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Abstract

Oocytes are stockpiled with proteins and mRNA that are required to drive the initial mitotic divisions of embryogenesis. But
are there proteins specific to meiosis whose levels must be decreased to begin embryogenesis properly? The Drosophila
protein Cortex (Cort) is a female, meiosis-specific activator of the Anaphase Promoting Complex/Cyclosome (APC/C), an E3
ubiquitin ligase. We performed immunoprecipitation of Cortex followed by mass spectrometry, and identified the Polo
kinase inhibitor Matrimony (Mtrm) as a potential interactor with Cort. In vitro binding assays showed Mtrm and Cort can
bind directly. We found Mtrm protein levels to be reduced dramatically during the oocyte-to-embryo transition, and this
downregulation did not take place in cort mutant eggs, consistent with Mtrm being a substrate of APCCort. We showed that
Mtrm is subject to APCCort-mediated proteasomal degradation and have identified a putative APC/C recognition motif in
Mtrm that when mutated partially stabilized the protein in the embryo. Furthermore, overexpression of Mtrm in the early
embryo caused aberrant nuclear divisions and developmental defects, and these were enhanced by decreasing levels of
active Polo. These data indicate APCCort ubiquitylates Mtrm at the oocyte-to-embryo transition, thus preventing excessive
inhibition of Polo kinase activity due to Mtrm’s presence.
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Introduction

The oocyte-to-embryo transition is the developmental course by

which an oocyte not only switches from a meiotic to a mitotic

program, but becomes fully competent to support early embryo-

genesis. Initially, fertilization introduces the haploid genomic

content of the sperm into the egg. Egg activation, triggered by

fertilization in vertebrates and independent of fertilization in

insects, signals the resumption and completion of meiosis in the

egg [1,2]. Following successful completion of meiosis, pronuclear

fusion creates a single diploid nucleus from the individual haploid

sperm and egg nuclei. The single diploid nucleus must then

transition to a mitotic cell cycle within the same cytoplasm in

which the meiotic divisions took place.

The oocyte-to-embryo transition can proceed normally only if

the preceding events of meiosis are completed successfully. During

Drosophila melanogaster oogenesis, an oocyte enters prophase I

following completion of premeiotic S-phase. After homologous

chromosome pairs synapse and recombine, the oocyte enters a

prolonged prophase I arrest. Oocyte maturation then releases this

primary arrest, allowing the oocyte to continue meiosis until its

secondary arrest at metaphase I, in what is known as a stage 14

oocyte. Lastly, egg activation triggers resumption and completion

of meiosis concordantly with the oocyte-to-embryo transition itself

[1,2].

The switch from meiosis to mitosis is controlled by cellular

proteins and structures produced during gametogenesis, with both

the sperm and egg making unique contributions. The centrosome,

important for proper spindle formation during mitotic divisions, is

brought into the acentrosomal egg by the sperm [3]. The initial

rapid divisions of a developing embryo are driven by the maternal

stockpile of nutrients, mRNA, and translational machinery that

are ‘‘packed’’ into the egg during oocyte differentiation [1].

Additionally, the egg also contains numerous meiosis-specific

proteins. These meiosis-specific proteins are crucial for proper

meiotic progression, but are not necessarily needed after the switch

to mitosis.

There are known examples of proteins uniquely employed in

meiosis that need to be removed prior to mitosis [4]. In C. elegans,

the MBK-2 kinase promotes the oocyte-to-embryo transition. One

target is the katanin subunit MEI-1 [5], and phosphorylation of

MEI-1 by MBK-2 marks it for degradation before the completion

of meiosis [6]. A gain-of-function MEI-1 protein that persists into

embryogenesis often leads to a short, mispositioned mitotic spindle

[7]. The Saccharomyces cerevisiae meiosis-specific protein Spo13

prevents the biorientation of sister chromatids at meiosis I,
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ensuring homologs segregate together [8,9]. Spo13 is actively

targeted for degradation during anaphase I by the Cdc20 form of

the Anaphase Promoting Complex/Cyclosome (APC/C) [10].

Interestingly, a nondegradable form of Spo13 does not result in a

significant meiotic phenotype; however, overexpression of Spo13

leads to mitotic cell cycle defects [10,11,12]. This demonstrates the

necessity of degrading a meiosis-specific protein not for proper

meiotic progression, but subsequent mitotic progression.

The unique mechanisms of meiosis such as segregation of

homologs in meiosis I, absence of DNA replication between

divisions, and the meiotic arrests during oogenesis require either

unique regulators or altered control of factors that also are used in

mitosis. For example, during mitosis the mitotic cyclins are

completely degraded as the cell progresses through the metaphase

to anaphase transition and exits from mitosis. In contrast, the

mitotic cyclins are left at an intermediate level after the metaphase

to anaphase transition of meiosis I; low enough to exit from

meiosis I, but high enough to prevent re-replication [13,14]. This

altered control of mitotic regulators may need to be removed upon

the start of embryogenesis. The APC/C inhibitor Emi2 is

responsible for maintaining Cyclin B1 levels after meiosis I in

mouse oocytes, but it is quickly degraded to allow for meiotic exit

(though it has been shown to reestablish its levels in early

embryogenesis in Xenopus) [15,16,17,18]. This illustrates how

normal mitotic cell cycle regulation can be altered through the use

of unique meiotic proteins.

Regulated degradation of proteins, particularly by the APC/C,

plays an indispensable role in progression through the mitotic and

meiotic divisions [19,20]. The APC/C ubiquitylates numerous

proteins during mitosis, targeting them for degradation and

promoting mitotic progression and exit. Similarly, during oogen-

esis proper cell cycle regulation by the APC/C is crucial in

maintaining coordination between meiosis and development. The

APC/C must use activator proteins (Cdc20/Fizzy and Cdh1/

Fizzy-related in mitosis) to recognize its substrates. Interestingly,

meiosis-specific activators of the APC/C are known to exist in

both budding [21] and fission yeast [22] in addition to sex and

meiosis-specific APC/C activators in Drosophila [20,23,24].

Elucidating the function and targets of these meiosis-specific

APC/C activators will give valuable insights into meiotic

regulation and the transition from meiosis into mitosis.

The Drosophila protein Cort is a female, meiosis-specific

activator of the APC/C [23,24,25]. It is expressed exclusively

during oogenesis and is itself targeted for degradation by the APC/

C soon after meiotic completion [23]. Cort is dispensable for

viability, but absolutely essential for fertility. Eggs laid by cort

mutant mothers arrest in metaphase II [26]. During Drosophila

female meiosis, Cort and Fzy/Cdc20 both contribute to meiotic

progression, whereas Fizzy-related/Cdh1 is not believed to play a

role. Cort coordinates with Fizzy/Cdc20 during meiosis to

degrade the Cyclins [23,25], but whether it also has other

substrates is unknown. Identifying additional substrates of APCCort

will give further insight into the differential regulation of meiosis

and mitosis, as well as the necessary steps to transition from oocyte

to embryo.

Here we show that degradation of the female-specific protein

Mtrm during meiotic completion is dependent on the activity of

Cort. Furthermore, we show that this downregulation of Mtrm is

crucial to the proper onset of embryogenesis.

Results

Cort Binds to the Polo Inhibitor Mtrm
To recover substrates and regulators of APCCort, a functional

myc-tagged Cort [23] was immunoprecipitated from whole

ovaries, and co-immunoprecipitated proteins were identified by

mass spectrometry. In addition to isolating multiple components of

the APC/C as expected [23], the Polo inhibitor Mtrm was

recovered as a potential substrate/interactor (Table S1). Mtrm was

identified initially in a genetic screen for dominant effects on

achiasmate chromosome segregation in Drosophila oocytes [27],

and it was later shown to function as a direct inhibitor of Polo

kinase during meiosis I [28]. Given Mtrm’s essential role during

female meiosis, we sought to explore further its relationship to

Cort.

To confirm the physical interaction between Cort and Mtrm, in

vitro binding assays were performed. GST-tagged Mtrm and GST

alone were expressed and purified from bacteria (Figure 1B), and

then incubated with in vitro translated 66Myc-Cort produced in

rabbit reticulocyte lysate. Cort strongly bound to GST-Mtrm

beads, but not to GST-only beads or beads alone, consistent with

the physical interaction between these two proteins being direct

(Figure 1A). Moreover, in vitro translated Cortex lacking its C-

terminus binds GST-Mtrm much less efficiently (Figure S1). The

C-terminus of Cortex is made up mainly of its WD40 repeats [24],

which are known to mediate substrate binding in other APC/C

activators [29]. These data are consistent with Cortex binding

Matrimony directly through its WD40 propeller.

Cort and Fzy/Cdc20 are both required for degradation of the

mitotic cyclins during female meiosis [23,25], and therefore share

at least a subset of their substrates. We also tested whether the

interaction between Cort and Mtrm was specific, or whether

Mtrm might be a target of all forms of the APC/C (or an APC/C

regulator). In contrast to 66MycCort, little to no in vitro translated

66MycFzy/Cdc20 bound to GST-Mtrm (Figure 1A). Important-

ly, in vitro translated Fzy/Cdc20 could bind Cyclin A, a known

substrate/interactor [30,31]. Full-length Cortex also bound Cyclin

A, albeit to a lesser extent than it binds Matrimony (Figure S1).

Author Summary

Despite their many differences, the meiotic and mitotic
divisions of the early embryo take place within the same
cytoplasmic space. The oocyte-to-embryo transition is the
process by which an oocyte, which initially undergoes
meiosis, becomes ‘‘adapted’’ to support the rapid mitotic
divisions of embryogenesis. This involves fertilization as
well as the stockpiling of proteins and mRNA for the
transcriptionally silent early embryo. The Anaphase Pro-
moting Complex/Cyclosome (APC/C) is a large protein
complex that is active during both mitosis and meiosis and
is responsible for targeting certain proteins for degrada-
tion. The discovery of the existence of APC/C activators
that are present only during meiosis hinted at the
possibility that this complex also functions to regulate
protein degradation during the oocyte-to-embryo transi-
tion. Here we study Cortex, a female- and meiosis-specific
activator of the APC/C in the fruit fly Drosophila
melanogaster. We find that Cortex activity is necessary
for the degradation of Matrimony, a key regulator of
female meiosis in Drosophila. Matrimony itself inhibits
Polo kinase, another important regulator of both mitosis
and meiosis that also functions in chromosome segre-
gation, centrosome dynamics, and cytokinesis. When
excess Matrimony protein is not removed from the early
embryo, developmental defects arise. Together our find-
ings demonstrate that the precise regulation of Matrimony
levels in the egg is necessary for the switch from meiosis to
mitosis.

The APC/C Promotes the Oocyte-to-Embryo Transition
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Thus, the interaction between Cort and Mtrm is specific,

suggesting regulation between these two female, meiosis-specific

proteins.

Decreased Mtrm Protein Levels After Meiosis Are Cort
Dependent

Mtrm protein levels increase throughout meiosis I [32].

Interestingly, its levels are drastically reduced by the time meiosis

is completed (Figure 2A; compare cort/+ stg. 14 oocyte to cort/+
activated egg). This pattern of expression mimics that of Cort,

which itself is a substrate of the APC/C [23]. As with Cort, such a

sharp transition in Matrimony protein levels suggests active

degradation, potentially through the action of APCCort.

To test whether the decrease in Mtrm is dependent on Cort

function, we compared Mtrm protein levels in cort mutant eggs to

heterozygous control unfertilized eggs. Unfertilized eggs have

completed meiosis, but have not initiated embryogenesis, and

therefore provide the best control for cort mutant eggs. In contrast

to heterozygous unfertilized eggs, activated eggs laid by homozy-

gous cort females retained high levels of Mtrm protein, consistent

with it being a substrate of APCCort (Figure 2A,B). Moreover,

unfertilized eggs laid by females mutant for morula/APC2, a

component of the APC/C itself, also showed elevated levels of

Mtrm. This shows APC/C function is necessary to trigger the

decrease in Mtrm protein (Figure 2B). Importantly, fzy/cdc20

mutant unfertilized eggs did not show elevated Mtrm levels, again

illustrating Mtrm is not a general APC/C substrate (Figure 2B).

Together these data demonstrate the decrease in Mtrm protein

upon meiotic completion (or during meiosis II) is dependent

specifically on APCCort function. We hypothesized the relatively

large pool of Mtrm present in the ovary is necessary for proper

progression through meiosis, but such high levels may be

detrimental in early embryogenesis.

Requirement for APC Motif in Mtrm for APCCort-
Dependent Destabilization

We exploited Drosophila cell culture to study the effects of Cort

on Mtrm stability, as it permits the expression of proteins in an

easily manipulated system. Neither Cort nor Mtrm is expressed

endogenously in Drosophila Kc167 cell culture cells, but both can

be expressed transiently through transfection (Figure 3A). In a

stable cell line expressing Cort, Cyclin A protein levels were

decreased markedly and Cyclin B levels marginally (Figure S2A),

indicating functional APCCort. The changes in mitotic Cyclin

protein levels did not detectably affect cell cycle progression,

however, as measured by the mitotic index (Table S2) and FACS

analysis (Table S3).

If Mtrm is targeted for degradation by APCCort, levels of Mtrm

protein should be reduced in the presence of Cort. Indeed, levels

of a Myc-tagged Mtrm were reduced when functional Cort was

Figure 1. Cort physically interacts with Mtrm in vitro. (A) Western blot showing in vitro translated Myc-tagged Cort stably binds to GST-Mtrm,
but not to GST only or beads only. In vitro translated Myc-tagged Fzy/Cdc20 is unable to bind GST-Mtrm. About 60% of each pellet sample was
subjected to SDS-PAGE followed by Western blotting (remaining pellet sample was used for B). Lower panel shows 1% of total input of in vitro
translated 66MycCort and 66MycFzy/Cdc20. Panels were probed with anti-Myc (9E10) antibody. Molecular weight markers are indicated to the side
of the blot. (B) Coomassie stain of purified proteins used in binding assay. 25% of the final washed pellet was subjected to SDS-PAGE followed by
Coomassie staining. Molecular weight markers are indicated to the side of the gel.
doi:10.1371/journal.pbio.1001648.g001

The APC/C Promotes the Oocyte-to-Embryo Transition
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expressed (Figure 3A). Moreover, expression of functionally null

alleles of Cort, CortQW55 (a missense mutation) or CortRH65 (a

nonsense mutation) [24,26,33], failed to decrease Mtrm protein

levels. Therefore, wild-type Cort function is required to bring

about the observed decrease in Mtrm protein. Consistent with

APCCort affecting Mtrm levels through degradation, these cells

contained similar amounts of mtrm transcript, illustrating the effect

is posttranscriptional (Figure 3B and C). Additionally, reduction of

Mtrm levels was not observed when a 66Myc-tagged Fzy/Cdc20

was expressed, again showing the selectivity of APCCort for Mtrm

(Figure S2B).

We next used this cell-culture-based system to determine

whether APCCort’s effect on Mtrm was truly the result of

degradation. Mtrm protein was accumulated during arrest with

the proteasome inhibitor MG132, and upon release of the arrest

translation was inhibited with cycloheximide and Mtrm protein

levels examined over time in the presence or absence of Cortex

(Figure 3D,E). Mtrm protein levels decreased rapidly in the

presence of Cort. Importantly, this continued decrease was

abolished in the continued presence of MG132 to inactivate the

proteasome. Mtrm levels remained higher when an empty vector

was transfected in place of Cort. These data establish that APCCort

affects Mtrm levels through proteasome-mediated degradation.

Given the decrease in Mtrm is mediated through degradation,

we searched Mtrm’s primary amino acid sequence for APC/C

recognition motifs that could influence its stability during the

oocyte-to-embryo transition. Four motifs previously implicated in

APC/C-mediated degradation [19] are present within Mtrm’s 217

amino acid sequence (Figure 3F). To examine the role these motifs

play in Mtrm protein stability at the oocyte-to-embryo transition,

transgenic flies expressing mCherry-Mtrm under the control of

mtrm’s endogenous promoter were created. mCherry-Mtrm

protein levels decreased at the oocyte-to-embryo transition as

expected (Figure 3G, lanes 1 and 7). Point mutants in the four

candidate APC motifs were also examined for their effect on

(mCherry-) Mtrm protein stability. Whereas the G170A mutation

and the double R95A/R193A mutations did not stabilize

mCherry-Mtrm in activated eggs (Figure 3G, compare lanes 2

and 8; 4 and 10, respectively), mutation of leucine 21 exhibited

partial stabilization (Figure 3G, lanes 3 and 9). A quadruple

mutant of mCherry-Mtrm that also contains the L21A mutation is

partially stabilized as well (Figure 3G, lanes 5 and 11).

Importantly, both Mtrm-L21A and Mtrm-4A are functional, as

judged by their ability to rescue mtrm+/2 induced nondisjunction

(Table S4). Given mCherry-Mtrm-L21A is still partially degraded

at the oocyte-to-embryo transition, L21 is not likely to be the only

residue responsible for Matrimony degradation. It is intriguing to

note, however, that L21 is part of the LxExxxN APC/C

destruction motif found within Spo13, another meiosis-specific

substrate of the APC/C [10].

Genetic Interactions Reveal an Antagonistic Relationship
Between Cort and Mtrm

We next investigated the genetic relationship between Cort and

Mtrm, specifically in the background of a mutant with low

APCCort activity. Mutants with low APCCort activity arrest without

completing meiosis, presumably due to a failure to degrade key

substrates. If Mtrm were such a substrate, we hypothesized that

decreasing its levels could lead to suppression of the reduced

APCCort phenotype. All alleles of cort are null [26], however

mutation of Cort’s dedicated transcription factor grauzone results in

decreased levels of cort transcript [34] and protein [23]. Activated

eggs laid by grauzone mutant females also arrest in meiosis II (just as

cort eggs do) [26], thus illustrating that such low levels of APCCort

cannot efficiently cause degradation of key substrates. Decreasing

levels of the Mtrm substrate may be sufficient to permit

progression past the meiotic arrest. Alternatively, the reduced

levels of one key substrate may afford low APCCort enough

opportunity to target its remaining substrates for degradation.

Thus we used this sensitized background to test whether decreased

mtrm permitted progression past the grauzone metaphase II arrest.

Strikingly, when one copy of the mtrm gene was removed, we

observed partial suppression of the grau phenotype. grau eggs

typically arrest with two spindles at metaphase II, but grau eggs also

mutant for one copy of mtrm contained, on average, an increased

number of spindles (Figure 4). These spindles appear acentriolar,

and thus are likely not mitotic. Supporting this, no gamma-tubulin

(a common component of centrosomes) is present at the spindle

poles (Figure S3). These spindles likely arise from completion of

meiosis followed by all meiotic products (including polar bodies)

forming bipolar spindles and possibly dividing, reminiscent of the

effect of polo mutation on meiosis II [35]. Importantly, the

observed increase in spindle number is not due to a restoration of

Cort protein levels (Figure S4). Thus the mtrm mutation partially

Figure 2. Cort activity is required for Mtrm destabilization. (A)
Western blots showing cort homozygous and heterozygous mutant
female oocytes have equal amounts of Mtrm protein at metaphase I
(stage 14 oocytes). Activated (fertilized) eggs from cort mutant females
have increased Mtrm levels compared to control heterozygous
unfertilized, activated eggs (cort/+). Molecular weight markers are
indicated to the side of the blot. (B) Mtrm protein levels also are
increased in unfertilized eggs from morula transheterozygous females
(mr1/mr2) compared to unfertilized controls (mr/+). However, fzy/cdc20
transheterozygous unfertilized eggs (fzy6/fzy7) do not show elevated
Mtrm levels compared to control heterozygous unfertilized eggs (fzy/+).
All panels show Western blots probed with the indicated antibody.
Alpha-tubulin was used to confirm equal loading. + indicates the
presence of the CyO or SM6 balancer. Molecular weight markers are
indicated to the side of the blot. The Fzy blot is a separate blot from the
Cort and Mr blot.
doi:10.1371/journal.pbio.1001648.g002
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Figure 3. Cort expression leads to proteasome-mediated degradation of Mtrm in cell culture. (A) Western blots showing levels of Mtrm
and Cort in transfected Kc167 cells. pMT-cort and pMT-66myc-mtrm were transfected into Kc167 cells. The form of transfected Cort is indicated above
each lane. Only wild-type Cort leads to decreased levels of tagged Mtrm protein. The RH65 mutation results in a premature stop codon in Cort. Myc-
Mtrm band intensity is quantified below the Myc-Mtrm panel. Band intensity is normalized to tubulin and is expressed relative to empty vector. (B
and C) Cells transfected with pMT-66myc-mtrm (lanes 1–3; lane 4 transfected with pMT-empty in place of mtrm) and the indicated form of Cort (WT,
QW55, or pMT-empty) were split and subjected to both Western blot (B) and quantitative PCR (C). Myc-Mtrm band intensity is quantified as in (A). For
qPCR, mtrm transcript levels are normalized to actin5c and shown relative to empty vector. (D) Western blot showing Mtrm protein levels over time.

The APC/C Promotes the Oocyte-to-Embryo Transition
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suppresses the grau phenotype, allowing further progression

through the oocyte-to-embryo transition.

Increased Mtrm Levels in the Embryo Lead to
Developmental Defects

Proteins and mRNA deposited into the oocyte during oogenesis

control the early embryonic divisions, but it is possible some of

these proteins function in meiosis and then need to be removed.

We hypothesized degradation of Mtrm at the oocyte-to-embryo

transition by APCCort is a crucial step necessary to ensure proper

development of the syncytial embryo. To test this hypothesis, we

overexpressed a transgenic mtrm using the UAS-GAL4 system.

36FLAG-Mtrm was overexpressed in the ovary using the

maternal alpha tubulin driver, resulting in excess Mtrm being

present in the early embryo (Figure S5A/B).

This surplus of Mtrm caused a variety of defects in early

embryogenesis, which we categorized into three phenotypes

(Figure 5A–C). We observed some embryos undergoing nuclear

fallout (Figure 5A). During nuclear fallout, nuclei at the surface of

an embryo that have detached from their centrosomes fall back

into the middle of the embryo [36]. We also found embryos that

exhibited complete mitotic catastrophe (Figure 5B), showing only

scattered DNA with no real spindle organization. DNA masses

seemed to contain varying chromosomal content, and were usually

associated with tubulin. These embryos were found with variable

amounts of total DNA, some containing DNA over the entire

expanse of the embryo (late arrest), while others only contained

DNA in a particular section of the embryo (early arrest). Lastly,

some embryos showed scattered DNA/tubulin over a portion of

the embryo, whereas the rest of the embryo appeared to reach the

blastoderm stage (Figure 5C). These embryos seemingly under-

went an abortive/abnormal development up to the blastoderm

stage. Given the centrosome’s crucial role in spindle organization

and the requirement for Polo kinase for proper centrosome

attachment in the early embryo [37], there are many ways these

phenotypes could be obtained. In summary, these data illustrate

that the downregulation of Mtrm protein following meiosis is

biologically significant to early embryonic development.

The defects observed from mtrm overexpression likely result

from low Polo kinase activity, given Mtrm’s known function as its

inhibitor. If true, mutating polo should further exacerbate the mtrm

overexpression phenotype. Indeed, overexpression of Mtrm in

conjunction with heterozygous polo11 results in a substantially

higher proportion of defective embryos (Figure 5H). Additionally,

the observed defects are often more severe, with DNA completely

fragmented and tubulin in almost random configurations

(Figure 5G). In our hands the heterozygous polo11 mutation alone

also exhibited defects similar to mtrm overexpression alone, but

these fell primarily into one phenotypic category (Figure 5H).

These data are consistent with increased Mtrm in the early

embryo causing developmental defects due to excessive inhibition

of Polo kinase activity (and potentially other, unknown targets).

To address the possibility that Matrimony affects proteins other

than Polo, we expressed a mutant form of Matrimony deficient in

Polo binding. Mtrm-T40A is unable to bind Polo, and cannot

rescue chromosome nondisjunction in mtrm/+ heterozygotes

[28,38]. In contrast to wild-type Matrimony, expression of

Mtrm-T40A did not cause any developmental defects

(Figure 5H). Importantly, expression of both the WT and T40A

transgenes is similar using the maternal alpha tubulin driver

(Figure S5C). Thus, high levels of Matrimony in the early embryo

cause developmental defects due to inhibition of Polo kinase

activity.

Discussion

Despite its pivotal role in development, regulation of the oocyte-

to-embryo transition is poorly understood. Given the maternal

stockpiles in the oocyte, mechanistic differences between meiosis

and mitosis, and meiosis-specific forms of the APC/C, it is crucial

to determine which proteins need to be degraded to switch

Time indicates hours post-MG132 washout. Rate of Matrimony degradation is faster in the presence of Cortex versus empty vector. The rate of
degradation is slowed in continued presence of MG132. (E) Quantification of –MG132 blot in (D). The 1-, 2-, and 4-h time points are averages of two
experiments. Mtrm amount is normalized to tubulin and shown relative to amount at the 0 h time point. (F) Illustration of candidate APC/C
recognition motifs. (G) The L21A mutation stabilizes mCherry-Mtrm in embryos. Western blots of stage 14 oocytes and fertilized eggs (1 h collection)
are shown. The 4A mutant consists of L21A, R95A, R193A, and H94A (a mutation in a possible APC/C initiation motif [54]). Percentage below mCherry
activated egg lanes indicates remaining protein left, normalized to tubulin, and relative to amount at stage 14. Asterisk denotes cleavage product due
to hydrolysis of acylimine linkage in the mCherry tag [55]. Myc-Mtrm was detected using anti-Myc antibody (A, B, D) and mCherry-Mtrm was detected
using anti-RFP (G).
doi:10.1371/journal.pbio.1001648.g003

Figure 4. cort and mtrm show an antagonistic relationship in
vivo. (A and B) Fertilized eggs from females of the indicated genotypes
are shown. When mtrm is mutated in conjunction with grauzone, an
increased number of spindles is observed. Even mutation of a single
copy of the mtrm gene dominantly suppresses the grauzone
phenotype. Tubulin is shown in green and DNA in blue. Scale bar
indicates 50 um. (C) Quantification of eggs from (A) and (B). The TM6
balancer siblings served as the wild-type control for mtrm. n = 167 for
grauQQ36/RM61;mtrm126/+ and n = 67 for grauQQ36/RM61;TM6/+.
doi:10.1371/journal.pbio.1001648.g004
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correctly from meiosis to mitosis. The meiosis-specific activator

Cort is essential for the transition from oocyte to embryo despite

Fzy/Cdc20’s presence. Cortex’s existence raised the possibility

that degradation of particular meiosis-specific proteins may be

necessary for the onset of embryogenesis. Here we show this to be

the case: the Cort form of the APC/C is required for Mtrm’s

destruction at the oocyte-to-embryo transition. Furthermore,

reduced levels of Mtrm heading into embryogenesis are necessary

for proper development, indicative of requirements for differential

levels of the protein in meiosis and mitosis.

A requirement for reduction in levels of Mtrm is illustrated by

the deleterious effects of overexpression of the protein in the

embryo. A crucial role for Mtrm degradation in the transition

from oocyte to embryo is supported by the observation that

reduction in levels of Mtrm protein can suppress the develop-

mental block caused by low activity of Cort. In the grau mutants,

levels of Cort are reduced, and the mutant oocytes arrest in

meiosis. By mutating a single copy of the mtrm gene, this arrest was

overcome, the eggs progressed, and several nuclear divisions

occurred.

Mtrm provides key insights into how protein degradation can be

regulated at the oocyte-to-embryo transition. Mtrm is not

completely removed from the embryo, illustrating that its protein

levels are important and degradation does not have to be an all-or-

none process. In this case, APCCort acts as a rheostat, allowing for

high levels of Mtrm in meiosis and low levels in mitosis. Consistent

with this, it is interesting that stabilized forms of Mtrm (Figure 3G)

present at lower levels than the overexpressed wild-type form

(Figure S5A/B) did not exhibit an embryonic phenotype

(unpublished data). mCherry-Mtrm also is present at levels lower

than endogenous Mtrm in stage 14 oocytes, and therefore may

never reach high enough levels to be able to cause the

developmental defects seen with the overexpressed form of Mtrm.

This offers evidence for a specific threshold of Mtrm that can be

tolerated in the early embryo.

Polo kinase is a critical regulator of both mitosis and meiosis,

and is conserved from yeast to humans. polo (and its orthologs) help

regulate mitotic/meiotic entry, chromosome segregation, centro-

some dynamics, and cytokinesis [39]. With such diverse roles

during mitosis and meiosis, Polo function must be carefully

regulated. Up-regulation of human Polo-like kinase (Plk1) is

prevalent in many human cancers, and identifying potent

inhibitors of Plk1 is the focus of much research [40]. In

Drosophila, without inhibition by Mtrm during prophase of

meiosis I, Polo prematurely triggers nuclear envelope breakdown

(through activation of the Cdc25 phosphatase) and eventually

leads to chromosome nondisjunction [28]. Mutation of polo has

direct consequences on female meiotic progression as well. During

Drosophila embryogenesis, expression of Scant, a hyperactive

form of the Polo antagonist Greatwall kinase, leads to dissociated

centrosomes from prophase nuclei [37]. Embryos homozygous for

polo1 show a wide array of defects, including irregular DNA

masses with disorganized spindles [35], reminiscent of our mtrm

overexpression phenotype (Figure 5). These data illustrate the

importance of Polo kinase in both mitosis and meiosis, and that

improper regulation of its activity can have disastrous conse-

quences on cell division.

Current evidence suggests that Mtrm regulates Polo activity

during both meiosis and mitosis [28,32,37]. Our results shed light

on how the oocyte/embryo might use the same protein to regulate

Polo during such drastically different cell divisions. Our data

indicate meiosis requires high levels of Mtrm protein/Polo

inhibition, while low levels of Mtrm are needed for early

embryogenesis. This is likely a mechanism to allow for fine tuning

of Polo activity during the rapid divisions of the syncytial embryo.

The results here provide an interesting biological counterpoint

to a recent study on the S. cerevisiae meiosis-specific APC/C

activator Ama1. Previously, Ama1 had been known to act later in

meiosis, regulating spore formation and Cdc20 degradation at

meiosis II [21,41]. Okaz et al. showed APCAma1 also acts earlier in

meiosis to clear out mitotic regulators (including Polo/Cdc5)

during the extended meiotic prophase I. Consequently, cells

lacking Ama1 exit prematurely from prophase I [42]. It is

interesting that two meiosis-specific APC/C activators have now

been tied to regulation of Polo kinase. Ama1 has a direct,

inhibitory effect early in meiosis, whereas Cort seemingly activates

Polo indirectly through degradation of Mtrm late in meiosis.

Mtrm is not likely to be the only specific substrate of Cort, and it

will be exciting to search for more APCCort substrates in the future.

It will also be interesting to examine whether Cort targets continue

to follow a graded versus all-or-none pattern of degradation during

the oocyte-to-embryo transition. Further study of meiosis-specific

APC/C activators will give valuable insight into the distinctions

between meiotic and mitotic regulation and the control of the

onset of embryogenesis.

Materials and Methods

Fly Stocks
The grauRM61, grauQQ36, cortRH65, cortQW55 [24,26,33], mtrm126

[28], mr1,mr2 [43,44], twineHB5 [33,45], polo11 [37,46], and fzy6, fzy7

[47] alleles have all been described. The UASp myc-cort transgenic

lines were generated previously [23] and were driven by w-;nanos-

GAL4:VP16 [48]. The UASp-36FLAG-mtrmWT, UASp-36FLAG-

mtrmT40A, and mCherry-mtrmWT (driven by its genomic promoter)

were generated previously [28,38]. mCherry-mtrm4A, mCherry-

mtrmL21A, mCherry-mtrmG170A, and mCherry-mtrmR95/R193A were gen-

erated for this study (see below). w*; P{mata4-GAL-VP16}V37

was obtained from Bloomington Stock Center (BL 7063). Oregon R

was used as a wild-type control. Flies were maintained at 22 or

25uC [49].

Transgenic Lines
To construct the mtrmFL constructs driven by the genomic mtrm

promoter, the following fragments were generated by PCR from a

wild-type mtrm construct and pFPV-mCherry (a gift from the Susan

Figure 5. Developmental defects result from increased Mtrm expression. (A–C) Representative images of fertilized eggs laid by females
overexpressing 36FLAG-Mtrm using the MATalpha4-GAL-VP16 driver. (A) Embryo undergoing ‘‘nuclear fallout.’’ Nuclei can be seen having fallen
below the surface of the embryo (white arrows). (B) An embryo showing scattered DNA with disorganized tubulin. (C) An embryo that underwent
uneven development across its length, showing abnormal development up to the blastoderm stage. (D–F) Control fertilized eggs showing proper
development at comparable stages to those in (A–C). Scale bar indicates 100 um in (A), (C), (D), and (F). It indicates 20 um in (B), (E), and (G). (G) A
fertilized egg laid by females overexpressing 36FLAG-Mtrm and heterozygous for polo11. These embryos predominantly had scattered DNA and
disorganized tubulin. (H) Quantification of embryos shown in (A–G). The genotype for Overexpression Mtrm is UAS36FLAGmtrm/+; P{mata4-GAL-
VP16}V37/+ (n = 93), the genotype for polo11/+ is polo11/P{mata4-GAL-VP16}V37 (n = 137), +/+ is the control for driver alone and is TM6,Sb/P{mata4-GAL-
VP16}V37 (n = 109), the genotype for Overexpression Mtrm;polo11/+ is UAS36FLAGmtrm/+; polo11/P{mata4-GAL-VP16}V37 (n = 86), and the genotype
for Overexpression Mtrm-T40A is UAS36FLAGmtrm-T40A/+; P{mata4-GAL-VP16}V37/+ (n = 45).
doi:10.1371/journal.pbio.1001648.g005
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Abmayr lab) and ligated into pBluescriptSKII+: BamHI-mtrm

59UTR-AvrII, AvrII-mCherry-PacI, PacI-mtrm + 39UTR-XhoI. The

Stowers Molecular Biology facility deleted the AvrII and PacI sites

using the Stratagene QuikChange II XL Site-Directed Mutagen-

esis Kit. The Stowers Molecular Biology facility made the point

mutations using the Stratagene QuikChange II XL Site-Directed

Mutagenesis Kit.

The insert was digested and ligated into pCasPeR4-attB, and the

sequence verified. The pCasPeR4-attB-mtrm constructs were inject-

ed into y,w; attP40 embryos, and integrations into the attP40 site

were recovered.

IP-Mass Spec
Whole ovaries were dissected from 100 to 200 fattened females

containing the UASp-myc-cort transgene being driven by nanos-

GAL4. Ovary protein extracts were made by homogenizing in

homogenization buffer (25 mM HEPES [pH 7.5], 0.4 M NaCl,

0.1 mM EDTA, 0.1 mM EGTA, 1 mM PMSF, 10% glycerol,

complete mini EDTA-free protease inhibitors, 1 tablet/10 ml

[Roche]). 110 ml Protein G magnetic bead slurry was coupled

(and/or crosslinked using dimethylpimelimidate [Sigma]) to

27.5 ml anti-Myc [9e10] antibody or mouse random IgG. Whole

ovary extract was split evenly and incubated with the anti-Myc or

random IgG beads for 3 h at 4uC. Beads were then washed in IP

buffer (25 mM HEPES [pH 7.5], 100 mM NaCl, 1 mM EGTA,

0.1% Triton X-100, 10% glycerol, complete mini EDTA-free

protease inhibitors, 1 tablet/10 ml [Roche]) once, IP buffer +
0.5 M NaCl once, then washed in IP buffer four more times.

Bound proteins were eluted in sample buffer. Immunoprecipitated

proteins were resolved by SDS-PAGE and silver stained. Bands

were cut from the silver stained gel and reduced, alkylated, and

digested with trypsin. The resulting peptides were extracted and

the volume reduced to 15 ml. The digestion extracts were analyzed

by HPLC/tandem mass spectrometry using a Waters NanoAc-

quity UPLC system and a ThermoFisher LTQ linear ion trap

mass spectrometer operated in a data-dependent manner.

Tandem mass spectra were extracted by Extract_MSn. Charge

state deconvolution and deisotoping were not performed. All MS/

MS samples were analyzed using Mascot (Matrix Science,

London, UK; version 2.4.0). Mascot was set up to search the

refseq_fly_lc2_042413 database (27,878 entries) assuming the

digestion enzyme trypsin. Mascot was searched with a fragment

ion mass tolerance of 1.00 Da and a parent ion tolerance of

3.0 Da. Iodoacetamide derivative of cysteine was specified in

Mascot as a fixed modification. Oxidation of methionine was

specified in Mascot as a variable modification. Scaffold (version

Scaffold_4.0.5, Proteome Software Inc., Portland, OR) was used

to validate MS/MS-based peptide and protein identifications.

Peptide identifications were accepted if they could be established

at greater than 95.0% probability by the Peptide Prophet

algorithm [50]and contained at least two identified peptides.

Protein probabilities were assigned by the Protein Prophet

algorithm [51]. Proteins that contained similar peptides and could

not be differentiated based on MS/MS analysis alone were

grouped to satisfy the principles of parsimony.

Westerns/Immunoblots
Whole ovaries and staged egg chambers were hand dissected

from fattened females and homogenized in NP-40 lysis buffer

(150 mM NaCl, 50 mM Tris, pH 8.0, 2.5 mM EDTA, 2.5 mM

EGTA, 1% NP-40, 1 mM PMSF, complete mini EDTA-free

protease inhibitors, 1 tablet/10 ml [Roche]). Unfertilized eggs

were obtained by mating virgin females of the indicated genotype

to sterile twineHB5 males and collecting for 2 h (or O/N in the case

of mr females). The eggs were then dechorionated in 50% bleach

and homogenized in NP-40 lysis buffer. Protein lysates were spun

at 14,000 RPMs for 15 min at 4uC, and supernatant was used as

protein sample. Equal protein amount was loaded on 10% SDS-

PAGE gels as determined with Bradford reagent (BioRad). Protein

was transferred to Immobilon-P membranes (Millipore).

Antibodies used in this study were guinea pig anti-Mtrm

(1:1,000) [28], mouse anti-CycA (1:50) (Developmental Studies

Hybridoma Bank), mouse anti-CycB (1:50) (Developmental

Studies Hybridoma Bank), rat anti-tubulin (yol1/34 and yl1/2)

(1:400–1:1,000) (Novus Biologicals), guinea pig anti-Cort (1:2,000)

[23], and mouse anti-Myc 9E10 (1:400–1:1,000) (Covance).

Mouse anti-RFP 3F5 (Chromotek) (1:500) was used to detect

mCherry. Secondary antibodies used were Peroxidase-conjugated

anti-mouse, Peroxidase-conjugated anti-guinea pig, and Alkaline

Phosphatase-conjugated anti-rat (1:10,000; Jackson ImmunoRe-

search).

In Vitro Binding Assays
In vitro binding assays using purified GST-Mtrm were done

essentially as described [52], with some adjustments. mtrm cDNA

(LD47919) was cloned into pGEX6p-1 (GE Healthcare) for

expression of GST-Mtrm. 66myc-cort, 66myc-cort DWD40, and

66myc-fzy/cdc20 cDNAs were cloned into pOT2. cortDWD40

encodes the first 444 nucleotides of the cort ORF, followed by a

stop codon (TGA). In vitro transcription/translation was done using

the TnT T7 Coupled Reticulocyte Lysate System (Promega)

according to the manufacturer’s instructions. 5 ml of the in vitro

translation reaction was added to beads in 500 ml IP buffer [52]

and rotated for 2 h at 4uC. Beads were washed 36 in IP buffer,

and bound proteins were eluted with 40 ml 26 sample buffer.

10 ml was analyzed by Coomassie to check levels of GST-tagged

proteins, and 25 ml was analyzed by SDS-PAGE/Western

blotting.

Cell Culture, Transfection, qPCR, and Cell Cycle Analysis
Kc167 Drosophila cell culture cells were maintained at 25uC in

Schneider’s serum media (Invitrogen) supplemented with 10%

FBS (Sigma) and 50 ug/ml Pen/Strep.

pMT-66myc-mtrm and pMT-cort were generated by cloning the

respective constructs into pMT-puro under control of the

metallothionein promoter. Kc167 cells were transfected with the

indicated constructs using Cellfectin II (Invitrogen) according to

the manufacturer’s instructions. 48 h after transfection, protein

expression was induced with 0.5 mM CuSO4 for 1–3 d. After

induction, protein lysate was prepared by homogenizing cells in

NP-40 lysis buffer for SDS-PAGE/Western as described.

The Cort stable line was generated by transfecting Kc167 cells

with pMT-Cort as above, and selecting for stable transfectants

with puromycin (5 ug/ml) over multiple passages for ,3 wk.

For quantitative PCR, transfected Kc cells from a T25 (5 ml)

flask were resuspended in 2 ml of 16PBS. 1.2 ml was used to

make protein extract as described and subjected to immunoblot-

ting. 800 ml was used to isolate total RNA for absolute qPCR.

Primers against mtrm were used to measure transgene expression,

and primers against act5C were used for normalization. Quanti-

tative PCR was performed using PerfeCTa SYBR Green FastMix

(Quanta BioSciences) and analyzed on 7300 qPCR system

software (Applied Biosystems).

For cell cycle analysis, the Cortex stable line or Kc cells alone

were grown with or without CuSO4 for 1 or 2 d. For proteasome

inhibition, MG132 was added to 25 uM 8 h before cells were to

be fixed. Kc cells were first washed in 5 ml 16PBS and

resuspended in 500 ul PBS. Cells were then transferred into
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4.5 ml ice cold 70% ethanol and rotated for 2 h at 4uC. Fixed cells

were kept at 220uC until used for cell cycle analysis. Cells were

pelleted at 2000 RPMs for 5 min and washed 26 in 5 ml PBS

(once in PBS, spun 2000 RPMs for 10 min). Cells were

resuspended in 500 ul PBS containing 50 ug/ml propidium

iodide, 0.15% Triton X-100, and 100 ug/ml RNAse A, and

rotated O/N at 4uC. Cells were then filtered and run on a

FACScan 1 system (BD), and data were analyzed with FlowJo

software.

Mtrm in Vivo Degradation Time Course
Kc167 cells in T75 flasks were transfected as above with

pMT66myc-mtrm and either pMT-cort or pMT-empty vector. 48 h

after transfection, CuSO4 was added to the medium at a final

concentration of 0.5 mM. At the same time, MG132 (EMD

Chemicals) was added to the media to 25 uM. After 8 h of

induction/treatment, cells were washed twice with serum media to

remove MG132 and CuSO4 and then resuspended in 7 ml serum

media. 700 ul of resuspended cells were added to 5 ml fresh media

in T25 flasks containing 100 uM cycloheximide (Sigma-Aldrich)

with or without MG132 (25 uM). Cells were allowed to grow for

the indicated amounts of time, and then were harvested for protein

extraction/Western blotting as above.

Nondisjunction Assays
Nondisjunction assays were carried out as in Bonner et al. [38].

Embryo Collection and Immunofluorescence
Females were allowed to lay eggs for 2 h (Figure 4) or 1–2 h

with 3 h aging (Figure 5). Eggs were prepared for immunofluo-

rescence as described [23]. Kc167 cells were prepared for

immunofluorescence essentially as described [53], using conca-

navalin-A coated slides and 4% formaldehyde as a fixative.

Propidium iodide (Figure 5) or DAPI (Figure 4) was used to stain

DNA and anti-alpha tubulin [DM1A]-FITC (1:250) or anti-alpha

tubulin (yol 1/34) 1:500 was used to visualize microtubules. Anti-

gamma-tubulin (GTU-88; Sigma-Aldrich) was used at 1:500 to

visualize gamma-tubulin on centrosomes. Anti-phospho-H3 (Rab-

bit polyclonal; Upstate/Millipore) was used at 1:300. When

appropriate, secondary antibodies used were Alexa-488 anti-rat

and Alexa-568 anti-mouse (1:1,000; Life Technologies).

Accession Numbers
The FlyBase accession numbers for genes discussed in this paper

are cortex (FBgn0000351), grauzone (FBgn0001133), matrimony

(FBgn0010431), polo (FBgn0003124), and fizzy (FBgn0001086).

Supporting Information

Figure S1 In vitro binding assays with Cyclin A and
CortDWD40. (A) Western blot showing in vitro translated Myc-

tagged Fzy/Cdc20 stably binds to GST-CycA. Myc-Cortex also

binds, but somewhat less efficiently. Myc-CortexDWD40 (AA 1–

148 of Cortex) is impaired in its ability to bind GST-Mtrm.

Glutathione beads alone serve as a negative control. Quantifica-

tion indicates Myc-Fzy binds to GST-CycA 1556 better than to

GST-Mtrm. 66Myc-Cortex (full length) binds GST-Mtrm 5.86
better than 66Myc-CorttDWD40. About 60% of each pellet

sample was subjected to SDS-PAGE followed by Western blotting

(remaining pellet sample was used for B). Right side of panel shows

1% of total input of in vitro translated 66MycCort, 66MycFzy/

Cdc20, and 66Myc-CortDWD40. Blot was probed with anti-Myc

(9E10) antibody. Molecular weight markers are indicated to the

side of the blot. (B) Coomassie stain of purified proteins used in

binding assay. 20% of the final washed pellet was subjected to

SDS-PAGE followed by Coomassie staining. Molecular weight

markers are indicated to the side of the gel.

(TIF)

Figure S2 Levels of cell cycle proteins in cell culture
system. (A) A cell line with a stable cort gene shows decreased

Cyclin protein levels. Western blots comparing levels of indicated

proteins in a cort stable line and cells transfected with pMT-eGFP

instead. Both populations were also transfected with pMT-66myc-

mtrm. Molecular weight markers are indicated to the side of the

blot. (B) Expression of myc-tagged Fizzy/Cdc20 does not decrease

myc-tagged Mtrm levels. Amount of plasmid used to transfect cells

is indicated above each lane. Cells were also transfected with equal

amounts of pMT-66myc-mtrm (except last lane). The asterisks

indicate nonspecific bands. Both Myc-Fzy and Myc-Mtrm were

detected using anti-myc antibodies. Molecular weight markers are

indicated to the side of the blot.

(TIF)

Figure S3 grau;mtrm/+ spindles are meiotic in struc-
ture. (A) An egg laid by a grauQQ36/RM61;mtrm126/+ female is

shown. A free centrosome (presumably deposited by the sperm) is

indicated by the arrow. Although the free centrosome shows the

presence of both alpha-and gamma-tubulin, the spindles contained

in the egg are not enriched for gamma-tubulin at their poles. Scale

bar represents 50 um. (B) Mitotically dividing embryo from an

OrR female. Centrosomes are readily detected by the presence of

gamma-tubulin at the spindle poles. Scale bar represents 50 um.

(TIF)

Figure S4 Cort is not restored in grauQQ36/RM61;
mtrm126/+ mutants. The partial suppression of the grau

phenotype in grauQQ36/RM61; mtrm126/+ activated eggs is not due

to restoration of Cort protein. Western blot showing presence of

Cort in grau/CyO ovaries but not grau or grau; mtrm126/+ ovaries.

Cortex levels are also not restored in grauQQ36/RM61; mtrm126/+
fertilized eggs. The asterisk indicates a nonspecific band. Ovary

and fertilized egg panels are from two separate blots. Molecular

weight markers are indicated to the side of the blot.

(TIF)

Figure S5 Comparison of Mtrm protein levels from
various transgenic lines. (A) Western blot showing protein

amounts from the indicated genotypes. (UAS) 36FLAG-Mtrm is

seen at higher levels than stabilized mCherry-Mtrm (expressed

from the endogenous mtrm promoter) in both stage 14 oocytes and

activated, fertilized eggs (collected for 1 h and left to develop for

1 h in A). Molecular weight markers are indicated to the side of

the blot. (B) Activated eggs were collected for 30 min and left to

develop for 2 or 3 h. Molecular weight markers are indicated to

the side of the blot. Stg. 14 s and activated eggs are from two

different blots. (C) Activated eggs were collected/aged as

indicated. Molecular weight markers are indicated at the side of

the blot. Stg. 14 s and activated eggs are from two different blots.

(TIF)

Table S1 Immunoprecipitation of Cortex identifies
APC/C components and Matrimony. Data summarizing

three independent IP/mass spec experiments are shown. The

number of total spectra identified that immunoprecipitated/Co-

IP’d with Cortex is indicated. The number of peptides identified in

the negative control is shown in parentheses. In experiments 1 and

2, random mouse IgG was used as a negative control. Experiment

3 used anti-myc antibody in a strain not expressing 66Myc-Cortex

(OrR) as a control. *: Number of spectra indicated were searched
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for in MASCOT and analyzed by Scaffold (see Materials and

Methods for more details).

(DOCX)

Table S2 Quantification of mitotic index in the Cortex
stable line. Cells were induced (or not) with 0.5 mM CuSO4.

Total cells were counted using DAPI, and mitotic cells were

counted using anti-phospho histone H3.

(DOCX)

Table S3 Analysis of Cortex stable line by FACS. The

stable Cortex cell line or Kc167 cells were incubated with or

without CuSO4 and cell cycle progression was analyzed by

FACs (after 1 or 2 d of treatment). Cells are predominantly in

G2, as is typical of Kc cells [56]. No significant cell cycle arrest

is induced by ectopic expression of Cortex. A significant arrest

in G2 was detected when MG132 was added to the medium

for 8 h.

(DOCX)

Table S4 Mtrm-4A and L21A are competent to rescue
chromosome nondisjunction in mtrm/+ heterozygotes.
Both mCherry-Mtrm-L21A and 4A can rescue nondisjunction

caused by heterozygous deletion of mtrm. *: Full genetic

background is FM7w/yw; transgene/+; nanos-GAL4:VP16,

mtrmDf(3L)66C-T2-10/+; spapol. **Adjusted totals were calculated as

in Hawley et al. [57].

(DOCX)
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