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Calcium/calmodulin-dependent protein ID (CAMK1D) is widely expressed in many tissues
and involved in tumor cell growth. However, its role in gliomas has not yet been elucidated.
This study aimed to investigate the roles of CAMK1D in the proliferation, migration, and
invasion of glioma. Through online datasets, Western blot, and immunohistochemical
analysis, glioma tissue has significantly lower CAMK1D expression levels than normal
brain (NB) tissues, and CAMK1D expression was positively correlated with the WHO
classification. Kaplan–Meier survival analysis shows that CAMK1D can be used as a
potential prognostic indicator to predict the overall survival of glioma patients. In addition,
colony formation assay, cell counting Kit-8, and xenograft experiment identified that
knockdown of CAMK1D promotes the proliferation of glioma cells. Transwell and wound
healing assays identified that knockdown of CAMK1D promoted the invasion and
migration of glioma cells. In the above experiments, the results of overexpression of
CAMK1D were all contrary to those of knockdown. In terms of mechanism, this study
found that CAMK1D regulates the function of glioma cells by the PI3K/AKT/mTOR
pathway. In conclusion, these findings suggest that CAMK1D serves as a prognostic
predictor and a new target for developing therapeutics to treat glioma.
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INTRODUCTION

As the most frequent intracranial malignancy, glioma is characterized with infiltrative growth, high
mortality, and easy recurrence (1–3). A clinical trial found that the 5-year survival rate of
glioblastoma patients was less than 13% even after receiving the correct treatment including
surgery, radiotherapy, and chemotherapy (4, 5). The treatment of glioma patients is becoming more
standardized, but the prognosis of highly graded patients is still poor (6, 7). Due to the heterogeneity
of glioma gene expression, identifying certain glioma-associated genes as therapeutic targets will
help to develop more effective strategies for treating glioma (8, 9).

The development and occurrence of glioma is related to imbalanced expression and mutations of
pro-tumor and anti-tumor genes, and therapies targeting molecular markers are a key research
direction for the future (10). Previous studies have indicated that CAMK1D plays important roles in
the CaMKK-CaMK1 signaling cascade triggered by calcium (11), regulates calcium-mediated
granulocyte function and respiratory burst (12), and promotes basal dendrite growth of
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hippocampal neurons (13). Calmodulin (CaM) regulates the
activity of a variety of proteins through binding to calcium,
thereby regulating the function of relevant signaling pathways
that control a variety of cellular functions (14). In addition,
tumor-related studies have found that CAMK1D expression is
higher in invasive breast cancer than in situ breast cancer and
that overexpression of CAMK1D in breast epithelial cells
promotes molecular and phenotypic alterations in epithelial–
mesenchymal transition (EMT) (15). Overexpression of
CAMK1D in lung adenocarcinoma cells promotes cell
proliferation but inhibits vascular endothelial cell formation
(16, 17). These findings suggest that CAMK1D plays critical
roles in the pathogenesis of different cancers. Nevertheless, the
clinical significance and function of CAMK1D in glioma
remain unknown.

Phosphatidylinositol-3-kinase (PI3K) family is one of the
kinases that specifically catalyze the hydroxyl phosphorylation
of phosphatidylinositol and produce substances with second
messenger effect. The signal pathway composed of PI3K and
its downstream molecular signal protein kinase B (AKT)/
rapamycin target protein (mTOR) is one of the most
important intracellular signal pathways in mammals, which
regulates important physiological functions such as cell cycle,
protein synthesis, growth, and metabolism. Ribosomal p70S6
kinase (P70S6K) is one of the most characteristic downstream
effector molecules of mTOR. The activation of PI3K pathway
also increases the phosphorylation of P70S6K (18). It has been
demonstrated that calmodulin affects autophagy in prostate
cancer cells via AKT/mTOR (19) and also participates in
PLCg1-dependent ECM synthesis via the mTOR/P70S6K
pathway (20). Thus, in this study, we determined if the PI3K/
AKT/mTOR pathway plays an important role in CAMK1D
regulation of tumor function.

This study focused on the function of CAMK1D in glioma.
First, the relative level of CAMK1D in glioma and its relation
with overall survival of glioma were analyzed using
bioinformatics. We found that downregulation of CAMK1D
was associated with poor prognosis in glioma patients. The
role of CAMK1D in glioma cell proliferation, invasion, and
migration was also explored. Finally, we investigated the
potential mechanisms involved in CAMK1D-induced
regulation of glioma.
MATERIALS AND METHODS

Bioinformatics Analysis of CAMK1D
Bioinformatics analysis was performed based on 6 glioma
cohorts (CGGA, TCGA, Rembrandt, Gravendeel, Phillips and
Kamoun) containing clinicopathological and gene expression
data obtained from Gliovis (http://gliovis.bioinfo.cnio.es/). We
also analyzed the pan-cancer data of CAMK1D in the Cancer
Genome Atlas (TCGA), including 33 cancer types using
UCSCXenaShiny (https://hiplot.com.cn/advance/ucscxena-
shiny). Then, the association between clinical characteristics
and CAMK1D expression was explored and visualized through
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the R package ggplot2. The high- and low-expression groups
were distinguished by the median expression of CAMK1D. We
subsequently performed survival analysis to compare the overall
survival between the low-CAMK1D and high-CAMK1D groups
through Survminer R packages.

To determine the exact mechanisms of CAMK1D in glioma,
“limma” package in R was applied to detect the differentially
expressed genes (DEGs). Then, KEGG (Kyoto Encyclopedia of
Genes and Genomes), GSEA (Gene set enrichment analysis), and
GO (Gene Ontology) were conducted to investigate potential
activating biological function processes or pathways in the low-
CAMK1D population.

Tissue Samples
A total of 80 glioma and normal tissues were obtained from a
total of 80 patients treated in The Second Hospital of Hebei
Medical University. All samples were confirmed by pathology.
Patients who received radiotherapy or chemotherapy before
surgery were excluded from this study. The Ethics Committee
of The Second Hospital of Hebei Medical University approved
this research. The ethics committee waived the requirement of
written informed consent for participation.

Cell Cultures and Reagent
A total of four glioma cell lines (U251, A172, LN229, and U87) and
normal human astrocytes (NHAs) were obtained from Procell Life
Science. The U251 cells were cultured in RPMI−1640 medium
(Gibco™,11875093). The A172 and LN229 cells were cultured in
DMEM (Gibco™, 10564011). The U87 cell lines were cultured
in MEM (Gibco™, 11090081), while the NHA cells were cultured
in astrocyte medium (AM, Sciencell™, #1801). All media were
supplemented with 10% FBS (Gibco™, 10099141), 100 U/ml
penicillin, and 100 mg/ml streptomycin (Pen-Strep Solution, BI,
2114091). Cells were incubated with 5% CO2 at a temperature of
37°C in a standard humidified incubator.

Cell Transfection
The CAMK1D−coding sequence was synthesized and cloned into
the pcDNA 3.1 vector by Hanbio Biotechnology Co., Ltd. to
construct a CAMK1D overexpression plasmid (pcCAMK1D). The
blank pcDNA3.1 plasmid was used as negative control (NC)
plasmid. The siRNA for silencing CAMK1D was designed and
synthesized from Thermo Fisher Scientific. The targeting sequence
for siCAMK1Dwas AAGAUGUAGGCAAUCACUCCG. Plasmids
(8 mg/106 cells) or small interfering RNA (siRNA) (60 pmol/106

cells) were transfected in glioma cells using Lipofectamine 3000
(L3000015, Invitrogen), according to the product instruction. After
48–72 h, all cells were collected and used in the follow-
up experiments.

RT-PCR
Total RNA was extracted using TRIzol (Invitrogen) and then we
used PrimeScript RT reagent (Takara) to reverse transcribe RNA (1
mg) into cDNA according to the instructions. Regarding RT-PCR,
the ABI Prism 7500 RT-PCR system (Applied Biosystems) and the
SYBR Premix ExTaq (Takara) were used. RT-PCR cycles included
pre-denaturation for 30 s at 95°C, denaturation for 5 s at 95°C,
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annealing for 30 s at 60°C, and extension for 30 s at 72°C, 40 cycles
in the last three steps. The primer sequences were as follows (5’−3’):
CAMK1D, forward AATGGAGGGCAAAGGAGATGTGATG,
and reverse GTA AGGTTTCTGGGCGAGGACTTC; GAPDH,
forward GGAGCGAGATCCCTCCAAAAT, and reverse
GGCTGTTGTCATACTTCTCATGG. The relative CAMK1D
expression was calculated using the 2−DDCq method.

Immunohistochemistry
Paraffin-embedded tissue specimens (4 mm thick) were sectioned,
dewaxed, and rehydrated in gradient ethanol. Then, we add 3%
H2O2 and soak for 10 min to remove endogenous peroxidase. The
antigen retrieval was accomplished in 10mM citrate at 95°C for 20
min. Slides were blocked in goat serum for 60 min and incubated
with rabbit anti-CAMK1D antibodies (1:100; ab172618; Abcam)
overnight at 4°C. After washes in phosphate buffered saline (PBS),
goat anti-rabbit secondary antibody (sp-9001, Zhongshan Golden
Bridge) was added for 60 min at room temperature. Subsequently,
slides were incubated with horseradish peroxidase (HRP) (sp-
9001, Zhongshan Golden Bridge). The slides were lightly
counterstained with hematoxylin and dehydrated. Finally,
images were captured with Leica DM2000 microscope.

Western Blot
Tissues and cells of human were lysed in radioimmunoprecipitation
assay buffer (Beyotime) containing a protease and phosphatase
inhibitor cocktail (K1015, APExBIO). The protein concentration
was assayed by the BCA method. The extracted or enriched protein
samples were separated by denaturing 10% SDS-polyacrylamide gel
electrophoresis and transferred into polyvinylidene fluoride
membranes. After being blocked by 5% bovine serum albumin
(BSA) for 120 min at room temperature, the membranes were
incubated with primary antibodies from abcam and Cell Signaling
Technology against GAPDH (ab8245, 1:8,000), mTOR (ab2732,
1:1,500), AKT (ab18785, 1:1,000), p-mTOR (ab109268, 1:1,500), p-
AKT (ab38449, 1:1,000), P70S6K (#2708, 1:1,000), p-P70S6K
(#9205, 1:1,000), and CAMK1D (ab172618, 1:1,500) overnight at
4°C. After washing three times, the blots were further incubated
with goat anti-rabbit IRDye 800CW preadsorbed secondary
antibody (1:10,000; Abcam; ab216773). The images were detected
with an Odyssey infrared imaging scanner (LI-COR, USA).

CCK-8 Assay
Cell samples were initially seeded at 100 ml of medium
containing 5×103 cells/well on 96−well plates. Then, we
measured the cell proliferation rate at 0, 1, 2, 3, and 4 days
after transfection. Each well in the 96−well plate was
supplemented with 10 ml of CCK-8 (Report) and incubated at
37°C for an additional 2 h. Eventually, the absorbance was
measured at 450 nm of 96−well plates and was determined by
the use of a strip reader (SpectraMax Plus 384).

Transwell Migration and Invasion Assays
Seeding of transfected cancer cells in the serum-free medium was
performed in the upper chamber of Transwell (8−mm; BD
Biosciences) precoated with 40 ml of Matrigel (to assess
invasion) or non-coated (to assess migration). Then, 10% FBS
Frontiers in Oncology | www.frontiersin.org 3
containing culture medium was plated into the lower chamber.
After incubating for 1 day, cells were removed on the upper
chamber with cotton swabs, fixed with 4% paraformaldehyde,
and stained in 0.1% crystal violet.

Colony Formation Assay
Cell samples of glioma were planted at 800 cells/well to the 6-well
plates. Following 2 weeks of cell culture, samples were treated
with 4% paraformaldehyde and Giemsa stain in succession, and
then the total number of colonies was counted with
ImageJ (version1.52p).

Wound Healing
Cell samples of glioma were plated into the six-well plate for
treatment and grew up to 90% confluency. Then, we created the
scratch with a pipette tip on these cell monolayers. The scratch
was photographed with the microscope (Olympus, Japan) at 0 h
and 24 h at the same position. Finally, the width of the scratch
was analyzed with ImageJ.

Xenograft Experiment
Glioma cells (5×106) were injected into the subcutis of athymic
BALB/c nude mice (4 weeks, male). The length (L) and the width
(W) of xenograft were estimated using a vernier caliper at 7, 14,
21, and 28 days. The xenograft volume was calculated by the
equation: V = (W2 × L)/2. After 28 days, the mice were sacrificed
and subcutaneous xenografts were collected, photographed, and
weighed. The regulations of the Ethics Committee of the Second
Hospital of Hebei Medical University were followed in
animal experiments.

Statistical Analyses
Each experiment was repeated thrice and exhibited as the mean
values ± standard deviation (SD). All data were analyzed
statistically by Prism 8 (GraphPad Inc, USA) and R software
(version 3.6.3). Student’s t-test and one-way ANOVA were used
in statistical analysis. The prognostic value of patients was shown
using the Kaplan–Meier curve. Factors for overall survival were
performed using Log-rank test and p-values less than 0.05 were
judged as statistically significant difference between groups.
RESULTS

Pan−Cancer Analysis of
CAMK1D Expression
Pan-cancer analysis showed that CAMK1D expression levels
were significantly different between multiple tumor tissue and
adjacent tissues (or GTEx) (Figure 1A). Expression of CAMK1D
was lower in BLCA, DLBC, GBM, LGG, PAAD, PRAD, SKCM,
TGCT, THCA, and UCEC than in adjacent tissues, whereas
CAMK1D expression levels were significantly higher in tumor of
ACC, BRCA, CHOL, ESCA, KICH, KIRC, KIPR, LAML, LIHC,
LUSC, LUAD, OV, PRAD, SARC, PCPG, STAD, UCS, and
THYM than in adjacent tissues.
April 2022 | Volume 12 | Article 845036
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The Expression of CAMK1D Is Related to
Clinical Characteristics of Glioma Patients
To determine the role of CAMK1D in tumor pathogenesis and
development, we studied the relationship between CAMK1D
protein and clinicopathological features, including gender, age,
recurrence, WHO grade, 1p19q codeletion, subtype, IDH status,
and MGMTp methylation in the CGGA dataset. Our results
show that the expression of CAMK1D in glioma tissues was
decreased in aged and higher WHO grade patients. In addition,
CAMK1D expression levels were different under different
subtypes and different IDH mutations in different
states (Figure 1B).

The patients were divided into low- and high-CAMK1D
groups based on the median expression of CAMK1D. The
Frontiers in Oncology | www.frontiersin.org 4
survival analysis indicated that glioma patients with lower
expression of CAMK1D in TCGA (HR: 0.33, 95% CI 0.25–
0.44), CGGA (HR: 0.60, 95% CI 0.51–0.71), Rembrandt (HR:
0.54, 95% CI 0.43–0.68), Gravendeel (HR: 0.56, 95% CI 0.43–
0.73), Kamoun (HR: 0.81, 95% CI 0.44–1.49), Phillips (HR: 0.43,
95% CI 0.26–0.73), Freije (HR: 1.04, 95% CI 0.62–1.73), and
LeeY (HR: 0.85, 95% CI 0.63–1.14) exhibited significantly shorter
survival time than patients with higher expression, while patients
from the Kamoun cohort displayed the same trend with no
statistical significance (Figure 2A). To show the reliability of our
results, a meta-analysis was performed to gather the HR of the
eight glioma datasets, and results also confirmed that low-
CAMK1D patients displayed shorter OS time compared to
high-CAMK1D patients (RR:0.5, 95% CI 0.52–0.63, Figure 2B).
A

B

FIGURE 1 | Pan-cancer analysis of CAMK1D expression and the relationship between the expression of CAMK1D and clinicopathological features. (A) CAMK1D
mRNA expression in pan-cancer dataset of TCGA. (B) Expression of CAMK1D in different age, genders, WHO grades, IDH status, 1p19q codeletion, recurrence,
MGMTp methylation, and subtypes of glioma. Please note the CAMK1D gene expression level changes in different tumor tissues. Furthermore, CAMK1D expression
level was low in glioma tissue with higher WHO grade patients. ns, no significance; *p < 0.05 < **p < 0.01 < ***p < 0.001 < ****p < 0.0001.
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CAMK1D Low Expression in Glioma
Predicted Poor Survival of Glioma Patients
To further explore the functions of CAMK1D in glioma,
CAMK1D expression was estimated in glioma tissues compared
with normal brain tissues usingWestern blot, IHC, and RT−qPCR.
The results indicated that the expression of CAMK1D was
strikingly downregulated in glioma tissues from patients at all 4
WHO grades compared with normal brain tissues (Figures 3A-C).
Frontiers in Oncology | www.frontiersin.org 5
The expression levels were decreased progressively as the grades
increased. Similarly, the expressions of CAMK1D in 4 glioma cell
lines were significantly lower than theNHA (Figures 3D, E). These
results suggest that CAMK1D may be a cancer suppressor gene in
glioma. The data of Kaplan–Meier survival were obtained from the
medical records of glioma patients inThe SecondHospital ofHebei
Medical University hospital. According to the median cutoff of the
expression of CAMK1D, the patients were separated into two
A

B

FIGURE 2 | Decreased expression of CAMK1D predicts short survival time of glioma patients. (A) Survival curves of CAMK1D in various datasets of glioma showing
that glioma patients with lower expression level of CAMK1D have shorter survival time than patients with higher expression levels. (B) The forest plot was presented
in the RRs for glioma patients with high expression of CAMK1D compared to low expression.
April 2022 | Volume 12 | Article 845036
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groups. The result revealed that low CAMK1D expression was
significantly related with the poor overall survival of glioma
patients (Figure 3F).

CAMK1D Inhibits Glioma Cell
Proliferation In Vitro
We detected the expression levels of CAMK1D in U251 and U87
cells that were transfected with plasmid or siRNA for 2 days
using RT−qPCR and Western blot. The mRNA and protein
levels of CAMK1D were notably upregulated in glioma cells
transfected with CAMK1D plasmids and were downregulated in
glioma cells transfected with siCAMK1D, compared to the pcNC
Frontiers in Oncology | www.frontiersin.org 6
(transfected an empty vector) and siNC (transfected a scramble
siRNA) (Figures 4A, B). As evidenced by CCK-8 assay and
colony formation assay, CAMK1D overexpression significantly
inhibited the proliferation of cells; on the contrary, CAMK1D
knockdown resulted in the opposite (Figures 4C, D).
Proliferation of cells were strengthened by CAMK1D
knockdown compared with cells in the siNC group.

Overexpression of CAMK1D Inhibits the
Growth of Glioma Cells In Vivo
Based on the experimental results in vitro, we inoculated
pcCAMK1D and pcNC-treated U251 cells, subcutaneously into
A B

D

E

F

C

FIGURE 3 | CAMK1D expression in tissues and cells. (A) CAMK1D mRNA expression was signficantly decreased in glioma samples compared with normal brain
samples (NB = 11; LGG = 15; GBM = 10). (B) CAMK1D protein expression was significantly decreased in four glioma samples compared with four normal brain
samples with Western blot analysis. (C) Immunohistochemistry showed that the expression of CAMK1D immunoreactivities were different in normal brain tissue,
astrocytoma, anaplastic astrocytoma, and glioblastoma. (D, E) CAMK1D expression levels in HA cell lines and four glioma cell lines were determiend by RT-PCR and
Western blot. Both mRNA and protein levels were signficantly decreased in the 4 glioma cell lines compared with HA cell lines. (F) Kaplan–Meier curves for overall
survival of glioma patients based on expression of CAMK1D protein (78 glioma samples) showing that low-level CAMK1D expression was closely associated with the
poor overall survival of glioma patients. ns, no significance; **p < 0.01.
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immunodeficient mice to establish a tumor transplantation
model. The growth of tumors in two groups showed that
tumors in the CAMK1D overexpression group grew
significantly slower compared with the control group. Twenty-
eight days after U251 cell injection, tumors were excised and
weighed. The mean volume was 44.69 ± 18.64 mm3 in the
CAMK1D overexpression group and 172.53 ± 73.32 mm3 in
the control group. The mean mass weight was 42.40 ± 13.83 mg
in the CAMK1D overexpression group and 153.00 ± 43.03 mg in
the control group. There were significant differences in tumor
weight and volume between the transfected and control groups
Frontiers in Oncology | www.frontiersin.org 7
(Figure 4E). These in vivo findings showed that CAMK1D
inhibited the proliferative ability of U251 glioma cells, which
was consistent with our findings in in vitro experiments.
CAMK1D Inhibits Glioma Cell Invasion and
Metastasis In Vitro
To detect the role of CAMK1D in cell invasion and migration, we
used scratch wound healing assays, transwell invasion, and
migration assays. The results revealed that glioma cell invasion
and migration were weakened by CAMK1D overexpression.
A B

D

E

C

FIGURE 4 | CAMK1D inhibits glioma cell proliferation. (A, B) The protein and mRNA levels of CAMK1D were able to be downregulated and overexpressed in glioma
cells by siCAMK1D and paCAMK1D. (C) CCK8 assays measured the effect of CAMK1D on the growth of glioma cells. (D) Colony formation assay used to verify the
influence of CAMK1D on glioma cell proliferation. (E) The tumor growth rate in vivo was inhibited after injection of U251 cells overexpressing CAMK1D. *p < 0.05;
**p < 0.01.
April 2022 | Volume 12 | Article 845036
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Meanwhile, cell migration and invasion were strengthened by
CAMK1D knockdown compared with cells in the siNC group
(Figures 5A, B). The in vitro data suggest that CAMK1D represses
glioma cell proliferation, invasion, and migration abilities.

Conformation of Differentially
Expressed Genes
To understand the potent mechanisms underlying the role of
CAMK1D in regulating glioma proliferation, invasion, and
migration, we analyzed DEGs between high and low CAMK1D
groups in TCGA. Log2 fold-change (FC) > 2 and p-value less
than 0.05 were recognized as screening crit
eria, which contained 1,043 downregulated genes and 380
upregulated genes (Figure 6A). Enrichment analysis was
performed, and the DEGs were mainly enriched in substrate-
specific channel activity, dendrite membrane, regulation of
immune effector process, neuroactive ligand–receptor
interaction, and the PI3K/Akt/mTOR signal pathway
(Figures 6B, C). Another 10 genes were identified by the
STRING database as CAMK1D-related genes with significant
Frontiers in Oncology | www.frontiersin.org 8
interactions, including JAZF1, TSAN8, CDC123, THADA,
CDKAL1, CALM3, CALM1, CREB1, CALM2, and NOS3. The
PPI network of CAMK1D and CAMK1D-related genes was
constructed and visualized by the STRING database
(Figure 6D). Then, we used GSVA and GSEA methods to
predict the potential carcinogenic pathway of CAMK1D. We
found that many different signaling pathways were significantly
related to CAMK1D expression (Figures 6E–G), such as EMT,
glycolysis, p53 signaling pathways, and WNT signaling
pathways. Notably, both analyses showed that the PI3K/AKT/
mTOR signaling pathway were significantly enriched in tumor-
related pathways, and the activation of this pathway was
negatively correlated with CAMK1D expression (Figure 6H).

CAMK1D Inhibits Proliferation, Invasion,
and Migration In Vitro Through the
PI3K/Akt/mTOR Pathway
Then, we determined the effect of CAMK1D overexpression on
PI3K/AKT/mTOR pathway in glioma cells. Western blot analysis
showed that overexpression of CAMK1D downregulated p-Akt,
A

B

FIGURE 5 | CAMK1D inhibits the invasion and migration of glioma cells. (A) Transwell assays revealed that CAMK1D overexpression reduced the invasion and
migration of U87 and U251 glioma cells. The invasive cell numbers and migration cell numbers of U87 and U251 cell lines were significantly decreased by
overexpression of CAMK1D with pcCAMK1D. (B) Wound healing assay showed that overexpression of CAMK1D reduced the relative wound width in U87 and U251
glioma cells. *p < 0.05; **p < 0.01.
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p-mTOR, and p-P70S6K, and decreased p-Akt/Akt, p-mTOR/
mTOR, and p-P70S6K/P70S6K ratios in glioma cells (Figure 7A).
Moreover, the involvement of this pathway in glioma cells was
analyzed by applying PI3K/Akt/mTOR pathway inhibitor
LY294002. By using CCK-8, transwell, and wound healing assay,
we determined whether inhibition of the PI3K/AKT/mTOR
signaling pathway by LY294002 reversed the inhibition of cell
Frontiers in Oncology | www.frontiersin.org 9
proliferation, invasion, and migration induced by CAMK1D
overexpression. These results obtained from CCK-8, transwell,
and wound healing assay all indicated that LY294002 reversed the
promotion of cell proliferation, invasion, and migration by
siCAMK1D (Figures 7B–E). These findings support the notion
that CAMK1D regulates glioma cell proliferation, migration, and
invasion through the PI3K/AKT/mTOR pathway.
A B

D E

F G

H

C

FIGURE 6 | Determination of the biological mechanism and processes affected by CAMK1D. (A) The Volcano plot showed the DEGs in low- and high-CAMK1D
groups. (B) Analysis of GO enrichment for the DEGs. (C) Analysis of KEGG pathway enrichment for the DEGs. (D) The PPI network of CAMK1D constructed by the
STRING database. (E) GSEA between the low- and high-risk group (F) The heatmap showed the GSVA scores of 18 pathways in low- and high-risk populations.
(G) The association graph between GSVA and risk scores of 18 pathways. (H) The correlation between the PI3K/AKT/mTOR signaling, P53 signaling, cell cycle, and
the expression of CAMK1D.
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DISCUSSION

CAMK1D is widely present in a variety of cell types and plays an
important role in control of formation of synapses, growth cone
movement and axon growth, aldosterone synthase expression,
visual signaling processes, and the cell cycle (21–26). Based on
bioinformatics analysis and screening, our study was the first to
determine the role of CAMK1D in cell proliferation, migration,
and invasion of glioma cells. We found that CAMK1D
Frontiers in Oncology | www.frontiersin.org 10
expression was significantly downregulated in glioma cell lines
and glioma tissues from patients. However, based on the tumor
expression data in the TCGA and GTEx databases, the
expression level of CAMK1D in various tumors is not
consistent with its corresponding normal tissues. The above
findings suggest that CAMK1D probably plays different
functions in different cancer types. In addition, CAMK1D
expression in the database was associated with overall survival
in patients with glioma. This implies that whether CAMK1D can
A

B

D

E

C

FIGURE 7 | CAMK1D level changes on the PI3K/AKT/mTOR pathway. (A) Compared with the control, the expression of p-AKT and p-mTOR was significantly
decreased after CAMK1D overexpression using pcCAMK1D plasmid construction in U87 and U251 cells. (B–D) LY294002 reversed the increases in cell
proliferation, migration, and invasion induced by the decrease in CAMK1D using siCAMK1D in U87 and U251 cells. (E) LY294002 reversed the decrease of p-AKT
and p-mTOR expression by siCAMK1D. ns, no significance; *p < 0.05; **p < 0.01.
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be used as a prognostic marker for glioma patients needs to be
studied in a larger collection of glioma specimens.

We found that overexpression of CAMK1D can inhibit the
proliferation, migration, and invasion of glioma cells, whereas
knockdown of camk1d using siRNA produced opposite effects.
This is not identical to the previously reported function of
CAMK1D in other cancers. For example, CAMK1D promotes
the proliferation of breast cancer through CERB/CCND1 (15),
inhibits the angiogenesis of lung adenocarcinoma by HH3 (17),
enhances the resistance of multiple myeloma to T cells by
phosphorylation of caspase-3 and caspase-6 (27), and inhibits
the apoptosis of human choroidal trophoblastic cells (28). This
reinforces the fact that camk1d plays different functions in
different tumor types. The reason may be that the targeting
mechanism of multifunctional kinases allows the same kinases in
different cells to respond differently to stimulation and produce
different functions (29–31). The function of CAMK1D-mediated
depends on the different activation states and binding substrates
in different cancers, thus affecting the function and signaling
pathways involved in the substrates. Moreover, the different
microenvironment of kinase will also affect its conformation
and function. Thus, other functions of CAMK1D in glioma
needs to be further studied.

To investigate the signaling pathway involved in the
regulatory mechanism of CAMK1D in glioma, we predicted
and determined that the PI3K/AKT/mTOR pathway was
critically involved in the inhibitory effect of CAMK1D in
glioma. It has been shown that abnormal activation of the
PI3K/AKT/mTOR pathway is associated with many illnesses,
including tumorigenesis (32, 33). In this study, we examined the
protein levels of Akt/p-AKT, mTOR/p-mTOR, and P70S6K/p-
P70S6k. We found that overexpression of camk1d significantly
inhibited p−AKT, p-mTOR, and p-P70S6k. Block the PI3K/
AKT/mTOR pathway in U251 cells using LY294002 reversed
CAMK1D knockdown-mediated changes in cell function. These
data suggest that CAMK1D inhibits cell proliferation, invasion,
and migration by regulat ing the PI3K/AKT/mTOR
signaling pathways.

Our findings were the first research report showing that
CAMK1D overexpression inactivated the PI3K/AKT/mTOR
signaling pathway. However, the limitation of this study is that
we only studied the PI3K/Akt/mTOR signaling pathway. The
regulation of CAMK1D in glioblastoma is a complex network
involving multiple genes. In this study, we did not determine
whether CERB or HH3 pathway was involved in CAMK1D
overexpression-induced inhibition of glioma (15). In addition,
we did not examine whether CAMK1D has other functions in
glioma, such as reducing apoptosis, affecting EMT, and
autophagy. Thus, we cannot rule out the possibility that other
pathways are involved in the effect of CAMK1D in glioma, which
deserves further investigation in our future studies. Since Ca2+

directly regulates CAMK1D activity (34, 35), Ca2+ dynamics,
especially the frequency, amplitude, and duration of intracellular
Ca2+ concentration changes, is a potential mechanism to regulate
CAMK1D activity.
Frontiers in Oncology | www.frontiersin.org 11
CONCLUSION

In summary, we found that CAMK1D promotes glioma cell
proliferation, migration, and invasive processes through activation
of the PI3K/AKT/mTOR signaling pathway. These findings suggest
that CAMK1D expression is downregulated in glioma and can be
used as a prognostic indicator for glioma patients.
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