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Abstract

In this paper, we examine the static connectivity of 2D and 3D arrays of spherical cells with conductive paths, and the
associated power dissipation in the individual cells. Herein, we use the term ‘‘cellular material’’ to describe the ensemble of
many cells, in contrast to the more traditional use of the term for foams and honeycomb materials. Using a numerical
analytical approach from highly parallel resistor arrays, we examine the cells and ensemble structures in terms of their
connectivity, defined as the number of cells that are dissipating power, as well as the redundancy and robustness to
localized cell failure. We examine how the connectivity changes with the geometry of the conductive cell surface area, and
in particular, the percentage of the cell half that is conductive and makes contact with neighboring cells. We find that the
best connectivity exists when the conductive surface of the cell is approximately 80% of the hemisphere surface, addressing
the tradeoff of maximizing contact with neighboring cells while minimizing shorts in the structure. In terms of robustness,
the results show that, for the proposed circular and spherical cell design, the connectivity is a nearly linear function of the
number of disconnects, indicating that there is not a catastrophic effect of isolated cell failures. In terms of structure size, the
connectivity appears to plateau at around 60% for the planar structures and around 50% for the cubic structures of around
500 cells or greater with random cell orientation.
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Introduction

This paper presents work related to the analysis and design of

spherical cells that, due to conductive contact with their neighbors,

form spatial conductive arrays. This type of system has potential

applications in a number of different areas, such as active materials

[1–3], multifunctional and smart structures [4,5], or basic science

related to packing [6,7]. The authors, for instance, are interested

in the eventual development of actuated cellular materials, where

an active material actuator can form the core of a quasi-passive

cell that contracts when current is passed through it. Large groups

of these cells can be fused together in essentially arbitrary

geometries to form complex articulated structures that would be

difficult or impossible to make with traditional approaches (see

Figure 1). From an engineering perspective, this approach may

provide advantages over traditional mechanism and structures-

based design, namely by providing a material basis for larger

components, which can be produced inexpensively in high

volume. This approach may also provide advantages to in

constructing ensembles of cellular materials as flexible conductive

elements or as sensor networks embedded in materials.

The focus of this paper is science precursory to the construction

of the physical cells mentioned previously, namely an analysis of

the connectivity and not the potential applications, so the

remainder of the paper will focus on the connectivity under the

following assumption: given cells with two-terminal surface

geometry and connecting resistance, what parameters of the cell

construction are relevant to determine the overall resistor network

structure. The approaches taken in this paper draw on previous

results of analyzing arbitrary resistive circuits as weighted graphs.

An introduction to these techniques can be found in a review of

distributed sensor network methods [8]. Other previous work

analyzes the problem of solving arbitrary nodal network repre-

sentations of resistive networks through more traditional circuit

analysis techniques [9–11].

There exists a vast body of literature addressing the problem of

jammed packings [12–15]. There also exists a significant amount

of work on thermal conductivity in jammed packings. If we were

considering the problem of electrical conductivity of solid or shell

metallic sphere granular material, electrical conductivity would be

quite related to the problem of thermal conductivity through the

Wiedemann-Franz law [16–18]. However, the problem we are

addressing is different in two key aspects due to the construction of

the cells presented in this paper: (1) the proposed cell design has

two conducting terminals that do not span the entire hemi-circle/

sphere and (2) the conductive element connecting the two

terminals through the center of the cell is a different material

than the conducting terminals.

Methods

A. Cell design
The most important aspect of the cell design is the geometry of

the cell terminals and material connecting the two terminals. Each

cell consists of two conducting terminals with a conductive element

connecting the two terminals, as shown in Figure 1. Because the
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cell terminals do not span the entire hemi-circle/sphere of the

cells, the connectivity is different than that of conductive granular

material. The size of the terminals is one of the primary variable

parameters explored in this paper and the effect on connectivity as

a function of the cell terminal size and the random orientation of

the cells in the packing.

B. Cell packing
After determining the geometry of the active cells – herein taken

to be nominally circular 2-dimensional cells and spherical 3-

dimensional cells – the next aspect of critical importance is the

packing of the cells. While we take a basic approach to cell packing

in this paper, many of the techniques, terminology, and

considerations for analysis existent in the packing literature will

be applicable for any packings that result during the process of

arranging cells. A thorough review of jammed hard-particle

packing, including the effects of geometry, achievable configura-

tions, and the lexicon for packing literature are given by Torquato

and Stillinger [13]. Other packing literature also takes into

account inter-particle interactions such as friction, normal forces,

and gravity [7,19]. In the simulations given in this paper, we

modify the packing technique from [20] to consider cells that are

first randomly placed, then packed by moving the upper boundary

until jammed packing is achieved. During these simulations, inter-

cell forces are computed and arbitrary viscous damping of cell

motion is applied for packing stability. A small-scale example of

indicative packing is shown in Figure 2-C. Figure 2-A and 2-B

show worst-case and best-case examples of packing, respectively.

From a macroscopic view of the entire structure, the packed

structure begins to look like a bulk conductor, where the degree of

homogeneity is related to the degree of cell connectivity. When

able to treat the structure as a homogenous bulk conductor, the

equivalent resistance across the structure is

Req~r
A

‘
, ð1Þ

where r, A, and ‘ are the characteristic parameters for the

resistivity, cross-sectional area, and length of the cell materials,

respectively. Note that A is not the cross-sectional area of the

structure because a relatively small portion of the structure,

namely the cell core and cell terminals, is conductive. A

characteristic cross sectional area could be determined by an

analysis of each prospective cell design.

Another characteristic that plays a role in determining this

characteristic bulk conductance is the cell-to-cell contact conduc-

tance through the ensemble. The contact conductance is a

function of the material properties of the cell terminals, the normal

force between adjacent cells, and the radius of the cells [21]. In our

analysis, we assume the simulations of jammed packings are

executed such that they result in cell-to-cell forces that are

approximately equivalent. The relationship between contact

resistance and contacting area is

Figure 1. Proposed cell design and fabrication method. A. A
potential cell design with a contractile shape memory alloy (SMA)
component and conducting terminals. Current flowing through the
SMA coil, due to an electrical potential between the two terminals,
causes resistive heating and subsequent cell contraction, and B. A
potential fabrication method of packing many cells into a mold or
arbitrary shape and adhering the cells together with a binding agent.
The properties of the structure can be adjusted through cell design and
the material properties of the binding agent.
doi:10.1371/journal.pone.0051695.g001

Figure 2. The effect of cell alignment on top to bottom connectivity. The type of cell packing and cell orientation play a critical role in the
parallel-series electrical connectivity between two points in the cell arrangement. Here we show the worst, best, and typical connectivity: A. a face-
centered cubic cell arrangement that results in no connectivity between rows of cell terminals, where no current will flows through the cells, B. an
ideal cell arrangement in a face-centered cubic packing and vertical alignment, which results in maximal parallel and series connectivity, and C. a
typical cell arrangement with random packing and random orientation, where the degree of parallel and series connectivity is between the
pathologic and ideal cases.
doi:10.1371/journal.pone.0051695.g002
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Rcontact~
r

2a
, ð2Þ

where r is the conductance of the terminal material and a is the

contact surface area between adjacent cell terminals. In turn, the

contact surface area between adjacent cell terminals is

a3~
3Fr�

4E�

r�~r=2

E�~
E

2(1{n2)
,

ð3Þ

where F is the normal force between cells, r is the radius of each

cell, E is the elastic modulus of the cell terminal material, and n is

the Poisson ratio of the cell terminal material. Given jammed

packings with uniform intercellular forces, the contact resistance

between each cell terminal pair will also be uniform. Interestingly,

given non-zero contact resistance between touching cell terminals,

the topology of the parallel-series resistive network does not

change. However, changing contact resistance will impact how

much power and where power is dissipated within the ensemble

structure. To fully analyze the impact of contact resistance, the

ratio of contact resistance, Rcontact, and cell core resistance, Rcore,

can be examined. From a microscopic view of small regions of the

structure, the size and shape of the entire structure will define the

boundary conditions. Current concentration near the boundaries,

similar to temperature concentrations in problems of heat

conduction and stress concentrations in problems of solid

mechanics, will necessarily occur in our array of active cells. To

help alleviate these current concentrations near the boundaries,

which could result in irreparable damage to cells or excessive

heating, we connect the current source across a large number of

cells at opposite boundaries of the structure.

C. Ensemble connectivity
Here, we analyze the connectivity of the structure by finding the

equivalent parallel-series resistor network and solve the Kirchhoff’s

nodal current equations. This analysis allows us to specify k node

currents and n{k node voltages and solve for the remaining n

unknowns. However, for the sake of simplicity, throughout the rest

of this paper we will assume that there is a current source

connected to two terminals that span two entire edges of cell array.

To illustrate the method, consider the simple parallel-series resistor

network shown in Figure 3. The node current equations for this

example are

V1{V2

R1
z

V1{V3

R3
z

V1{V4

R5
~I1,

V2{V1

R1
z

V2{V4

R2
~I2,

V3{V1

R3
z

V3{V4

R4
~I3,

V4{V1

R5

z
V4{V2

R2

z
V4{V3

R4

~I4,

ð4Þ

where Vi are the node voltages, Ii are the node currents, and Ri

are the individual resistor values. We manipulate Equation (4) by

writing each resistance as its equivalent conductance, Gi~
1

Ri

, and

writing the node currents as a linear function of the node voltages,

G1zG3zG5 {G1 {G3 {G5

{G1 G1zG2 0 {G2

{G3 0 G3zG4 {G4

{G5 {G2 {G4 G2zG4zG5

2
6664

3
7775

V1

V2

V3

V4

2
6664

3
7775~

I1

I2

I3

I4

2
6664

3
7775: ð5Þ

More generically, given an arbitrary resistor network represent-

ed as a graph with vertices being the nodes of equivalent electrical

potential and edges having the equivalent resistance between

nodes, the problem can be written as

GV~I, ð6Þ

where G is the Laplacian relating node voltages and node currents.

By nature, the Laplacian G is necessarily a rank deficient matrix.

This implies that as long as the vector of node currents is in the

column span of G, then solving for the node voltages will be

unique up to a constant bias factor. The eigenvectors of G are such

that any vector of node currents where

Ii~Isource,Ij~{Isource, and Ik~0 for k=i=j

is also in the column span of G. Because we are considering the

power dissipated through Joule heating in each cell, this bias factor

will be irrelevant,

Pi~V2
Ri

Gi, ð7Þ

where VRi
is the voltage difference across the i-th resistor, Gi is the

conductance of the i-th resistor, and Pi is the power in Watts

dissipated in the same resistor. The exact value of Gi will be a

function of both the cell’s internal resistance and the contact

resistance between adjacent cells. For a static structure where the

cell-to-cell forces are equivalent, the contact resistance does not

change the topology of the resistive cell network. However, it will

change how much power is being dissipated in the cell’s internal

resistance vs. how much power is being dissipated in the cell

terminals.

Figure 3. An illustrative parallel-series resistor network
analyzed via Kirchhoff’s laws.
doi:10.1371/journal.pone.0051695.g003
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Though not explored in this paper, one advantage of this

analysis technique it that is provides a natural method for further

describing the network of cells as a time-varying system, where the

resistance/admittance, power dissipation, and connectivity change

as a function of the independent variable time. The method of

analyzing the circuit through Kirchhoff’s laws for node voltages

and node currents trivially extends to structures with three-

dimensional connectivity. At no point was it necessary to resort to

Y-D transforms to simplify and analyze the resistive array.

Results

We make several simplifying assumptions during the simulations

presented herein. First, the simulations represent the power

dissipated in each cell. This does not necessarily indicate the

actual contraction of each cell as the relationship between power

dissipation, temperature increase, and eventual contraction

depends significantly on properties of the ensemble structure. In

particular, thermal conductance properties of the cells and binding

material will affect the relationship between power dissipation and

temperature. The mechanical properties of the binding material

will affect actual displacements of the structure because the

structure shape will always be at an energy minimum of the store

elastic energy between the cells and the binding material. Finally,

we consider the effects of temporary cell separations that may

occur during contractions of large numbers of cells. Certain levels

of stress concentration in local regions of the connective substrate

may cause temporary terminal separation during contraction of

the active cells.

A. Cell packing
In all simulations, cells are packed together using a simulation of

elastic circular/spherical particles with viscous damping as

described in [20]. Each cell is assumed to be an elastic particle

with coefficients of stiffness and damping. Three and seven sides of

the rectangular bounding box are fixed, for the 2D and 3D cases

respectively. The upper boundary is slowly moved downward until

jammed packing is achieved with an average interparticle force

above a specified threshold. In all cases, the final packing fraction

was greater than 78% for 2D packings and greater than 52% for

3D packings. The orientation of each cell was randomly chosen to

determine the effects of the cell terminal sizes and the number of

cells in the packing on the connectivity and power dissipated.

During the packing, the cells are assumed to have solid disk or

solid sphere geometry regardless of the size of the cell terminals.

B. Ensemble connectivity
Figure 4 illustrates the process of simulation and analysis of the

connectivity for a 2-dimensional array of cells. First, the cells are

placed according the cell packing rules given previously. Subse-

quently, cell connectivity is determined by analyzing where cell

terminals are in contact. The solid disks in the cell packing

algorithm are replaced with cells having a gap between the cell

terminals. To avoid the current concentration boundary effects

discussing in the theory section, we create a ‘‘supernode’’ at the

top of the structure connecting all the cell terminals exposed at the

top of the structure. A second supernode is created in a similar

manner at the bottom of the structure. A node number is then

assigned to each group of connected terminals. In Figure 4-A and

4-B, the resistors are only shown for aesthetics. Figure 5-A and 5-B

show an indicative three-dimensional packing and the associated

electrical connectivity through the structure.

In these simulations, we assume that all cell resistances are

equivalent with a value of R~1V and an ideal current source is

connected between the two supernodes. We then compute the

voltage difference across each resistor, the current passing through

each resistor, and the resulting power dissipated in each resistor.

Figure 6 shows the results of the two types of simulations

conducted: (1) determining the effect of the cell terminal size on

connectivity and uniformity of power dissipation and (2) deter-

mining the effect of the size of the cell array on connectivity and

uniformity of power dissipation. In each case, we conducted 1000

simulations with random cell orientation to approximate our plan

of casting cells in a mold without regard for alignment. Figure 6-A

Figure 4. An example cell packing with random cell orientations and the analysis of electrical connectivity. Cell arrangements are
constructed and analyzed through a sequence of jammed packing simulations, determination of electrical connectivity, and reduction to a equivalent
resistor network: A. the cells are packed with random cell orientation, B. a representation of electrical connectivity, where each color indicates cell
terminals of equal electrical potential, and C. the equivalent resistor network for the cell arrangement where the nodes are the points of equivalent
electrical potential and the edges are the equivalent resistive connectivity between nodes.
doi:10.1371/journal.pone.0051695.g004

Figure 5. An example three-dimensional cell packing and
connectivity.
doi:10.1371/journal.pone.0051695.g005
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and 6-C, for 2- and 3-dimensional cell packings respectively, show

that there is clearly a terminal size for which connectivity is

maximized. The optimal terminal size is completely dependent on

cell geometry. This analysis should be repeated for alternative cell

geometry, e.g. ellipsoids, superballs, etc. From Figure 6-B and 6-D,

we conclude that the number of cells in the array is less important

than the size of the cell terminals, but that the connectivity

increases as the array size increases. This is attributed to the fact

that there will be fewer inactive cells near the edges of the array as

the size of the array increases.

C. Momentary disconnects
One of the proposed advantages of this cellular approach to

active materials is robustness to momentary disconnects and cell

failures within the structure. Using binding materials such as soft

elastomers, disconnect are expected when the structures is under

load and cell failure is inevitable. Figure 7-A and 7-B show the

effect of a varying number of disconnects throughout the structure,

for 2- and 3- dimensional cell packings respectively. These

simulations were conducted using a pad size of 80% of each

hemisphere of the cell and 500 packed cells. During each trial, the

Figure 6. The effects of cell terminal size and cell count on overall connectivity. An analysis of the connectivity of 2- and 3- dimensional cell
arrangements as a function of the size of the cell terminals and the number of cells in the arrangement. We conducted 1000 simulations with random
packing and random orientation of each cell with the mean and standard deviation shown: A. the percentage of active cells in a 2D packing as a
function of the terminal size, B. the percentage of active cells in a 2D packing as a function of the number of cells, C. the percentage of active cells in a
3D packing as a function of the terminal size, and D. the percentage of active cells in a 3D packing as a function of the number of cells. There is a clear
optimum cell terminal size for both 2D and 3D cell packings. For small terminal sizes, the lack of connectivity is due to insufficient terminal-to-
terminal contact. For large terminal sizes, the lack of connectivity is due to top-to-bottom shorts due to excessive connectivity causing cells to have
equivalent potential on both terminals and no current passing through the SMA element. As the number of cells in the structure increases, the
connectivity increases logarithmically. In all packings, there are often cells at the boundaries that are not active due to single terminal connectivity. As
the number of cells increases, the proportion of boundary cells decreases.
doi:10.1371/journal.pone.0051695.g006
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cells were randomly packed and a random number of cells that

would have been in contact were disconnected. The overall

percentage of active cells does not decrease considerable from the

nominal value given in Figure 6, even when there is a fairly high

number of disconnects compared to the total number of internal

connections.

Discussion

In this paper, we have shown that not only can the connectivity

of a cell-based structure vary with the design of the cell contacts,

but that there exists an optimum design at around 80% of the

hemisphere, giving maximum contact with surrounding cells while

minimizing shorts in the connectivity graph. In the long term, the

cellular method has the potential of introducing a new way of

approaching smart materials; an ensemble of small, actuated cells

can provide a basis for distributed articulation similar to biological

systems.

Though simple conceptually, the cell-based approach described

in the paper has several challenges as we move from theory to

implementation. The most salient challenge will be to ensure

adhesion between cells and the surrounding substrate. This will

almost wholly define the shape changing capabilities of the

ensemble structure. Another critical challenge will be to balance

the stress-strain cycles of the cells with that of the surrounding

material to achieve an adequate work cycle for the purposes of the

overall structure.

Though the simulations shown herein showed completely

random packing and cell orientation (which is the easiest method

of implementing the cell-based approach in hardware), overall

connectivity of the structure can be increased significantly through

even modest amounts of preferential cell alignment (as seen in

Figure 2). During the construction of cells, asymmetric mass

distribution in the cells and shaking of the mold might be used to

achieve preferential alignment, along with a number of other

potential methods.

Obvious future work is to begin constructing cells and groups of

cells. Work is already under way to construct and evaluate

individual cells, a natural precursor to creating two- and three-

dimensional groups of cells. After finalizing construction of

individual cells with the appropriate controllability, repeatability,

and force capabilities, we will complete mechanics-based modeling

of the cells and surrounding substrate to compare our modeling

results with the physical instantiation. Another interesting theo-

retical problem is how to determine the internal configuration of

the structure through system identification techniques of actuation

of the structure and measurement of its deformations.
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