pro-inflammatory genes, etc. NRF2 is deacetylated by Sirtuins and therefore both have a 
direct association. Absence of SIRT indicates inhibition of NRF2 expression and thus no anti-oxidative and anti- 
inflammatory protection for the cell. Therefore, we propose that NRF2 activators and/or SIRT activators can be 
evaluated to check their efficacy in ameliorating the symptoms of COVID-19.   

1. Introduction 

Corona Virus disease 19 (COVID-19) has become one of the most 
terrifying pandemic in the last couple of years, prevalence of which 
varies from country to country, of which around 195 countries have 
already been affected by it. Risk of death due to COVID-19 varies from 
country to country, as 1% in Germany to 11% in Italy. Studies have also 
shown that the mortality is high for subjects aged 60 and above [1]. 

According to many evidences it is suggested that a transmembrane 
protease which is encoded by a gene named TMPRSS2 plays a major role 
in the entry for Severe Acute Respiratory Syndrome Coronavirus, this is 
the same protease responsible for entry of Middle East Respiratory 
Syndrome Coronavirus and influenza Virus [2]. This leads to an idea that 
targeting this TMPRSS2 can be a novel target for Coronavirus [3]. 
Hoffman and coworkers found out that the virus responsible for SARS- 
CoV-2, i.e. Covid-19 depends upon two major host cell factors mainly: 
ACE2 and TMPRSS2. ACE2 is a carboxypeptidase that converts Angio
tensin 1 to angiotensin [1–9] and Angiotensin 2 to angiotensin [1–7]. 
ACE2 has been majorly found in lung tissues. Coronavirus has Spike (S) 
Proteins on its cellular membrane, which helps viral entry into target 
host cells. This entry depends on attachment of S Proteins on the cellular 
receptor, ACE2, which then helps viral attachment to the surface of 
target host cells. Recent studies have shown that the novel coronavirus 
targets the ACE2 via Spike Proteins(S) in the receptor binding domain 
(RBD) through Van der Waals forces and study shows that novel 
coronavirus-2019 RBD binds strongly than SARS-CoV because novel 
coronavirus has glutamine residue at 479 to bind with lysine 31 on ACE2 

Receptor on host cellular surface while SARS-CoV lack the glutamate 
residue. After this, for the entry of virus into host target cells, S protein 
must undergo “Priming” by the cellular protease TMPRSS2, which per
forms the S protein cleavage and thus leads to fusion of viral and cellular 
membranes. This facilitates entry of virus into host target cells. It is seen 
that the viral entry is increased 2.6 fold in the presence of TMPRSS2 and 
decreased by five-fold in absence of TMPRSS2. From various sources it is 
proved that ACE2 expression in the lung tissues of White and African- 
American(Black) is much lower than that of Asian people [4]. As soon 
as the virus enters into the cells of the host, it initiates the host defense 
mechanisms. One of the mechanism involved is Retinoic acid inducible 
Gene 1 (RIG-1) like Receptors (RLRs) which recognizes the virus and 
then binds to it, upon binding it undergoes ubiquitination by the 
Ubiquitin E3 ligases, leading to activation of NF-kB via phosphorylation. 
This leads to production of IFN-β, having anti-viral activity [5]. The 
novel coronavirus-2019 inhibits the RLRs ubiquitination by E3 ligases 
and thus inhibition of IFN-β [6,7]. ACE2 protein was downregulated in 
novel coronavirus-2019 and SARS-CoV which leads to lung injury, 
because ACE2 has a protective role in lung injury [8]. ACE2 down
regulation also causes an increase in NF-kB phosphorylation and thus its 
activation. Due to activation of NF-kB, many other pro-inflammatory 
cytokines are secreted in large quantities, mainly IL-6 and IL-8 which 
in turn stimulate migration of many other cytokines and immune cells at 
the site of infection [9]. Angiotensin 2 has pro-inflammatory properties 
via phosphorylation and activation of NF-kB, while ACE2 has anti- 
inflammatory effects by degrading Angiotensin 2 to Angiotensin 
[1–7,10]. Major mechanism leading to inflammation and tissue injury 

* Corresponding author at: Dept. of Pharmacology, Bombay College of Pharmacy, Kalina, Santacruz (E), Mumbai 400098, India. 
E-mail address: anuradha.majumdar@bcp.edu.in (A. Majumdar).  

Contents lists available at ScienceDirect 

Clinical Immunology 

journal homepage: www.elsevier.com/locate/yclim 

https://doi.org/10.1016/j.clim.2021.108879 
Received 10 August 2021; Received in revised form 4 November 2021; Accepted 8 November 2021   

mailto:anuradha.majumdar@bcp.edu.in
www.sciencedirect.com/science/journal/15216616
https://www.elsevier.com/locate/yclim
https://doi.org/10.1016/j.clim.2021.108879
https://doi.org/10.1016/j.clim.2021.108879
https://doi.org/10.1016/j.clim.2021.108879
http://crossmark.crossref.org/dialog/?doi=10.1016/j.clim.2021.108879&domain=pdf


Clinical Immunology 233 (2021) 108879

2

upon virus entry is due to generation of free radicals [11]. Upon entry of 
virus into the host cells, oxidative stress is induced to facilitate its 
replication [12]. It is also known that, Angiotensin 2 when binds to 
AT1R Receptors located on the cell surface, it leads to induction of 
NADPH Oxidase, which is responsible for excessive generation of ROS 
and thus causing oxidative stress [13], which in case of coronavirus 
exposure is increased due to depletion of ACE2 and increase in Angio
tensin 2 levels. Studies have shown that increase in ACE2 levels may also 
increase the competition of coronavirus for binding and thus decreasing 
its entry into the host cell [14]. It was shown in a study that ACE2 on 
injection in a soluble form slows down the entering of virus into host 
cells [15]. Also, Zhang R et al. proved that ACE2 protects the lung from 
injury, as ACE2 levels are highest in lungs [16]. 

2. Inflammation involved in COVID-19 pathology 

Clinical observations of various coronavirus outbreaks such as Se
vere acute respiratory syndrome coronavirus(SARS-CoV), Middle east 
respiratory syndrome (MERS-CoV), and novel SARS-CoV-2019 shows 
that not only viral propagation inside the host but also, the host in
flammatory response is responsible for disease outcome [17]. Similarly, 
it can be seen with influenza virus for which the lethality of the disease is 
not due to viral propagation but due to inflammatory response by the 
host immune system upon viral entry [18]. Major mechanism involved 
in inflammatory and tissue injury due to virus is by generation of free 
radicals. Oxidative stress is necessary for viral replication and for in
flammatory response by immune cells of the host. During severe con
dition of a disease, a cytokine storm(excessive production of cytokines) 
along with T-cell depletion, pulmonary inflammation and lung damage 
is seen [19]. Not only these, but also patients having Acute Respiratory 
Distress Syndrome(ARDS) and also other types of pneumonia induced by 
virus shows Macrophage Activation Syndrome (MAS)(inflammatory 
stress) [19,20]. Clinical observations also shows that there are two more 
effects of viral entry into host body: leukopenia [21](decrease in T-cell 
count due to pyroptosis, which is a cell death mainly affecting immune 
cells) [19,22], and second is granulocytosis, which is responsible for 
generation of Reactive Oxygen Species(ROS) [23] by a strong bust of 
superoxide [19], and thus increasing production of pro- inflammatory 
cytokines [24]. 

So far, it is clear that one of the most deleterious effects of the novel 
coronavirus-2019 is hyperactivation of the host immune system, leading 
to inflammation in the host body. Thus, anti inflammatory therapy 
should be given to complement general anti-viral therapy, to manage the 
symptoms of Covid-19 efficiently [19]. In this article we will discuss role 
of cytoprotective transcription factor NRF2 and ways of boosting 
endogenous cellular defenses by increasing the cytoprotective tran
scription factor NRF2(Gene NFE2L2), which will help to resolve Covid- 
19 associated inflammation and also restore redox homeostasis along 
with tissue repair [19]. 

3. NRF2 activators in viral infection 

3.1. NRF2 and its anti-inflammatory roles 

NRF2 is a cap ‘n’ collar (CNC) transcription factor, it dimerizes and 
forms complexes with small musculoaponeurotic fibrosarcoma (sMAF) 
proteins, which are mainly K, G and F [25], or they may bind to other 
transcription factors like C-JUN and JUND [26], and then binds to anti- 
oxidant response elements(ARE) and regulate transcription of various 
target genes, involving in cellular redox homeostasis, detoxification, 
tissue damage and metabolic homeostasis [27]. Under normal condi
tions, NRF2 is complexed with E3 ligase substrate adapter Kelch-like 
ECH-associated Protein 1(KEAP-1) and thus leading to ubiquitination 
and proteosomal degradation of the transcription factor [27–29]. ROS 
generation within a cell leads to modification of specific cysteine resi
dues of KEAP1 leading to its inactivation [30], and thus due to 

inactivation of KEAP1, it leads to accumulation of NRF2 and resulting in 
enhanced target gene transcription. 

NRF2 is disregulated in various disease conditions like diabetes, and 
various inflammatory diseases [31] and it also declines on aging [32]. 
Due to this, people with disease conditions like diabetes and old age are 
at high risk for factors associated with SARS-CoV induced ARDS [33]. 
Importantly, activation of NRF2 has been shown to preserve lung ar
chitecture in response to inflammation and activation of NRF2 in various 
animal models has shown to be beneficial in several lung disorders and 
respiratory infections including ARDS [34]. Single nucleotide poly
morphism(SNPs) which is present in the promoter region of NFE2L2 
gene(which encodes for NRF2)is seen to be implicated with lung dis
eases susceptibility in humans, showing NRF2 as a therapeutic target for 
pulmonary diseases [35]. 

NRF2 plays anti-inflammatory role by suppressing pro-inflammatory 
genes such as IL6 and IL1B [36]. NRF2 also induces expression of several 
macrophage-specific genes that help in tissue repair. One of the gene 
induced is of Macrophage Receptor with collagenous structure 
(MARCO), which is responsible for bacterial phagocytosis. It also in
duces gene for cluster of differentiation-36(CD36), which is a scavenger 
for oxidized low density lipoproteins(LDL) [37], and IL-17D [38], to give 
protection against viral infections [39]. Similarly, NRF2 activation leads 
to restoration of redox homeostasis, this is done by upregulation of 
various anti-oxidant genes, like Glutathione(GSH), NADPH, thio
redoxin, thioredoxin reductase and peroxiredoxin, which protect the 
cells from ROS and also NRF2 activation provides an alternative 
pathway for wound healing apart from the one involving inflammatory 
cascade [19,40]. 

3.2. NRF2 activation and alveolar protection 

Alveolar epithelial type 2 cells that are present in lungs are the most 
abundant cells that express ACE2 which is about 83% [4]. ACE2 protein 
is mostly expressed in apical airway epithelia, where they are linked to 
epithelia differentiation [41]. These differentiated cells are more likely 
to be infected by viral infection like SARS-CoV [42]. NRF2 activation 
prevents lung infection by increasing ACE2 and AT2R levels. NRF2 also 
decreases serum Angiotensin-2 and AT1R levels, thus suppressing 
oxidative stress, mediated inflammation and fibrosis caused by 
Angiotensin-2/AT1R axis [43]. NRF2 also plays an important role in 
increasing interferon gene expression leading to anti-viral activity. In a 
study, Kesic et al. showed that NRF2 activators increases the expression 
of RIG-1 and IFN-β, thus enhancing anti-viral activity [44]. 

3.3. NRF2 activation and inhibition of NF-kB and inflammatory 
modulators 

NRF2 inhibits IKK activation and thus inhibiting proteosomal 
degradation of IKB. Thus, inhibiting activation of NF-kB. Secondly, 
NRF2 and NF-kB binds to the same ARE region of the genome. Thus, 
activation of NRF2 leads to increased levels of NRF2 and thus more 
NRF2 binds to ARE Region of the genome and NF-kB is inactivated [42]. 
Along with this, activation of NRF2 also suppresses generation of in
flammatory factors such as TNF-α, IL-6, MCP-1, MIP2 [45]. In addition 
to this, NRF2 activation also downregulates expression of various 
adhesion molecules such as Selectins and VCAM-1 [46]. TLR expression 
is upregulated in NRF2 Knockout mice, when compared to wild type, 
showing the role of NRF2 in TLR expression [47]. 

3.4. NRF2 activation and anti-apoptotic effect 

NRF2 downregulates and decreases the expression of Bcl-2/Bax in 
lungs, which is upregulated in viral infections. In viral infections, ac
tivity of caspases 3 and 9 are also upregulated, which is downregulated 
by NRF2, thus decreasing overall apoptosis [48]. 
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4. Biology of SARS-CoV and its crosstalk with NRF2 

SARS-CoV genome consists of both structural and non-structural 
proteins. Structural proteins consists of Spike(S), Envelope(E), Mem
brane(M) and Nucleocapsid(N) and other accessory proteins like ORF3, 
6, 7a, 8 and 9b, that interacts with the host cells and are responsible for 
replication of the genome [49]. The RBD is located on the S-protein of 
the SARS-CoV(structural protein) which interacts with the ACE2 of the 
host cells, allowing entry of the virus into the host body [50]. ACE2 
converts Angiotensin-2 to Angiotensin- [1–7]. Use of ACE inhibitors like 
Captopril and angiotension receptor blockers like losartan, which are 
generally prescribed to cardiovascular patients [51] across the globe, 
has been considered for COVID-19, because Angiotension-2, which is a 
target for ACE inhibitors, has vasoconstrictive, proinflammatory, pro- 
oxidative and prothrombic effects [52]. But, use of these inhibitors al
ters the ACE/ACE2 ratios and increases the ACE2 levels, thus potentially 
increasing the docking sites for entry of the virus [53]. NRF2 deficiency 
has been shown to increase ACE2 levels, whereas NRF2 activators have 
been shown to reduce ACE2 levels, thus suggesting that ACE2 levels may 
decrease upon NRF2 activation, thus decreasing the overall docking sites 
for viral entry [54]. 

Also upon activation of NRF2, secretory leukocyte protease inhibitor 
(SLPI) production is increased, which is an anti-protease which inhibits 
serine protease activity. It also protects the target cells from viral 
infection by decreasing TMPRSS2 expression by binding to its promoter 
region [55]. Hence, these activators can prevent the cell against any 
viral infection and replication [42]. In a study by Lizuka et al. (2005), it 
is found that SLPI is not expressed in NRF2 knockout mice and thus it 
disturbs the protease/anti-protease balance, and thus exposes the cells 
to inflammation. They also found out that SLPI gene expression was 
elevated by activation of NRF2 and by thus maintaining protease/anti 
protease balance [56]. In a similar study conducted by Ling JX et al. 
(2012), it was proved that an oral administration of NRF2 activator 
(EGCG), decreased the viral infection and viral replication in lungs, thus 
increasing the survival [42]. 

Like other coronavirus, novel SARS-CoV-2019 modulates the host 
translational mechanisms to generation its own proteins [57]. To 
counteract this, the host inactivates the eukaryotic initiation factor 
(EIF2)by inactivating two cellular kinases, protein kinase R(PKR) and 
PKR-like endoplasmic reticulum kinase(PERK), both of which is acti
vated in SARS-CoV infection [58]. PKR has been known to upregulate 
the autography cargo protein p62, that competes for KEAP1 binding 
with NRF2 [59], thus promoting autographic degradation of KEAP1 
[60] and releasing free NRF2, thus increasing its transcriptional activity. 
SARS-CoV infection triggers the host Unfolded Protein Response (UPR), 
as host tries to block the translation of coronavirus proteins. UPR leads 
to activation of PERK [61]. PERK phosphorylates and activates NRF2 
[62]. Thus, this is the first point that shows that NRF2 activation may 
slow down corona viral infection [19]. 

Coronavirus is a RNA Virus and it is shown that cells that are infected 
with RNA virus recognize the viral molecular patterns of nucleic acids by 
the help of cytoplasmic and endosomal receptors. Some of the RNA 
sensor receptors that are present are retinoic acid-inducible gene 1 (RIG- 
1) and Melanoma differentiation-associated protein 5 (MDA-5) [63], 
and DNA sensor receptors that are present are cyclic GMP-AMP Synthase 
(CGAS). These sensor receptors mediate immune response via Adaptor 
Protein stimulator of interferon genes(STING) [64]. Upon activation of 
STING it leads to increase in transcription of IFN 1 and IFN 3 genes via 
activation of interferon regulatory factor 3(IRF-3) [64]. SARS-CoV has 
been shown to antagonize and decrease STING-Mediated immune 
response [65,66]. IFN 1 is necessary for restricting viral replication and 
thus spread, mainly by activating autocrine and paracrine type 1 IFN 
receptor, but excessive release of IFN 1 by infected pulmonary alveolar 
cells and macrophages may lead to more infiltration of monocyte 
derived macrophages, thus may potentiate inflammatory damage [67]. 
NRF2 prevents this exacerbation of inflammatory response by IFN-1, by 

partly downregulating STING expression [68]. Therefore, NRF2 reduces 
inflammation by decreasing excessive production of IFNs(IFN-1 in 
particular) [69]. 

Apart from this, upregulation of NRF2 also activates heme oxygenase 
1(OH-1), which has been known to be effective against many viruses 
including HIV, Hepatitis and Ebola viruses [70]. OH-1 performs anti- 
viral actions mainly by forming a heterodimer complex with IRF3 
[71]. Due to the formation of this heterodimer complex, it leads to 
phosphorylation of IRF3 and thus translocation of IRF3 into nucleus, 
thus inducing the expression of type-1 IFNs [19]. Therefore, we have 
seen that NRF2 activation leads to partial decrease in IFN1 levels by 
antagonizing STING expression, and also partly increasing IFN1 levels 
by increasing OH-1 transcription and thus increasing phosphorylation 
and translocation of IRF3 into the nucleus (Refer Fig. 1). 

Apart from the above mechanism, many other mechanisms has been 
known for the anti-viral activity by OH-1, that is extrapolated for SARS- 
CoV-2019 [19]. One of the mechanism by which(OH), can help in SARS- 
CoV infection is by helping in degradation of heme to form three 
products, biliverdin, Fe+2 and CO, with each of them having anti-SARS 
CoV activity [19]. Coronaviruses require two major viral proteases 
viz.3C-like protease(3CL-pro) and papain like protease(PLpro), for the 
process of viral polyproteins and essential for viral replication [72]. Both 
of these proteases share a high degree of homology and known to be 
inhibited by biliverdin [73,74]. Biliverdin is thus expected to inhibit 
both of these proteases in SARS-CoV and thus its production of viral 
polyproteins and thus viral replication. Free Fe+2 released by degrada
tion of heme binds to metal binding domain of RdRP of various viruses 
resulting in inhibition of its enzymatic activity [75,76]. SARS-CoV is also 
having such metal binding domain and thus a similar mechanism is 
expected in SARS-CoV [77], as well for Novel Coronavirus. CO inhibits 
an increase in ROS levels, by activating soluble guanyl cyclase (sGC), 
this leads to increase in levels of c-GMP locally, and thus activates 
protein kinase G(PKG) [19], PKG further inhibits NADPH oxidase(NOX), 
which is responsible for ROS production, thus decreasing overall ROS 
load [78]. When these mechanisms are viewed in context with SARS- 
CoV, it is believed to hold promising result against SARS-CoV. 

5. NRF2 activators versus other anti-inflammatory therapies 
used in Covid-19 

The worsened inflammation seen in COVID-19 patients could 
potentially be treated with anti-inflammatory drugs such as corticoste
roids and non-steroidal anti-inflammatory drugs (NSAIDs), and by other 
therapies like monoclonal antibodies [79]. While results with NSAIDs 
are inconclusive in people with COVID-19 [80], ibuprofen, an NSAID, 
has been shown to impair the function of neutrophils, their recruitment 
to the inflammatory site, and the resolution of inflammatory processes in 
patients with pneumonia [81]. However, ibuprofen is associated with 
higher rates of nephrotoxicity [82], cardiovascular disease and stroke 
[83] and appears to increase the risk of these outcomes in ARDS [84]. A 
significant difference between NSAIDs and NRF2 activators is that NRF2 
elicits a much more integrated regulation of the inflammatory response 
as it is necessary for both execution and resolution. In addition, by 
regulating the endogenous cytoprotective systems, NRF2, may be a more 
physiological role in achieving a balance between the beneficial and 
adverse effects of inflammation [19]. 

Corticosteroids are used in COVID-19 for the treatment of cytokine 
storm. Indeed, the RECOVERY trial (randomized evaluation of COVID- 
19 therapy), a multi-center randomized clinical trial in COVID-19 pa
tients from National Health Service (NHS) hospitals in the UK, found 
that low-dose dexamethasone, a corticosteroid, reduced mortality in 
ventilated-driven patients and in patients receiving oxygen alone, 
although it had no effect in patients receiving no respiratory support. 
However, use of corticosteroids have some limitations like, use of cor
ticosteroids for the treatment of COVID19 infection showed restrictions 
primarily related to the suppression of specific immunity and an 
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increased risk of secondary bacterial pneumonia [85]. Another, alter
native to these conventional therapies that are used in COVID-19 and 
very much effective are the drugs that target cytokines involved in the 
cytokine storm of COVID-19 includes use of monoclonal antibodies. 
Currently monoclonal antibodies that are used in COVID-19 for the 
treatment of cytokine storm includes tocilizumab (anti IL6), anakinra 
(anti IL1), secukinumab (anti IL 17A), canakinumab (anti IL1β), rukso
litinib phosphate (JAK kinase inhibitor), etc. But, these monoclonal 
antibodies can only target one of the many inflammatory cytokines, and 
thus have a limited action. Thus, it becomes very important to find other 
therapies to prevent cytokine storm in COVID-19 [86]. Use of NRF2 
activators represents an excellent alternative or parallel to this mono
clonal antibodies as well for corticosteroids because it is known that 
NRF2 inhibits IL-6, IL-1β, IL-17 gene expression [36]. 

6. Sirtuins: an introduction 

Histone deacetylases (HDACs) are categorized under a group of en
zymes that are responsible for the removal of acetyl group from ε-N 
–acetyl lysine amino acid residues from histone as well as non-histone 
proteins [87]. Till today there are around 18 HDACs that have been 
discovered in humans. 

HDACs have been classified into two families (‘classical’ and ‘sir
tuins’) and into four classes (Class1, Class2, Class3 and Class4) [88]. 
Sirtuins belong to Class 3 Histone deacetylases with highly conserved 
NAD+ domain, having high sequence similarity with yeast 

Saccharomyces cerevisiae Protein Sir2(silent information regulator 2) and 
having no sequence similarity with traditional HDACs [89]. So, sirtuins 
are also enzymes that catalyze post translational modification of histone 
and non-histone proteins. There are seven types of sirtuins in mamma
lian families, differing in localization, enzymatic activities and targets 
have been identified [90]. SIRT1 and SIRT6 are found predominantly in 
nucleus, SIRT2 is found in cytoplasm and SIRT3, SIRT4 and SIRT5 are 
found in mitochondria [91]. In one of the studies, published in 1999, it 
was seen that overexpression of Sir2 increases lifespan in yeast [92]. In 
2000, a research study showed and identified Sir2 as an NAD+ depen
dent HDAC that performs deacetylation of lysine 9 and 14 of Histone 
(H3) and lysine 16 Histone (H4) showing that sirtuins and its deacety
lation activity may play a role in longetivity in yeast [93]. Firstly, they 
were only known to perform deacetylation, but recently they have been 
found to catalyze a large number of other post translational modifica
tions as well, such as desuccinylation, demalonylation and deglutar
ylation [94,95]. SIRTs have been classified as class-3 Histone 
deacetylases(HDACs), as they use Nicotinamide Adenine Dinucleotide 
(NAD) as a cofactor, differing from class-1 and class-2 which uses zinc as 
a cofactor instead. They are involved in large number of cellular func
tions and are operated by various stimuli, including metabolic changes, 
inflammatory signals and oxidative stress [96–99]. Majorly disruption of 
redox cellular homeostasis affects SIRTs, by either inducing or repres
sing its expression and finally leading to post translational modifications 
like cysteine oxidation or nitrosylation, leading to its inactivation [100]. 

Fig. 1. This reflects the various steps of viral cycle (1) The viral spike (S) protein binds to to ACE2 causing virion entry (2) Uncoating of the viral nucleocapsid in the 
cytoplasm of the host cell. (3) Specific viral proteins are formed as a result of translation of the viral positive-sense single-stranded RNA (+ssRNA) and final cleavage 
of the translation product. The DNA/RNA sensor cGAS is activated by the viral RNA inside the host cell, which signals through the adaptor STING, and leads to 
induction of type I and type III interferons (IFNs). In turn IFN production is repressed by NRF2 by downregulation of STING expression [56]. (4) NRF2 brings about 
induction of HO-1 expression, producing Fe2+ that could bind to the divalent metal-binding pocket of the RNA-dependent RNA polymerase (RdRp) of SARS-CoV2 
and inhibit its catalytic activity bringing about replication of viral genome (5) Double-stranded RNA-activated protein kinase R (PKR) conducts the host defense, 
which also phosphorylates eIF2 and inhibits protein translation. p62 is phosphorylated by PKR, thus bringing about NRF2 activation upon removal of its repressor 
KEAP1 by autophagy. Inhibition of protein translation in turn activates the unfolded protein response (UPR). PERK, a crucial Ser/Thr protein kinase in UPR signaling, 
brings about NRF2 phosphorylation leading to its stabilization and increased transcriptional activity (6) Virion assembly (7) Release of viral particles. Abbreviations: 
ACE2, angiotensin-converting enzyme 2; eIF2, eukaryotic initiation factor 2; ER, endoplasmic reticulum; ERGIC, ER–Golgi intermediate compartment; HO-1, heme 
oxygenase 1; IFN, interferon; KEAP1, Kelch-like ECH-associated protein 1; NRF2, nuclear factor erythroid 2 p45-related factor 2; PERK, PKR-like endoplasmic re
ticulum kinase; P, phosphorylation; PKR, protein kinase R; STING, stimulator of interferon genes[141] 
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7. Sirtuins and COVID-19 

7.1. SIRT1 and its role in combating COVID-19 

Of utmost interest is SIRT1, which downregulates ADAM 17 (A 
Disintegrin and Metalloproteinase Domain 17), also called TNF-α con
verting enzyme (TACE), by increasing expression of TIMP3, the gene 
that encodes for tissue metalloproteinase inhibitor 3 [101]. As a 
consequence, the levels of TNF-α, IL-1β and IL-6 decreases. An increase 
in TNF-α causes SIRT1 to down-regulate ADAM 17, thereby controlling 
TNF-α formation in a negative feedback loop that secondarily influences 
IL-1 β and IL-6 production, which are dependent on TNF-α [101]. If 
ADAM17 expression is not downregulated by SIRT1, TNF-α and IL-6 are 
released, resulting in an uncontrolled hyperinflammatory response as 
may occur with COVID-19 [101,102]. SIRT 1, by inhibition of ADAM17 
and thereby TNF-α and IL-6, performs an anti-inflammatory function. If 
oxidative stress is severe, increased ADAM17 attempts to ameliorate 
tissue injury by converting active iron (Fe2+) to its inert form (Fe3+) 
which is stored in hepatocytes and macrophages and as ferritin by means 
of the Fenton reaction (Fe2++ H2O2 → Fe3++ HO% + OH− ), (Fe3++

H2 O2 → Fe2+ + HO2% + H+). This also potentially transforms hae
moglobin to methaemoglobin, reducing its capacity to bind to oxygen 
[103,104]. 

SIRT1 not only controls and modifies the inflammatory response, but 
along with the Sirtuin family (SIRT1–7) is also a primary defense against 
DNA and RNA viral pathogens [105]. In some respiratory infections and 
cardiovascular conditions, SIRT1 promotes autophagy (the destruction 
of damaged or redundant cellular components occurring in vacuoles 
within the cell), and in so doing inhibits apoptosis and provides pro
tection against hypoxic stress. Upregulation of SIRT1 directly decreases 
viral replication and inhibits the activation of ADAM17, thereby 
decreasing TNF-α, IL-1β and IL-6. Conversely depletion of SIRT1 allows 
for increased viral replication with little or no inhibition of ADAM17 
activity, causing uncontrolled increase in TNF-α, IL-6 and IL-1β levels. 
Whereas an increase in TNF-α would usually increase SIRT1 activity to 
downregulate ADAM17, in the presence of a deficiency of NAD+ or 
Zn++, this would not occur due to insufficient activation of SIRT1, 
causing an unchecked increase in TNF-α. Given the above, it is possible 
that activation of SIRT1 may be a crucial factor in the prevention of the 
hyperinflammatory response and may be necessary for a successful de
fense against viral attack [103]. 

Resveratrol, a SIRT1 activator, directly inhibits viral replication, but 
apart from this it also performs inhibitory functions on the pathogenetic 
mechanism involved in COVID-19 severity. These include dysregulated 
NLRP3 inflammasome activation, renin-angiotensin system dysfunction, 
and kinin− kallikrein system stimulation. These inhibitory functions are 
mediated by the induction of Sirt1 protein and of Sirt1-induced upre
gulation of ACE2 protein expression. This proves that resveratrol func
tions as a SIRT1 activator in treatment of COVID-19 [106](Refer Fig. 2). 

7.2. Role of nutrition and diet as Sirtuin activators for prophylaxis in 
COVID-19 

7.2.1. Natural polyphenols 
It is shown that supplementation of polyphenols in Covid-19 may 

help in preventing SARS-CoV2 viral infection by two ways: 1)Prevention 
of viral entry by binding to the ACE2 receptor and 2)Regulation of 
consequences of SARS-COV2 on lungs by regulating the expression of 
ACE2 [107]. According to 2013 study published in the Journal of 
Nutrition, eating a diet rich in polyphenols, results in longevity and de
creases mortality in adults [108]. Dietary foods that are rich in poly
phenols includes berries, olive oil, coffee, green tea, dark chocolate, 
turmeric, ginger, etc. Consuming these foods can help the body have 
balanced and optimized Sirtuin activation. 

7.2.2. Zinc rich foods 
Zinc is one of the most important nutrient to keep your immune 

system strong. Supplementation of zinc in case of Covid-19 has not been 
studied extensively. But the data available from literature suggests great 
benefits of zinc supplementation. It improves the mucociliary clearance, 
strengthens the integrity of the epithelium, decreases viral replication, 
preserves antiviral immunity, attenuates the risk of hyper-inflammation, 
supports anti-oxidative effects and thus reduces lung damage and 
minimized secondary infections [109]. However, in randomized clinical 
trials on ambulatory patients diagnosed with SARS-COV2 infection, 
when treated with high dose of zinc gluconate, ascorbic acid or a com
bination of both, did not significantly decrease the duration of symptoms 
when compared to standard care [110]. In a study published in 2016 by 
PLoS One, zinc may increase both mean and maximum lifespan by 
various longevity pathways [111]. One of those pathway is the activa
tion of Sirtuin pathway. Regular diet that are rich in zinc includes fish, 
red meat, dairy products, eggs, nuts, spinach, etc. Consuming these 

Fig. 2. Antiviral activity of SIRT1 activators in curbing the pathogenetic mechanism involved in COVID-19 severity [142].  
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foods can help the body have balanced and optimized Sirtuin activation. 

7.2.3. Omega-3 fatty acids rich foods 
Omega-3 Fatty Acids are one of the most important healthy fats that 

help to reduce chronic inflammation. In case of Covid-19, it presents 
various other benefits like prevention of the viral entry by changing the 
composition of the fats in the lipid membrane of the cells. Other benefits 
include prevention of activation of NF-KB, IL-6, and other similar pro- 
inflammatory mediators by various mechanisms, and thus decreasing 
the inflammation associated with SARS-CoV2. It also plays a role in 
increasing the phagocytic clearance capacity of the macrophages, thus 
helps to clear viral load. Apart from this, it also helps to modulate both 
innate and acquired immunity [112]. According to a study in 2013, 
supplements of omega-3 fish oil helps to lower inflammation and 
oxidative stress, and thus increasing lifespan and decreasing mortality 
[113]. In a study conducted in 2018, it was observed that Omega-3 Fatty 
acid attenuates the inflammatory response through SIRT-1 [114]. Foods 
that are rich in Omega-3 Fatty acids includes Fish and other seafoods, 
algae, flax seeds, chia seeds, walnut, etc. Consuming these foods can 
help the body have balanced and optimized Sirtuin activation. 

7.2.4. Vitamin(B3) rich foods 
Vitamin B3 or Niacin is very important for brain and mental activity, 

along with many other cellular and metabolic functions. Vit-B3 serves as 
an important precursor for NAD and NADP biosynthesis, both of them 
vital during systemic chronic inflammation [115]. Recent, evidences 
showed that increase in NAD+ levels, helps to decrease pro- 
inflammatory cytokines like IL-1, IL-6 and TNF-α, of which IL-6 is the 
major cytokines involved in Covid-19 Cytokine Storm [116]. It also re
duces neutrophil infiltration and thus inflammation in acute lung injury 
[117]. Apart from these, it helps to prevents viral replication and 
strengthens the body’s defense mechanisms. Taking this account this can 
be used as an adjunct therapy for Covid-19 [118]. A study conducted in 
2013 shows that niacin supports energy metabolism and lifespan. Acti
vation of Sirtuins by the study conducted in 2019, by niacin by meta
bolism to NAD+ [119]. Foods that are high in niacin include liver, other 
organ meats, grass-fed red meat, pasture-raised poultry, wild-caught 
fish, nutritional yeast, grass-fed dairy, algae, seaweed, and mush
rooms. Consuming these foods can help the body have balanced and 
optimized Sirtuin activation. 

7.3. Effect of lifestyle (activities promoting SIRT1 activation) on 
prophylaxis to COVID-19 

7.3.1. Calorie restrictions (fasting) 
Fasting, an intentional abstinence from food for a period of time, is 

practiced as a religious ritual known to have a myriad of health benefits, 
including strengthening immunity, resistance to stress, slowing the 
aging process, and prolonging the health of the body longevity without 
noticeable side effects. Along with these it also activates autophagy 
[120], which helps to boost the immunity [121]. Since, one of the 
symptoms of Covid-19 is low immunity and inhibition of autophagy, 
fasting can be a measure to increase the immunity by either directly 
activating the immune response or by inducing autophagy, both which 
are compromised in Covid-19 [122]. A paper published in 2014 [123], 
tried to show a molecular link between Sirtuin activation and Calorie 
Restrictions(Fasting) [123]. It was observed that Sirtuins sense low 
calories and mediate the beneficial effects of Calorie Restrictions via its 
activation. Thus, fasting or calorie restrictions can help the body to 
activate Sirtuins. 

7.3.2. Exercise 
Emotionally and physically, the benefits of exercise are enormous. It 

has two roles in Covid-19, one is via enhancing the mood, sleep quality 
and decreasing the stress and anxiety that may be aroused due to this 
pandemic [124]. On the other hand, exercise with an appropriate 

intensity is associated with better immune system responses against 
viral respiratory infections [125]. However, the connection between the 
immune system and the physical activity is a J shaped one. The physical 
activity must be kept moderate enough, otherwise uncontrolled and 
prolonged high-intensity physical activity may have other opposite 
consequences like immunosuppression [125]. These depends on the 
duration and intensity of exercise. High intensity exercises results in 
leukocytosis that is mediated by an increased number of Neutrophils, T 
and B lymphocytes and NK cells in the systemic circulation, making the 
immune response against antigens a little blunt [126]. This is explained 
by activation of the hypothalamic-pituitary-adrenal axis [126]. As the 
intensity of exercise increases, more the sympathetic system is stimu
lated and more is the release epinephrine and nor-epinephrine. This has 
to correlated with increased release of catecholamines and corticoste
roids upon sympathetic stimulation [127]. Catecholamines when 
circulating in the blood then recruit lymphocytes [127], and thus 
decreasing the immune response against virus. In contrast to this, 
moderate intensity exercises serves as “immuno-enhancing” [126]. Low- 
intensity exercise results in an increased NK-Cells cytotoxic activity, 
increase in IL-2 production and increase in neutrophil phagocytic ac
tivity [126]. Hence, this shows that low to moderate exercise may be 
helpful in case of Covid-19 by enhancing immune response against an
tigen(viral in this case) [128]. According to a study conducted in 2009, 
exercise offers anti-inflammatory and anti-oxidative benefits and may 
increase Sirtuin’s activity [129]. Sirtuins can be activated by Cyclic- 
AMP(c-AMP), which is activated by exercises and physical activity 
[130]. Thus, exercise can be used as a mean of activating Sirtuins in the 
body. 

8. Crosstalk between Sirtuins and Nrf2 

We have already discussed the role of NRF2 in combating oxidative 
stress by mainly two mechanisms: 1)By upregulation of mitochondrial 
anti-oxidant enzymes 2)By inhibition of NF-k B, which is a key modu
lator of inflammatory cascade leading to more oxidative stress [131]. 

The fact that sirtuins are involved in Antioxidant and Redox 
Signaling(ARS), comes from the fact that many of the molecules of the 
Antioxidant Response Element(ARE), mediates signaling processes via 
transcriptional regulation of gene expression in cells exposed to oxida
tive stress [91]. The ARE uniquely sense alterations in redox homeo
stasis due to biological and structural features and thus triggers 
transcriptional responses mediated mainly by Nuclear Factor E2-related 
factor 2(NRF2). 

Sirtuins are NAD+ dependent class-3 Histone deacetylases(HDACs), 
which deacetylases various proteins and genes involved in oxidative 
stress and anti-oxidant pathways. One of the proteins that is involved in 
anti-oxidant pathway and also is deacetylated by Sirtuins is NRF2. 
Under normal conditions, NRF2 is bound to CUL3 and KEAP1, and 
labelled for proteosomal degradation via polyubiquitination [132]. But 
in case of oxidative stress, this CUL3/KEAP1 mediated proteosomal 
degradation is hindered and thus it makes NRF2 free. This free NRF2 
then translocates to the nucleus and there it binds to small maf proteins 
forming a heterodimer [133,134]. This heterodimer then binds to pro
moter region of the DNA which is responsible for transcription of anti- 
oxidant enzymes, known as anti-oxidant response element(ARE) or 
Electrophilic response element(ERE), increasing transcription of anti- 
oxidant enzymes and thus anti-oxidant redox signaling [135]. 

In a very recent study it was shown that SIRT2 deacetylates NRF2, 
resulting in decrease in its total and nuclear levels [136]. Also SIRT2 has 
been shown to modulate nuclear NRF2 levels by AKT phosphorylation, 
leading to modulation in levels of Glutathione(GSH) and glutamate 
cysteine ligase(GCL), indicating important role of SIRT2 in ARE [137]. 
SIRT1 has also been shown to be involved, as knockdown of SIRT1 has 
been shown to inhibit the expression of NRF2, Heme Oxygenase(OH-1) 
and SOD, eliminating the neuroprotective action of SIRT1 induced by 
hyperbaric oxygen preconditioning against transient focal cerebral 
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ischemia [138]. SIRT1 activator, resveratrol have been found to 
modulate NRF2-mediated antioxidant protein expression to promote 
neuroprotection against cerebral ischemic injuries [139]. BML-278, EX- 
527, Piceatannol, Salermide, SirtAct, Sirtinol, Splitomicin, Triacetyl 
resveratrol are other SIRT1 activators which could be possibly tested for 
their role in alleviating the pathophysiology of COVID-19. SIRT6 has 
been found to activate NRF2 in order to protect Human Mesenchymal 
cells(hMSCs) from oxidative stress [140]. 

NRF2 interacts with sirtuins for increasing anti-oxidant redox 
signaling and to maintain redox homeostasis. Sirtuins deacetylates NRF2 
and thus increasing its transcription by epigenetic modifications [91]. 

9. Conclusion 

We therefore conclude that the two major host cell factors TMPRSS2 
and ACE2 are responsible for the virus action in host body and could be 
the novel targets for further drug discovery. Not only in viral propaga
tion inside the host cells but also the inflammatory response of the host is 
crucial in determining the disease spell on the target. Inflammatory 
response of the host is inflicted by increased number of free radicals, 
oxidative stress, cytokine storm, leukopenia and granulocytosis. NRF2 
activators can thus be a torch of hope because they have multiple facets 
to their mode of action. Suppression of pro-inflammatory genes, IL-6 and 
IL-1β depict the anti-inflammatory role of NRF2. It also induces 
macrophage-specific genes responsible for tissue repair. Also, SLPI 
production is increased on activation of NRF2 which inhibits serine 
protease activity. NRF2 decreases TMPRSS2 expression by binding to its 
promoter region and protects the viral cells from replication. NRF2 also 
elevates ACE2 and AT2R levels and thus helps in preventing lung 
infection. It suppresses OS mediated fibrosis as well as inflammation by 
decreasing serum Angiotensin 2 and AT1R levels. NRF2 also inhibits NF- 
kβ as NRF2 and NF-kβ both compete to bind to the same ARE region of 
the genome and when NRF2 is activated more levels of NRF2 will ulti
mately lead to NF-kβ inhibition. NRF2’s anti-inflammatory mechanism 
is also linked to its ability of suppressing generation of other inflam
matory factors like TNF-α, IL-6, MCF-1, etc. Another mechanism 
important for its action is that it downregulates expression of apoptotic 
factors like Bax-BCl2 in lungs alone with upregulatory activity of Cas
pases 3 and 9 that is downregulated by NRF2 and finally decreases 
apoptosis. Sirtuins are also linked to NRF2. Sirtuins are involved in Anti- 
oxidant and Redox Signaling (ARS) and NRF2 is one of the proteins 
deacetylated by Sirtuins and thus increases its transcription by epigentic 
modifications. Both SIRT1 and SIRT2 are linked with NRF2, most 
prominent being SIRT1, as absence of SIRTs by knocking them down will 
inhibit the expression of NRF2. Therefore SIRT activators are also crucial 
and can play an important role in alleviating COVID-19 symptoms by 
various mechanisms and SIRT1 activators in the form of food and life
style too can help in combating COVID-19 as described in detail above. 
We therefore propose that NRF2 activators /and SIRT activators can be 
potential therapeutic agents in the treatment and alleviation of COVID- 
19. 
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L. Ferrucci, et al., High concentrations of a urinary biomarker of polyphenol 
intake are associated with decreased mortality in older adults, J. Nutr. 143 (9) 
(2013) 1445–1450. 

[109] I. Wessels, B. Rolles, L. Rink, The potential impact of zinc supplementation on 
COVID-19 pathogenesis, Front. Immunol. 11 (July) (2020) 1–11. 

[110] S. Thomas, D. Patel, B. Bittel, K. Wolski, Q. Wang, A. Kumar, et al., Effect of high- 
dose zinc and ascorbic acid supplementation vs usual care on symptom length and 
reduction among ambulatory patients with SARS-CoV-2 infection: the COVID a to 
Z randomized clinical trial, JAMA Netw. Open 4 (2) (2021) 1–10. 

[111] J. Kumar, T. Barhydt, A. Awasthi, G.J. Lithgow, D.W. Killilea, P. Kapahi, Zinc 
levels modulate lifespan through multiple longevity pathways in Caenorhabditis 
elegans, PLoS One 11 (4) (2016) 1–21. 

[112] D. Hathaway, K. Pandav, M. Patel, A. Riva-Moscoso, B.M. Singh, A. Patel, et al., 
Omega 3 fatty acids and COVID-19: a comprehensive review, Infect Chemother. 
52 (4) (2020) 478–495. 
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