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Abstract

Determination and classification of the bruise degree for cherry can improve consumer sat-

isfaction with cherry quality and enhance the industry’s competiveness and profitability. In

this study, visible and near infrared (Vis-NIR) reflection spectroscopy was used for identify-

ing bruise degree of cherry in 350–2500 nm. Sampling spectral data were extracted from

normal, slight and severe bruise samples. Principal component analysis (PCA) was imple-

mented to determine the first few principal components (PCs) for cluster analysis among

samples. Optimal wavelengths were selected by loadings of PCs from PCA and successive

projection algorithm (SPA) method, respectively. Afterwards, these optimal wavelengths

were empolyed to establish the classification models as inputs of least square-support vec-

tor machine (LS-SVM). Better performance for qualitative discrimination of the bruise

degree for cherry was emerged in LS-SVM model based on five optimal wavelengths (603,

633, 679, 1083, and 1803 nm) selected directly by SPA, which showed acceptable results

with the classification accuracy of 93.3%. Confusion matrix illustrated misclassification

generally occurred in normal and slight bruise samples. Furthermore, the latent relation

between spectral property of cherries in varying bruise degree and its firmness and soluble

solids content (SSC) was analyzed. The result showed both colour, firmness and SSC were

consistent with the Vis-NIR reflectance of cherries. Overall, this study revealed that Vis-NIR

reflection spectroscopy integrated with multivariate analysis can be used as a rapid, intact

method to determine the bruise degree of cherry, laying a foundation for cherry sorting and

postharvest quality control.

Introduction

Cherry (Cerasus pseudocerasus) is one of the most popular fruits because it tastes unique and is

small and more like berry than fruit. Meanwhile, it contains sugars, minerals, vitamins and
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other nutrients [1–2]. Cherry is juicy and prone to mechanical damage and impact when they

collide with each other or a hard surface during harvesting, handling, storage, transportation

and distribution. In generally, customers pick up cherries and judge its quality by the external

attributes such as shape, colour and size [3]. A moderate amount of bruise is a barrier to pur-

chasing desire of consumers instead of price [4], which will lead to postharvest loss and

decrease in profits to cherry industry. Moreover, cherry affected by bruises will tend towards

fermentation, decay or mildew and infect other non-bruised ones after damage occurrence [5–

6]. Therefore, it is necessary to distinguish the bruised cherry from the non-bruised ones and

sort them out before sale. However, bruise detection is commonly carried out subjectively by

manual inspection with labour cost increased, and some slight bruise having no obvious color

change and juices outflow are observed hardly only by naked eyes. Moreover, the efficiency

and accuracy will also be reduced greatly after continuous manual inspection. Hence, it’s of

great importance to develop a rapid, non-contact detection technique to identify the cherry

bruise and determine its bruise degree. By sorting cherry in accordance with its bruise degree,

better quality means better price and less food waste increasing profits.

Machine vision technology based on visible imaging system has become widely used for

bruise detection in fruits over the past few years [7–9]. However, early changes in bruise area

for fruit are difficult to be detected by traditional RGB vision system for part of fruits including

cheery [10]. Moreover, inhomogeneous reflection intensity of the spherical fruit also exists in

the colour image and leads to inaccurate and ineffective detection in bruise area [11], which

limits the application of image analysis techniques. Visible-near infrared (Vis-NIR) reflection

spectroscopy technique, which can acquire information about both external defects and inter-

nal compounds of the samples, has got more concern given the rising demand for rapid and

accurate quality measurement in fruit and vegetable products [12]. A simple identification

mode for jujube bruise has been established with NIR spectroscopy [13]. Fungal infections on

citrus fruit, skin defects of bi-colored peaches and the content of bioactive compounds in

intact tomato have been detected using Vis-NIR reflectance spectroscopy [14–16]. Some

researchers have conducted the non-destructive detection about blackspot in potatoes using

Vis-NIR and short-wave infrared (SWIR) hyperspectral imaging [17]. A rapid and non-

destructive method has been developed to measure flesh colour in clingstone peaches and the

internal quality of intact mango based upon Vis-NIR reflectance spectroscopy [18–19]. Vis-

NIR technique has been also used to measure the quality of some fruits such as SSC and firm-

ness for pears, apple and blueberries [20–28], astringency in persimmon [29]. Additionally,

such technology has been used to predict the pH of fresh chicken breast fillets [30], perform

non-invasive assessment of freeze-thaw cod [31], and detect the chlorophyll content in corn

leave combining support vector machine (SVM) [32], among other purposes.

Spectroscopic techniques including Vis-NIR spectroscopy have increased in importance for

fruit bruise detection coupled with multivariate analysis methods. Bruising with time elapsing

on five varieties of apple was compared by supervised classification methods, including SVM,

linear logistic regression, neural networks and decision trees [33]. Least square-support vector

machine (LS-SVM) model was set up for identifying the subtle bruise of fresh jujube with the

effective wavelengths picked up by PCA and SPA combination methods [13]. PCA and radial

basis function-support vector machine (RBF-SVM) classification were used in Vis/NIR hyper-

spectral imaging for detection of hidden bruises image on kiwifruit [34]. Partial least squares

(PLS) method and stepwise discrimination analysis were used for data dimensionality reduc-

tion and selecting the effective wavelengths in early detection of apple bruises on different

background colours using hyperspectral imaging [35]. To compare bruise detection on five

varieties of apples, different supervised classification models were set by method of SVM, sim-

ple logistic (SLOG), sequential minimal optimization (SMO) and receiver operating
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characteristic (ROC) analysis [36–37]. Early bruises in apples were detected using hyperspec-

tral imaging, thermal imaging and many different analysis methods including PCA, soft inde-

pendent modelling of class analogy (SIMCA), linear discriminant analysis (LDA) and SVM

[38].

Recently, some studies were focusing on quality control for tart or sweet cherries and blue-

berries based on spectroscopy techniques. One of them was to detect pits or internal insect

infestation in tart cherry using transmittance spectroscopy [39–41]. NIR spectroscopy tech-

nique was implemented to detect the internal bruises of blueberries after mechanical impact

with different measurement time, and to classify hard blueberries and soft blueberries [42–43].

Moreover, defect detection on sweet cherry, and non-destructive measurement of soluble sol-

ids and dry matter content in sweet cherry were operated by applying NIR spectroscopy tech-

niques [44–47]. However, application of Vis-NIR spectroscopy technique to determine the

bruise degree of cherries has been not studied in depth for detail classification, which would be

investigated in this study.

Collectively, the objectives of this study were to: (1) collect cherry samples and classify them

into three groups visually by expertise researcher according to bruise level, (2) investigate the

potential of Vis-NIR spectroscopy coupled with multivariate analysis methods to determine

the bruise degrees of cherry, (3) explore the latent relationship between spectral property and

the SSC and firmness in varying bruise degree of cherries and its chemical composition.

Materials and methods

Experimental materials

‘Huangmi’ sweet cherry were purchased in June 2018 from the local Agricultural Market,

Taishan District, Tai’an City, Shandong Province, China. According to the size and number of

bruises on the surface of cherries as well as consumer acceptance, these samples were classified

into three categories followed handpicked carefully: normal, slight bruise and severe bruise

[48]. There were 100 samples at each category, and a total of 300 samples were studied in this

experiment. As shown in Fig 1(a), there was no visible damage in normal cherries, and these

samples are smooth on surface and bright in colour. Slight bruise samples had subtle changes

in colour and small scratches in bruise area, such as “i” and “ii” part shown in Fig 1(b). It is dif-

ficult to find these slight bruises by customers. In severe bruise samples in Fig 1(c), scratches

“iii” and pits “iv” had deepen and enlarged colours in bruise area, even more, colour in these

bruise areas changed to brown or dark brown. These bruise cherries could not be accepted by

Fig 1. ‘Huangmi’ cherry samples in varying bruise degree. (a) Normal; (b) slight bruise; (c) severe bruise.

https://doi.org/10.1371/journal.pone.0222633.g001
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customers, and they should be removed from normal and slight bruise cherries, otherwise,

overall profits would grow down due to a fall in sale price of cherry.

Spectral data acquisition

Spectral data of cherries were acquired by the FieldSpec4 spectrometer (Analytical Spectral

Device Company, Boulder, CO, USA), which covers the wavelength range of 350–2500 nm

and scan time was 100 ms. Spectral resolution was 3 nm@700 nm and 8 nm@1400/2100 nm.

Accuracy and repeatability for wavelength were 0.5 nm and 0.1 nm, respectively. A 15V/75W

halogen lamp (Analytical Spectral Device Company, Boulder, CO, USA) was placed on the tri-

pod 50 cm away from the sample as the only light source, and an optical fiber probe in a pistol

grid was mounted on a tripod and was vertical to the sample at the distance of 15cm. The

experiment was executed in a dark room with uniform incident light at an angle of 45˚ to the

horizontal plane of the sample. Before performing the experiment, the spectrometer needed to

warm up about 30 minutes for eliminating the influence of background on the spectral infor-

mation, and lamp must be on for a while because of spectral stability. Calibration was per-

formed using white reference plate, and then spectral measurement was carried out at three

different locations of each cherry with an optical fiber probe. The spectrum data was collected

with RS3 software (Analytical Spectral Device Company, Boulder, CO, USA).

SSC and firmness measurement

After acquiring the spectral data, the physical and chemical indexes of cherry samples

were determined rapidly in the postharvest engineering laboratory at Shandong Agricultural

University, Tai’an, Shandong Province, China. The firmness of cherries was first measured

three times at different locations using GY-1 type fruit hardness tester (Thorpe Ltd, Zhejiang,

China) with a 3.5 mm diameter steel probe, and the average value was calculated. And then

juice extracted from the cherries was used for SSC measurement (˚Brix) with LB20T type

refractive digital sugar-meter (Ming Rui Electronic Technology Ltd, Guangzhou, China).

Multivariate analysis methods

PCA, as a statistical method to analyze and simplify datasets, is usually used to reduce the

dimension of datasets and extract feature information [49], and can be defined using the fol-

lowing expression:

Y ¼ t1 � p
T
1
þ t2 � p

T
2
þ . . .þ tK � p

T
K þ E ð1Þ

Where Y is the matrix of spectral samples, t is score vector, p is loading vector, and E is residual

matrix. Each principal component (PC) is a linear combination of all original variables, and

several PCs are orthonormal and produced in PCA transform. Generally, the first few PCs can

reveal most relevant information, and score express their importance. The loadings indicate

the contributions of the wavelengths and their extreme values are further indicating optimal

wavelengths to be selected [50].

Successive projection algorithm (SPA) is a forward selection method used to select variable

wavelength from full spectra of cherry by MATLAB 2011a software (The MathWorks, Inc.,

Natick, MA, USA). When selecting optimal sets of variables for multivariate calibration classi-

fication models in bruise degree, SPA starts with one wavelength, and then incorporates

another new one in each iteration until a specified number N of wavelengths is reached.

Optimal wavelengths selection aims to select only a few wavelengths which carry the most of

useful information. In other words, full spectra are replaced with minimum full spectra for
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decreasing computation of spectral data. In this study, SPA and the loading values of PCs were

used to select optimal wavelengths to reduce data dimensionality [51].

Least squares support vector machines (LS-SVM) classification models were set up with

MATLAB 2011a software to accurately identify cherry bruise using the spectral data and the

corresponding labelled classes, and its regression model is expressed as follows:

yðxÞ ¼
XN

i¼1

aiKðx; xiÞ þ b ð2Þ

Where y is prediction value, x is unknown sample, αi is Lagrange operator, K(x, xi) is kernel

function, xi is input vector, b is deviation, N is sample quantity. Before establishment of

LS-SVM models, the data matrix and corresponding labelled class of each spectrum are firstly

implemented to divide into a calibration set and a predication set [52]. Here, Kennard-Stone

(K-S) method is employed to finish this step [53]. Representative samples which has a large

spectral difference (the farther away from the Euclidean distance) is selected to the calibration

set, and the rest more similar samples are placed in the prediction set. This will make the cali-

bration set have uniform distribution in the broadest sense. LS-SVM methodology, an opti-

mized version of the standard SVM, is one of supervised learning methods (classes or

composition of the samples in the data matrix is involved). It has a wide application for pattern

recognition and function estimation. In detail, the Gaussian RBF kernel function was chosen,

and the parameters of γ and σ2 were optimized by a grid search procedure and 10-fold cross

validation. In this paper, normal, slight and severe bruise cherries were assigned dummy grade

values of 1, 2 and 3. Then, samples in each class was divided into a calibration set and a predic-

tion set with the ratio of 3:1 by K-S methodology, hence a total of 225 samples were selected as

the calibration set, and the remaining 75 samples were used as the prediction set. Finally, per-

formances of LS-SVM models were evaluated with the recognition rate of prediction set as

classification accuracy of bruise degree for cherry. Classification and sample number of cher-

ries in varying bruise degree were demonstrated in Table 1.

Data analysis and software

The data pre-processing, statistical calculations and analyses were carried out by the ViewSpec

Pro 6.2.0 (Analytical Spectral Device Company, Boulder, CO, USA), ENVI4.6 (Environment

for Visualizing Images software, Research Systems Inc., Boulder, CO, USA), MATLAB 2011a

and the Unscrambler X10.1 (CAMO AS, Oslo, Norway). In detail, LS-SVM models were set up

using LS-SVM v1.8 toolbox running on MATLAB R2011a and all graphs were designed by

Origin8 SR0 (Origin Lab Corporation, Northampton, MA, USA). All operations were run on a

PC installed Windows 7 operating system (Intel(R) Core (TM) i7-6500U @2.50GHz, RAM

8.00GB).

In all, key steps for the whole experimental procedure were shown in Fig 2. Firstly, spectral

data were acquired by spectra measurement system, and mean reflectance spectra were

obtained by using ENVI software. Then PCA method was conducted to make cluster analysis

for three categories of cherries with Unscrambler X10.1 software. Then, full spectral data was

Table 1. Classification and sample number of cherries in varying bruise degree.

Bruise degree Sample number Calibration Prediction Classes

Normal 100 79 21 1

Slight bruise 100 75 25 2

Severe Bruise 100 71 29 3

https://doi.org/10.1371/journal.pone.0222633.t001
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divided into calibration set and prediction set by K-S method in MATLAB 2011a, and optimal

wavelengths were selected with SPA and loadings from PCA, respectively. Furthermore,

LS-SVM models were constructed to identify cherry bruise degree.

Results and discussion

Spectral profiles

The mean spectral reflectance curves of ‘Huangmi’ sweet cherry covering the range of 350–

2500 nm were illustrated in Fig 3. It could be observed that spectral reflectance curves for three

Fig 2. Key steps of the experimental procedure.

https://doi.org/10.1371/journal.pone.0222633.g002

Fig 3. Spectral reflectance curves of the sampled ‘Huangmi’ cherry.

https://doi.org/10.1371/journal.pone.0222633.g003
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categories of cherries showed similar profiles and trends. The spectral reflectance curves of

normal and slight bruise were smooth and almost the same from 500 to 900 nm closer to visi-

ble waveband, which showed that it might be hard to classify between normal and slight bruise.

The spectral reflectance of the severe bruised cherry was the lowest in the range of 500–900

nm because of colour change [54]. In other words, the visible reflectance for severe bruise

cherries was the smallest among three categories of cherries because the colour of severe bruise

cherries became darker and browner than those of normal and slight bruise. By contrast, spec-

tral reflectance curves for three categories of cherries were fluctuant from 900 to 2500 nm

known as NIR wavebands, the reflectance value of slight bruise was higher than the others.

This was assumed to be related to firmness and solid solution content in cherry, and such phe-

nomena was also found in pears [12, 20].

In detail, the small peak around 550 nm was associated with anthocyanin in the cherry tis-

sue [36]. The valleys around 970 and 1450 nm, corresponding to second- and first-overtone

O-H stretching [55], were related to water content in the cherries. Meanwhile, the valley

around 1200 nm was assigned to the second-overtones of C-H stretching. The valleys around

1950 and 2100 nm were generally referred to O-H stretching which was caused by the com-

bined effects of water in cherries [56].

Principal component analysis

PCA method was used for qualitative analysis of differentiating cherry bruise degrees, which

was performed on the different combination of pre-processed spectra among normal, slight

bruise and severe bruise cherries. The first two PCs from PCA contained most of the spectral

data, and the corresponding score plots based on PC-1 and PC-2 were shown in Fig 4. In the

group of normal and slight bruise, PC-1 and PC-2 explained 93% and 3% of the variations

Fig 4. Cluster plots based on PC-1 and PC-2 for different cherry categories samples. (a) cluster plot based on PC-1

and PC-2 between normal and slight bruise; (b) cluster plot based on PC-1 and PC-2 between normal and severe

bruise; (c) cluster plot based on PC-1 and PC-2 between slight and severe bruise; (d) cluster plot based on PC-1 and

PC-2 between normal, slight and severe bruise.

https://doi.org/10.1371/journal.pone.0222633.g004
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among samples, 91% and 5% in the normal and severe bruise groups, and 95% and 3% in the

group of slight bruise and severe bruise, respectively. It was noticed from Fig 4(a), 4(b) and

4(c) that there were obvious differentiations in PC-2 direction from the negative side to the

positive side between every two groups of cherries samples. In other words, PC-2 offered a rel-

atively higher contribution to classify the cherry samples than PC-1.

It was also found in the Fig 4(d) that PC-1 and PC-2 explained 93% and 4% of the variations

among three categories of cherries, and partly overlaps were still observed. In order to classify

normal, slight and severe bruise cherries correctly, the corresponding loadings of PC-1 and

PC-2 would be analyzed, and the optimal wavelengths would be selected on PC-2 by multivari-

ate analysis methods to extract and concentrate the connotative spectra information. Further-

more, identification models were required to be investigated for qualitative analysis of cherry

bruise degree.

Optimal wavelengths selection

Optimal wavelength which is particularly representative of the spectral information is selected

to reduce the dimensionality and improve computational efficiency. As an effective wavelength

selection method, loadings of the first two PCs were applied to identify optimal wavelengths.

Fig 5 showed clearly the loading plots and the corresponding optimal wavelengths extracted

from the first two PCs for three categories of cherries. In general, peaks and valleys in loading

plots, which revealed the relatively high absolute loading values, were identified as the optimal

wavelengths for cherry bruise discrimination. It could be observed the loading on each PC-2

Fig 5. Loadings plots of the PC-1 and PC-2 for different cherry categories samples. (a) Loadings of the PC-1 and

PC-2 for normal and slight bruise; (b) Loadings of the PC-1 and PC-2 for normal and severe bruise; (c) Loadings of the

PC-1 and PC-2 for slight and severe bruise; (d) Loadings of the PC-1 and PC-2 for normal, slight and severe bruise.

https://doi.org/10.1371/journal.pone.0222633.g005
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had a big valleys or peaks at wavelength of 577, 832, 603, and 577 nm in Fig 5(a), 5(b), 5(c) and

5(d), respectively, and the corresponding optimal wavelengths were labelled with the arrow

pointing. Therefore, the optimal wavelengths selected by analysing the loadings of PCs were

577, 603, 832 nm as shown in Table 2.

To compare the performance of the optimal wavelengths selection with PCA, SPA was used

to select optimal wavelengths in different combination among these three categories of cher-

ries. Five optimal wavelengths of determining the bruise degree of cherries selected from SPA

were 603, 633, 679, 1083, and 1803 nm. Specifically, the optimal wavelengths selected from

SPA were 457 and 606 nm between normal and slight bruise. Two optimal wavelengths includ-

ing 365 and 585 nm were also identified between normal and severe bruise. For slight and

severe bruise, there were two optimal wavelengths (514 and 654 nm) selected from SPA. Thus,

another combination of the optimal wavelength for discriminating three categories of cherries

was 365, 475, 514, 585, 606, and 654 nm by indirect SPA method. All these optimal wave-

lengths were shown in the second column of Table 2.

LS-SVM classification model

Based on the optimal wavelengths selected, LS-SVM methodology was employed to establish

supervised classification models for discriminating bruise degree of cherry. As shown in

Table 2, classification accuracy referred to the results of prediction exercises carried out using

the models to predict on the prediction sets. As a consequence of wavelengths selected by ana-

lysing the loadings of PCs, optimal wavelengths (577, 603, and 832 nm) were employed to

establish the LS-SVM model for determining cherry bruise degree instead of the full spectra,

and the classification accuracy being 80% as shown in Table 2. Part of the result was due to the

fact the class values of cherries failed to take into account among modelling process when opti-

mal wavelengths were selected just from loadings of PCs, producing a low classification accu-

racy. In contrast, LS-SVM model established on the full spectra from 350 to 2500 nm had the

best prediction effect with an accuracy of 97.3%, but a similar classification accuracy of 93.3%

was also achieved when LS-SVM model developed on five optimal wavelengths (603, 633, 679,

1083, and 1803 nm) selected directly by SPA, which was higher than classification accuracy of

90.7% acquired by LS-SVM combined with indirect SPA method. Further analysis of the con-

fusion matrix shown in Table 2, it could be observed that both normal and slight bruise

Table 2. LS-SVM model identification results based on optimal wavelengths and full spectra.

Wavelength selection Optimal wavelengths Variable Prediction Accuracy /% Overall accuracy /%

1 2 3

Full spectra 1 20 1 0 95.2 97.3

2 1 24 0 96

3 0 0 29 100

Loading of PCs 577, 603, 832 1 15 6 0 71.4 80

2 7 18 0 72

3 0 2 27 93.1

SPA (indirect) 365, 457, 514, 585, 606, 654 1 18 3 0 85.7 90.7

2 3 22 0 88

3 0 1 28 96.6

SPA (direct) 603, 633, 679, 1083, 1803 1 19 2 0 90.5 93.3

2 3 22 0 88

3 0 0 29 100

https://doi.org/10.1371/journal.pone.0222633.t002
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cherries were classified scarcely as severe bruise ones. But misclassifications would happen

between normal and slight bruise cherries. The overall results showed that LS-SVM models

using the optimal wavelengths selected from SPA presented better determination of bruise

degree for cherry than other LS-SVM models due to its less computational load, which indi-

cated that Vis-NIR reflection spectroscopy could be used for discriminating the bruise degree

of cherry efficiently with support of multivariate analysis.

SSC and firmness analysis

To further validate the ability of Vis-NIR spectroscopy to discriminate bruise degree of cherry,

the latent relationship between spectral property and the chemical compositions of cherries in

varying bruise degree was investigated, and SSC and firmness were measured after spectral

data acquisition and summarized in Table 3. It could be deduced from Table 3 that the mean

firmness of severe bruise was smallest and the SSC of normal samples was lowest. Considering

the comprehensive influence of hardness and SSC on spectral reflectance, and consequently,

the spectral curve of severe bruised cherry was closer to that of normal cherry in the NIR wave-

band (900–2500 nm). In three categories of cheery samples, both the firmness and SSC of

slight bruise samples were highest. As a result, it has the highest reflectance from 900 nm to

2500 nm shown in Fig 3. Also, further research could be focused on exploring the relationship

between the chemical value and those wavelengths [21, 44].

Conclusion

Bruise identification was very helpful in sorting cherry in accordance with its bruise degree.

This study demonstrated the high potential of Vis-NIR reflection spectroscopy coupled with

multivariate analysis for determination of cherry bruise degree. LS-SVM model developed

using the optimal wavelengths selected directly by SPA showed better performance for identi-

fying bruise degree of cherry with an accuracy of 93.3%, which was practical due to its less

computational load. Whereas the LS-SVM model developed using full spectra achieved a simi-

lar predictive accuracy of 97.3%, and misclassification generally occurred in normal and slight

bruise cherry samples. Furthermore, the latent relationship between spectral property in vary-

ing bruise degree of cherries and SSC and firmness was investigated, and both exterior attri-

butes and internal quality were consistent with the Vis-NIR reflection spectroscopy of cherry.

This study was limited to spectral information, therefore in the future work, hyperspectral

imaging will be employed in fruit bruise degree determination, which might provide more sat-

isfactory recognition performance by the image integrating both the spectral information and

spatial information. In particular, on-line sensors will also be developed for cherry sorting or

post-harvest quality processing of other fruits.

Table 3. Statistic data of firmness and SSC in cheery samples.

Samples

indexes

Firmness (kg/cm2) SSC (˚Brix)

Maximum Minimum Mean SD�(%) Maximum Minimum Mean SD�(%)

Normal 4.66 2.85 3.81 0.462 16.9 13 15.26 1.207

Slight bruise 5.6 3.11 4.12 0.583 18.4 14 15.81 1.138

Severe bruise 4.43 2.07 3.07 0.63 19.5 12.6 15.33 1.991

Note:

�SD = Standard deviation.

https://doi.org/10.1371/journal.pone.0222633.t003
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